1
|
Bondarenko AV, Boyarchuk OR, Sakovich IS, Polyakova EA, Migas AA, Kupchinskaya AN, Opalinska A, Reich A, Volianska L, Hilfanova AM, Lapiy FI, Chernyshova LI, Volokha AP, Zabara DV, Belevtsev MV, Shman TV, Kukharenko LV, Goltsev MV, Dubouskaya TG, Hancharou AY, Ji W, Lakhani S, Lucas CL, Aleinikova OV, Sharapova SO. Variable CD18 expression in a 22-year-old female with leukocyte adhesion deficiency I: Clinical case and literature review. Clin Case Rep 2023; 11:e7791. [PMID: 37601427 PMCID: PMC10432584 DOI: 10.1002/ccr3.7791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Key Clinical Message Partial leukocyte adhesion deficiency type 1 (LAD-1) deficiency is extremely rare condition with milder infectious manifestation and immune system imbalance leads to increased risks of autoinflammatory complications, such as pyoderma gangrenosum, that can be triggered by trauma or pregnancy. In patients with spice-site ITGB2 variants, partial expression can occur due to different β2 integrin isophorms expression. Abstract LAD-1, OMIM ID #116920 is a rare, autosomal recessive disorder that results from mutations in the ITGB2 gene that encodes the CD18 β2 integrin subunit. According to the CD18 expression, LAD-1 is categorized as severe (<2%), moderate (2%-30%), or mild (>30%). Here, we describe a 22-year-old female, who presented with inflammatory skin disease and oral cavity, as well as respiratory tract infections during the first year of life. LAD-1 was diagnosed at the age of 2 years by low expression of CD18 (1%). Whole-exome sequencing identified homozygous c. 59-10C>A variant in the ITGB2 gene. Despite severe phenotype, the patient survived to adulthood without hematopoietic stem cell transplantation and became pregnant at the age of 20 years, with pregnancy complicated by a pyoderma gangrenosum-like lesion. During her life, CD18 expression increased from 1% to 9%; at 22 years of age, 5% of neutrophils and 9% of lymphocytes were CD18+. All CD18+-lymphocytes were predominantly memory/effector cytotoxic T cells. However, revertant mosaicism was not being established suggesting that CD18 expression variability may be mediated by other mechanisms such as different β2 integrin isophorms expression.
Collapse
Affiliation(s)
- Anastasiia V. Bondarenko
- Department of Pediatrics, Immunology, Infectious and Rare Diseases, European Medical SchoolInternational European UniversityKyivUkraine
| | - Oksana R. Boyarchuk
- Department of Children's Diseases and Pediatric SurgeryI. Horbachevsky Ternopil National Medical UniversityTernopilUkraine
| | - Inga S. Sakovich
- Research DepartmentBelarusian Research Center for Pediatric Oncology, Hematology and ImmunologyMinskBelarus
| | - Ekaterina A. Polyakova
- Research DepartmentBelarusian Research Center for Pediatric Oncology, Hematology and ImmunologyMinskBelarus
| | - Alexander A. Migas
- Research DepartmentBelarusian Research Center for Pediatric Oncology, Hematology and ImmunologyMinskBelarus
| | - Aleksandra N. Kupchinskaya
- Research DepartmentBelarusian Research Center for Pediatric Oncology, Hematology and ImmunologyMinskBelarus
| | - Aleksandra Opalinska
- Department of Dermatology, Institute of Medical SciencesMedical College of Rzeszow UniversityRzeszowPoland
| | - Adam Reich
- Department of Dermatology, Institute of Medical SciencesMedical College of Rzeszow UniversityRzeszowPoland
| | - Liubov Volianska
- Department of Children's Diseases and Pediatric SurgeryI. Horbachevsky Ternopil National Medical UniversityTernopilUkraine
