1
|
Liang D, Tang J, Sun B, He S, Yang D, Ma H, Yun Y, Zhu Y, Wei W, Chen H, Zhao X. Novel CAR-T cells targeting TRKB for the treatment of solid cancer. Apoptosis 2024; 29:2183-2196. [PMID: 38498249 DOI: 10.1007/s10495-024-01936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/20/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is highly effective for treating blood cancers such as B-cell malignancies, however, its effectiveness as an approach to treat solid tumors remains to be further explored. Here, we focused on the development of CAR-T cell therapies targeting tropomyosin-related kinase receptor B (TRKB), a highly expressed protein that is significantly associated with tumor progression, malignancy, and drug resistance in multiple forms of aggressive solid tumors. To achieve this, we screened brain-derived neurotrophic factor (BDNF) and neurotrophin 4 (NTF4) ligand-based CAR-T cells for their efficiency in targeting the TRKB receptor in the context of solid tumors, particularly hepatocellular carcinoma and pancreatic cancer. We demonstrated that TRKB is overexpressed not only in hepatocellular carcinoma and pancreatic carcinoma cell lines but also in cancer stem-like cells (CSCs). Notably, BDNF-CAR T and NTF4-CAR T cells could not only effectively target and kill TRKB-expressing pan-cancer cell lines in a dose-dependent manner but also effectively kill CSCs. We also performed in vivo studies to show that NTF4-CAR T cells have a better potential to inhibit the tumor growth of hepatocellular carcinoma xenografts in mice, compared with BDNF-CAR T cells. Taken together, our findings suggest that CAR-T targeting TRKB may be a promising approach for developing novel therapies to treat solid cancers.
Collapse
MESH Headings
- Humans
- Animals
- Receptor, trkB/metabolism
- Receptor, trkB/genetics
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Mice
- Cell Line, Tumor
- Immunotherapy, Adoptive/methods
- Brain-Derived Neurotrophic Factor/metabolism
- Brain-Derived Neurotrophic Factor/genetics
- Xenograft Model Antitumor Assays
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/therapy
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Pancreatic Neoplasms/therapy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/genetics
- Nerve Growth Factors/metabolism
- Nerve Growth Factors/genetics
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/immunology
- Neoplasms/therapy
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
Collapse
Affiliation(s)
- Dandan Liang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jie Tang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Sun
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shuai He
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dong Yang
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyan Ma
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuncang Yun
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongjie Zhu
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenwen Wei
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Haiyang Chen
- Laboratory of Metabolism and Aging Research, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Xudong Zhao
- Department of Targeting Therapy & Immunology and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Respiratory Health and Multimorbidity and Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Kim MS, Lee WS, Jin W. TrkB inhibition of DJ-1 degradation promotes the growth and maintenance of cancer stem cell characteristics in hepatocellular carcinoma. Cell Mol Life Sci 2023; 80:303. [PMID: 37749450 PMCID: PMC10520132 DOI: 10.1007/s00018-023-04960-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/27/2023]
Abstract
Although TrkB may be associated with the pathogenesis of various cancer by upregulation, how upregulation of TrkB led to tumor progression in hepatocellular carcinoma (HCC) and the signaling mechanisms by which TrkB induces motility, invasion, metastasis, drug resistance, and acquisition of self-renewal traits has remained unclear. Here, we demonstrated that TrkB was significantly upregulated in highly metastatic HCC cells and HCC patients. Also, the increased TrkB levels were significantly correlated with tumor stages and poor survival of HCC patients. Furthermore, the upregulated TrkB expression enhances the metastatic ability of HCC cells through reduced anoikis sensitivity, induced migration, and colony formation. Most strikingly, TrkB markedly enhances the activation of STAT3 by preventing DJ-1 degradation through the formation of the TrkB/DJ-1 complex. This signaling mechanism is responsible for triggering cellular traits of highly aggressive HCC. The activation of the EMT program of HCC via increasing DJ-1 stability by TrkB induces the gain of cancer stem cell states and chemoresistance via the upregulation of stem cells cell markers and ABC transporters. Also, TrkB-mediated inhibition of DJ-1 degradation promotes tumor formation and metastasizes to other organs in vivo. Our observations illustrate that TrkB is a prognostic and therapeutic targeting in promoting aggressiveness and metastasis of HCC.