| | - Anna M. Hilfanova
- Department of Pediatrics, Immunology, Infectious and Rare Diseases, European Medical SchoolInternational European UniversityKyivUkraine
| | - Fedir I. Lapiy
- Department of Pediatrics, Immunology, Infectious and Rare Diseases, European Medical SchoolInternational European UniversityKyivUkraine
| | | | | | - Dariia V. Zabara
- Institute of Pediatrics, Obstetrics and Gynecology named after Academician O.M. Lukyanova of the NAMS of UkraineKyivUkraine
| | - Mikhail V. Belevtsev
- Research DepartmentBelarusian Research Center for Pediatric Oncology, Hematology and ImmunologyMinskBelarus
| | - Tatsiana V. Shman
- Research DepartmentBelarusian Research Center for Pediatric Oncology, Hematology and ImmunologyMinskBelarus
| | - Lyudmila V. Kukharenko
- Department of Medical and Biological PhysicsBelarusian State Medical UniversityMinskBelarus
| | - Mikhail V. Goltsev
- Department of Medical and Biological PhysicsBelarusian State Medical UniversityMinskBelarus
| | | | | | - Weizhen Ji
- Department of PediatricsYale UniversityNew HavenConnecticutUSA
- Yale University Pediatric Genomics Discovery ProgramNew HavenConnecticutUSA
| | - Saquib Lakhani
- Department of PediatricsYale UniversityNew HavenConnecticutUSA
- Yale University Pediatric Genomics Discovery ProgramNew HavenConnecticutUSA
| | - Carrie L. Lucas
- Yale University Pediatric Genomics Discovery ProgramNew HavenConnecticutUSA
- Department of ImmunobiologyYale UniversityNew HavenConnecticutUSA
| | - Olga V. Aleinikova
- Research DepartmentBelarusian Research Center for Pediatric Oncology, Hematology and ImmunologyMinskBelarus
| | - Svetlana O. Sharapova
- Research DepartmentBelarusian Research Center for Pediatric Oncology, Hematology and ImmunologyMinskBelarus
| |
Collapse
|
2
|
Novel ITGB2 Mutation Is Responsible for a Severe Form of Leucocyte Adhesion Deficiency Type 1. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1141280. [PMID: 35281597 PMCID: PMC8913115 DOI: 10.1155/2022/1141280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/10/2022] [Indexed: 11/18/2022]
Abstract
Leukocyte adhesion deficiency type 1 (LAD1) is a rare autosomal recessive hereditary disorder characterized by recurrent infections, impaired pus formation, delayed wound healing, omphalitis, and delayed separation of the umbilical cord as hallmark features of the disease. It results from mutations in the integrin β2 subunit gene ITGB2, which encodes the integrin beta chain-2 protein CD18. In this study, we aimed to investigate the case of a five-month-old boy who presented with a clinical phenotype and flow cytometry results suggesting LAD1 disease. Sanger sequencing of all exons and intron boundaries of ITGB2 identified a novel in-frame deletion in exon 7 (ITGB2 c.844_846delAAC, p.Asn282del) in the patient. The p.Asn282del mutation was heterozygous in the child's parents, whereas it was absent in the 96 control individuals from North Africa. This variant was evaluated by two in silico mutation analysis tools, PROVEAN and MutationTaster, which predicted that the mutation was likely to be pathogenic. In addition, molecular modeling with the YASARA View software suggested that this novel mutation may affect the structure of integrin beta-2 and, subsequently, its interaction with integrin alpha-X. In summary, we report a novel pathogenic mutation p.Asn282del associated with LAD1 that expands the mutation diversity of ITGB2 and suggest the combination of flow cytometry and ITGB2 sequencing as a first-line diagnostic approach for LAD disease.
Collapse
|
3
|
Geroldinger-Simić M, Lehner K, Klein G, Sepp N, Jabkowski J. An adult with severe leukocyte adhesion deficiency type 1. JAAD Case Rep 2021; 19:1-3. [PMID: 34877395 PMCID: PMC8628215 DOI: 10.1016/j.jdcr.2021.10.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Marija Geroldinger-Simić
- Department of Dermatology, Ordensklinikum Linz Elisabethinen, Linz, Austria.,Faculty of Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Konrad Lehner
- Department of Dermatology, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Georg Klein
- Department of Dermatology, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Norbert Sepp
- Department of Dermatology, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Jörg Jabkowski
- Department of Dermatology, Ordensklinikum Linz Elisabethinen, Linz, Austria
| |
Collapse
|
4
|
Yaz I, Ozbek B, Bildik HN, Tan C, Oskay Halacli S, Soyak Aytekin E, Esenboga S, Cekic S, Kilic SS, Keskin O, van Leeuwen K, Roos D, Cagdas D, Tezcan I. Clinical and laboratory findings in patients with leukocyte adhesion deficiency type I: A multicenter study in Turkey. Clin Exp Immunol 2021; 206:47-55. [PMID: 34310689 DOI: 10.1111/cei.13645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/27/2022] Open
Abstract
Leukocyte adhesion deficiency type I is a rare primary immunodeficiency disorder characterized by mutations in the ITGB2 gene encoding CD18. We present clinical and immunological features of 15 patients with leukocyte adhesion deficiency type 1 (LAD-1). Targeted next-generation sequencing was performed with either a primary immunodeficiency gene panel comprising 266 genes or a small LAD-panel consisting of five genes for genetic analysis. To measure the expression level of integrins on the leukocyte surface, flow cytometry analysis was performed. The median age of the patients at diagnosis was 3 (1-48) months. Eleven (73%) of the 15 patients had a LAD-1 diagnosis in their first 6 months and 14 (93%) patients had consanguineous parents. Delayed separation of the umbilical cord was present in 80% (n = 12) of the patients in our cohort, whereas omphalitis was observed in 53% (n = 8) of the patients. Leukocytosis with neutrophil predominance was observed in 73% (n = 11) patients. Nine distinct variants in the ITGB2 gene in 13 of the 15 patients with LAD-1 were characterized, two of which (c.305_306delAA and c.779_786dup) are novel homozygous mutations of ITGB2. Four unrelated patients from Syria had a novel c.305_306delAA mutation that might be a founder effect for patients of Syrian origin. Four (27%) patients underwent hematopoietic stem cell transplantation. Two patients died because of HSCT complications and the other two are alive and well. Early differential diagnosis of the patients is critical in the management of the disease and genetic evaluation provides a basis for family studies and genetic counseling.
Collapse
Affiliation(s)
- Ismail Yaz
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Begum Ozbek
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Hacer Neslihan Bildik
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Cagman Tan
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Sevil Oskay Halacli
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Elif Soyak Aytekin
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Saliha Esenboga
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Sukru Cekic
- Department of Pediatrics, Uludag University Medical School, Bursa, Turkey
| | - Sara Sebnem Kilic
- Department of Pediatrics, Uludag University Medical School, Bursa, Turkey
| | - Ozlem Keskin
- Department of Pediatric Immunology and Allergy, Gaziantep University Medical School, Gaziantep, Turkey
| | - Karin van Leeuwen
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Dirk Roos
- Sanquin Research and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Deniz Cagdas
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Turkey
| | - Ilhan Tezcan
- Division of Pediatric Immunology, Department of Pediatrics, Hacettepe University Medical School, Ankara, Turkey
| |
Collapse
|
5
|