Collapse
Affiliation(s)
- Min Soo Kim
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
| | - Won Sung Lee
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, Korea
| | - Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon, 21999, Republic of Korea.
| |
Collapse
|
3
|
Wang H, Zhong C, Qi L, Fang X, Yuan Y. Expression and prognostic impact of NTF3 and TrkC in hepatocellular carcinoma. Scand J Gastroenterol 2023; 58:1309-1316. [PMID: 37272057 DOI: 10.1080/00365521.2023.2217976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Treatment of patients with NTRK fusion-positive cancers using first-generation tropomyosin-related kinase (Trk) inhibitors is associated with high response rates, regardless of tumor histology. However, there have been few studies on neurotrophin-3 (NTF3) and TrkC ligands in hepatocellular carcinoma (HCC). METHODS We used immunohistochemistry to evaluate NTF3 and TrkC expression levels in tissue samples. Gene expression profiling interactive analysis was used to determine TrkC and NTF3 expression in HCC. Western blotting, quantitative reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assays were utilized to analyze TrkC and NTF3 levels in HCC cell lines. Proliferation tests and cell migration were also explored. RESULTS NTF3 and TrkC levels were lower in HCC tissue (median H- scores 149.09 and 54.60, respectively) than those in para-cancerous tissue (192.69 and 71.70, respectively); no statistical difference was found in the survival rate. Positive correlations were observed between NTF3 and TrkC levels in both HCC and para-cancerous tissues. Alpha-fetoprotein was the only clinical characteristic associated with TrkC levels. The transcription of NTF3 was lower in HCC samples compared to normal samples. NTF3 overexpression inhibited the proliferation of MHCC97-L and HepG2 cells but did not significantly affect cell migration. CONCLUSIONS The transcription of NTF3 was lower in HCC samples compared to normal samples, indicating a potential association with disease-free survival and overall survival in HCC. NTF3 and TrkC expression levels were lower in HCC tissues than those in para-cancerous tissues. Our results indicate that NTF3 may be a prognostic factor for HCC.
Collapse
Affiliation(s)
- Hejing Wang
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenhan Zhong
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Lina Qi
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuefeng Fang
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Yuan
- Department of Medical Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Zhejiang Province, China), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Clinical Research Center for CANCER, Hangzhou, Zhejiang, China
- Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Urban LA, Li J, Gundogdu G, Trinh A, Shao H, Nguyen T, Mauney JR, Downing TL. DNA Methylation Dynamics During Esophageal Epithelial Regeneration Following Repair with Acellular Silk Fibroin Grafts in Rat. Adv Biol (Weinh) 2023; 7:e2200160. [PMID: 36658732 PMCID: PMC10401397 DOI: 10.1002/adbi.202200160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/10/2022] [Indexed: 01/21/2023]
Abstract
Esophageal pathologies such as atresia and benign strictures often require surgical reconstruction with autologous tissues to restore organ continuity. Complications such as donor site morbidity and limited tissue availability have spurred the development of acellular grafts for esophageal tissue replacement. Acellular biomaterials for esophageal repair rely on the activation of intrinsic regenerative mechanisms to mediate de novo tissue formation at implantation sites. Previous research has identified signaling cascades involved in neoepithelial formation in a rat model of onlay esophagoplasty with acellular silk fibroin grafts, including phosphoinositide 3-kinase (PI3K), and protein kinase B (Akt) signaling. However, it is currently unknown how these mechanisms are governed by DNA methylation (DNAme) during esophageal wound healing processes. Reduced-representation bisulfite sequencing is performed to characterize temporal DNAme dynamics in host and regenerated tissues up to 1 week postimplantation. Overall, global hypermethylation is observed at postreconstruction timepoints and an inverse correlation between promoter DNAme and the expression levels of differentially expressed proteins during regeneration. Site-specific hypomethylation targets genes associated with immune activation, while hypermethylation occurs within gene bodies encoding PI3K-Akt signaling components during the tissue remodeling period. The data provide insight into the epigenetic mechanisms during esophageal regeneration following surgical repair with acellular grafts.