Zhang Y, Yang X, He X, Liu H, Guo P, Liu X, Xiao Y, Feng X, Wang Y, Li L. A novel mutation of the ITGB2 gene in a Chinese Zhuang minority patient with leukocyte adhesion deficiency type 1 and glucose-6-phosphate dehydrogenase deficiency. Gene 2019; 715:144027. [PMID: 31374327 DOI: 10.1016/j.gene.2019.144027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVES To explore the clinical and molecular characteristics of a Chinese Zhuang minority patient with leukocyte adhesion deficiency type-1 (LAD-1) and glucose-6-phosphate dehydrogenase deficiency (G6PDD). METHODS Routine clinical and physical examinations were performed, and patient data was collected and analyzed. Protein expression levels of Itgb2 and glucose-6-phosphate dehydrogenase (G6pd) proteins were assessed by flow cytometry and the glucose-6-phosphate (G6P) substrate method, respectively. Whole exome sequencing was performed to investigate genetic variations of the patient and his parents. RESULTS The patient had fester disease and delayed separation of the umbilical cord at birth. Staphylococcus was detected in the fluid secretion of the auditory meatus of the patient. He exhibited a recurrent cheek scab, swollen hand, and swollen gum. Hematological examination indicated dramatic elevation of leukocytes including lymphocytes, monocytes, neutrophils and eosinophils. A novel homozygous mutation was detected in the ITGB2 gene of the patient, which was determined to be a two nucleotide deletion at the site of c.1537-1538 (c.1537-1538delGT), causing a frameshift of 24 amino acids from p.513 and inducing a stop codon (p.V513Lfs*24). A base substitution mutation was identified at c.1466 (c.1466G>T) of G6PD on chromosome X of the patient, which resulted in an amino acid change from arginine to leucine at p.489 (p.R489L). The patient also showed deficient lymphocyte expression of CD18 (2.99%) and significant downregulation of the G6pd protein. CONCLUSIONS The patient was diagnosed with G6PDD and moderate LAD-1. The combination of LAD-1 and G6PDD in this case may have been due to the high incidence of genetic disease in this minority ethnic population. Analyzing existing LAD-1 and G6PDD cases from different populations can facilitate disease diagnosis and treatment. Particularly, reporting pathogenic mutations of LAD-1 and G6PDD will be crucial for genetic testing and prenatal diagnosis in an effort to decrease the incidence of these diseases.
Collapse
Affiliation(s)
- Yu Zhang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Xiaotao Yang
- Department of 2nd Infections, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Xiaoli He
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Haifeng Liu
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Pin Guo
- Department of Pharmacy, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Xiaoning Liu
- Department of Pharmacy, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Yang Xiao
- Department of Otolaryngology, Head & Neck Surgery, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Xingxing Feng
- Department of Clinical Laboratory, Kunming Children's Hospital, Kunming 650228, Yunnan, China
| | - Yanchun Wang
- Department of 2nd Infections, Kunming Children's Hospital, Kunming 650228, Yunnan, China.
| | - Li Li
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming 650228, Yunnan, China.
| |
Collapse
|
6
|
Sun B, Chen Q, Dong X, Liu D, Hou J, Wang W, Ying W, Hui X, Zhou Q, Yao H, Sun J, Wang X. Report of a Chinese Cohort with Leukocyte Adhesion Deficiency-I and Four Novel Mutations. J Clin Immunol 2019; 39:309-315. [PMID: 30919141 DOI: 10.1007/s10875-019-00617-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 03/18/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE We aimed to report the characteristics of leukocyte adhesion deficiency-I (LAD-I) and four novel mutations in the ITGB2 gene in a Chinese cohort. METHODS Seven patients with LAD-I were reported in our study. Clinical manifestations and immunological phenotypes were reviewed. The expression of CD18 was detected by flow cytometry. Next-generation sequencing (NGS) and Sanger sequencing were performed to identify gene mutations. RESULTS The mean onset age of all the patients was 1.3 months. Recurrent bacterial infections of the skin and lungs were the most common symptoms. Most patients (6/7) had delayed cord separation. The number of white blood cells (WBC) was increased significantly, except that two patients had a mild increase in the number of WBC during infection-free periods. The expression of CD18 was very low in all patients. Homozygous or compound heterozygous mutations in the ITGB2 gene were identified in each patient. Four mutations were novel, including c.1794dupC (p.N599Qfs*93), c.1788C>A (p.C596X), c.841-849del9, and c.741+1delG. Two patients had large deletions of the ITGB2 gene. Five patients were cured by hematopoietic stem cell transplantation (HSCT). CONCLUSIONS This study reported the clinical and molecular characteristics of a Chinese patient cohort. It is helpful in understanding the current status of the disease in China.
Collapse
Affiliation(s)
- Bijun Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qiuyu Chen
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xiaolong Dong
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Danru Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jia Hou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xiaoying Hui
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Haili Yao
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
7
|
Mayilyan KR. Complement genetics, deficiencies, and disease associations. Protein Cell 2012; 3:487-96. [PMID: 22773339 DOI: 10.1007/s13238-012-2924-6] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/07/2012] [Indexed: 11/30/2022] Open
Abstract
The complement system is a key component of innate immunity. More than 45 genes encoding the proteins of complement components or their isotypes and subunits, receptors, and regulators have been discovered. These genes are distributed throughout different chromosomes, with 19 genes comprising three significant complement gene clusters in the human genome. Genetic deficiency of any early component of the classical pathway (C1q, C1r/s, C2, C4, and C3) is associated with autoimmune diseases due to the failure of clearance of immune complexes (IC) and apoptotic materials, and the impairment of normal humoral response. Deficiencies of mannan-binding lectin (MBL) and the early components of the alternative (factor D, properdin) and terminal pathways (from C3 onward components: C5, C6, C7, C8, C9) increase susceptibility to infections and their recurrence. While the association of MBL deficiency with a number of autoimmune and infectious disorders has been well established, the effects of the deficiency of other lectin pathway components (ficolins, MASPs) have been less extensively investigated due to our incomplete knowledge of the genetic background of such deficiencies and the functional activity of those components. For complement regulators and receptors, the consequences of their genetic deficiency vary depending on their specific involvement in the regulatory or signalling steps within the complement cascade and beyond. This article reviews current knowledge and concepts about the genetic load of complement component deficiencies and their association with diseases. An integrative presentation of genetic data with the latest updates provides a background to further investigations of the disease association investigations of the complement system from the perspective of systems biology and systems genetics.
Collapse
Affiliation(s)
- Karine R Mayilyan
- Institute of Molecular Biology, Armenian National Academy Sciences, Yerevan 0014, Armenia.
| |
Collapse
|
8
|
van de Vijver E, Maddalena A, Sanal Ö, Holland SM, Uzel G, Madkaikar M, de Boer M, van Leeuwen K, Köker MY, Parvaneh N, Fischer A, Law SKA, Klein N, Tezcan FI, Unal E, Patiroglu T, Belohradsky BH, Schwartz K, Somech R, Kuijpers TW, Roos D. Hematologically important mutations: leukocyte adhesion deficiency (first update). Blood Cells Mol Dis 2011; 48:53-61. [PMID: 22134107 DOI: 10.1016/j.bcmd.2011.10.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 12/23/2022]
Abstract
Leukocyte adhesion deficiency (LAD) is an immunodeficiency caused by defects in the adhesion of leukocytes (especially neutrophils) to the blood vessel wall. As a result, patients with LAD suffer from severe bacterial infections and impaired wound healing, accompanied by neutrophilia. In LAD-I, mutations are found in ITGB2, the gene that encodes the β subunit of the β(2) integrins. This syndrome is characterized directly after birth by delayed separation of the umbilical cord. In the rare LAD-II disease, the fucosylation of selectin ligands is disturbed, caused by mutations in SLC35C1, the gene that encodes a GDP-fucose transporter of the Golgi system. LAD-II patients lack the H and Lewis Le(a) and Le(b) blood group antigens. Finally, in LAD-III (also called LAD-I/variant) the conformational activation of the hematopoietically expressed β integrins is disturbed, leading to leukocyte and platelet dysfunction. This last syndrome is caused by mutations in FERMT3, encoding the kindlin-3 protein in all blood cells that is involved in the regulation of β integrin conformation.
Collapse
Affiliation(s)
- Edith van de Vijver
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Smith VE, Franklyn JA, McCabe CJ. Expression and function of the novel proto-oncogene PBF in thyroid cancer: a new target for augmenting radioiodine uptake. J Endocrinol 2011; 210:157-63. [PMID: 21450804 DOI: 10.1530/joe-11-0064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pituitary tumor-transforming gene (PTTG)-binding factor (PBF; PTTG1IP) was initially identified through its interaction with the human securin, PTTG. Like PTTG, PBF is upregulated in multiple endocrine tumours including thyroid cancer. PBF is believed to induce the translocation of PTTG into the cell nucleus where it can drive tumourigenesis via a number of different mechanisms. However, an independent transforming ability has been demonstrated both in vitro and in vivo, suggesting that PBF is itself a proto-oncogene. Studied in only a limited number of publications to date, PBF is emerging as a protein with a growing repertoire of roles. Recent data suggest that PBF possesses a complex multifunctionality in an increasing number of tumour settings. For example, PBF is upregulated by oestrogen and mediates oestrogen-stimulated cell invasion in breast cancer cells. In addition to a possible role in the induction of thyroid tumourigenesis, PBF overexpression in thyroid cancers inhibits iodide uptake. PBF has been shown to repress sodium iodide symporter (NIS) activity by transcriptional regulation of NIS expression through the human NIS upstream enhancer and further inhibits iodide uptake via a post-translational mechanism of NIS governing subcellular localisation. This review discusses the current data describing PBF expression and function in thyroid cancer and highlights PBF as a novel target for improving radioiodine uptake and thus prognosis in thyroid cancer.
Collapse
Affiliation(s)
- Vicki E Smith
- School of Clinical and Experimental Medicine, Institute of Biomedical Research, University of Birmingham, Birmingham B15 2TH, UK
| | | | | |
Collapse
|
10
|
Degn S, Jensenius J, Thiel S. Disease-causing mutations in genes of the complement system. Am J Hum Genet 2011; 88:689-705. [PMID: 21664996 DOI: 10.1016/j.ajhg.2011.05.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/19/2011] [Accepted: 05/08/2011] [Indexed: 02/08/2023] Open
Abstract
Recent studies have revealed profound developmental consequences of mutations in genes encoding proteins of the lectin pathway of complement activation, a central component of the innate immune system. Apart from impairment of immunity against microorganisms, it is known that hereditary deficiencies of this system predispose one to autoimmune conditions. Polymorphisms in complement genes are linked to, for example, atypical hemolytic uremia and age-dependent macular degeneration. The complement system comprises three convergent pathways of activation: the classical, the alternative, and the lectin pathway. The recently discovered lectin pathway is less studied, but polymorphisms in the plasma pattern-recognition molecule mannan-binding lectin (MBL) are known to impact its level, and polymorphisms in the MBL-associated serine protease-2 (MASP-2) result in defects of complement activation. Recent studies have described roles outside complement and immunity of another MBL-associated serine protease, MASP-3, in the etiology of 3MC syndrome, an autosomal-recessive disorder involving a spectrum of developmental features, including characteristic facial dysmorphism. Syndrome-causing mutations were identified in MASP1, encoding MASP-3 and two additional proteins, MASP-1 and MAp44. Furthermore, an association was discovered between 3MC syndrome and mutations in COLEC11, encoding CL-K1, another molecule of the lectin pathway. The findings were confirmed in zebrafish, indicating that MASP-3 and CL-K1 underlie an evolutionarily conserved pathway of embryonic development. Along with the discovery of a role of C1q in pruning synapses in mice, these recent advances point toward a broader role of complement in development. Here, we compare the functional immunologic consequences of "conventional" complement deficiencies with these newly described developmental roles.
Collapse
|