Collapse
Affiliation(s)
- Lauren A. Urban
- Department of Microbiology & Molecular Genetics, University of California Irvine; Irvine, California, USA
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California-Irvine, Irvine, CA 92697, USA
| | - Jiachun Li
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Gokhan Gundogdu
- Department of Urology, University of California, Irvine, Orange, CA, 92868, USA
| | - Annie Trinh
- Department of Microbiology & Molecular Genetics, University of California Irvine; Irvine, California, USA
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California-Irvine, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California-Irvine, Irvine, California 92697, USA
| | - Hanjuan Shao
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California-Irvine, Irvine, CA 92697, USA
| | - Travis Nguyen
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
| | - Joshua R. Mauney
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Urology, University of California, Irvine, Orange, CA, 92868, USA
| | - Timothy L. Downing
- Department of Microbiology & Molecular Genetics, University of California Irvine; Irvine, California, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, 92697, USA
- UCI Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center (CIRC), University of California-Irvine, Irvine, CA 92697, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California-Irvine, Irvine, California 92697, USA
| |
Collapse
|
5
|
TrkC-mediated inhibition of DJ-1 degradation is essential for direct regulation of pathogenesis of hepatocellular carcinoma. Cell Death Dis 2022; 13:850. [PMID: 36202793 PMCID: PMC9537181 DOI: 10.1038/s41419-022-05298-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
None of the previous studies has systematically explored how upregulation of TrkC plays a central role in the pathogenesis of hepatocellular carcinoma (HCC) by regulating the underlying mechanisms that promote invasion and metastasis. In this report, we demonstrated the possible association between upregulation of TrkC and acquisition of cancer stem cells traits or chemoresistance in HCC. We show that upregulation of TrkC is closely associated with the survival and progression of HCC in vivo and in vitro. Most strikingly, activation of STAT3 by TrkC-mediated inhibition of DJ-1 degradation significantly enhances the efficacy of invasion and metastasis during the progression of HCC cells. Acquiring the traits of cancer stem cells (CSCs) by TrkC/DJ-1/STAT3 signaling pathway leads to the induction of chemoresistance via upregulation of ABC transporters and anti-apoptotic genes. Also, activating the epithelial-mesenchymal transition (EMT) program by inducing EMT-transcription factor (TF)s by TrkC/DJ-1/STAT3 signaling pathway is the direct cause of multiple tumor malignancies of HCC. Thus, understanding the mechanisms by which acquisition of anticancer drug resistance by TrkC-mediated inhibition of DJ-1 degradation can help enhance the efficacy of anticancer therapies.
Collapse
|
6
|
Emerging Roles of the Nervous System in Gastrointestinal Cancer Development. Cancers (Basel) 2022; 14:cancers14153722. [PMID: 35954387 PMCID: PMC9367305 DOI: 10.3390/cancers14153722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Nerve–cancer cross-talk has increasingly become a focus of the oncology field, particularly in gastrointestinal (GI) cancers. The indispensable roles of the nervous system in GI tumorigenesis and malignancy have been dissected by epidemiological, experimental animal and mechanistic data. Herein, we review and integrate recent discoveries linking the nervous system to GI cancer initiation and progression, and focus on the molecular mechanisms by which nerves and neural receptor pathways drive GI malignancy. Abstract Our understanding of the fascinating connection between nervous system and gastrointestinal (GI) tumorigenesis has expanded greatly in recent years. Recent studies revealed that neurogenesis plays an active part in GI tumor initiation and progression. Tumor-driven neurogenesis, as well as neurite outgrowth of the pre-existing peripheral nervous system (PNS), may fuel GI tumor progression via facilitating cancer cell proliferation, chemoresistance, invasion and immune escape. Neurotransmitters and neuropeptides drive the activation of various oncogenic pathways downstream of neural receptors within cancer cells, underscoring the importance of neural signaling pathways in GI tumor malignancy. In addition, neural infiltration also plays an integral role in tumor microenvironments, and contributes to an environment in favor of tumor angiogenesis, immune evasion and invasion. Blockade of tumor innervation via denervation or pharmacological agents may serve as a promising therapeutic strategy against GI tumors. In this review, we summarize recent findings linking the nervous system to GI tumor progression, set the spotlight on the molecular mechanisms by which neural signaling fuels cancer aggressiveness, and highlight the importance of targeting neural mechanisms in GI tumor therapy.
Collapse
|
7
|
Evgeniou M, Sacnun JM, Kratochwill K, Perco P. A Meta-Analysis of Human Transcriptomics Data in the Context of Peritoneal Dialysis Identifies Novel Receptor-Ligand Interactions as Potential Therapeutic Targets. Int J Mol Sci 2021; 22:ijms222413277. [PMID: 34948074 PMCID: PMC8703997 DOI: 10.3390/ijms222413277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/01/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Peritoneal dialysis (PD) is one therapeutic option for patients with end-stage kidney disease (ESKD). Molecular profiling of samples from PD patients using different Omics technologies has led to the discovery of dysregulated molecular processes due to PD treatment in recent years. In particular, a number of transcriptomics (TX) datasets are currently available in the public domain in the context of PD. We set out to perform a meta-analysis of TX datasets to identify dysregulated receptor-ligand interactions in the context of PD-associated complications. We consolidated transcriptomics profiles from twelve untargeted genome-wide gene expression studies focusing on human cell cultures or samples from human PD patients. Gene set enrichment analysis was used to identify enriched biological processes. Receptor-ligand interactions were identified using data from CellPhoneDB. We identified 2591 unique differentially expressed genes in the twelve PD studies. Key enriched biological processes included angiogenesis, cell adhesion, extracellular matrix organization, and inflammatory response. We identified 70 receptor-ligand interaction pairs, with both interaction partners being dysregulated on the transcriptional level in one of the investigated tissues in the context of PD. Novel receptor-ligand interactions without prior annotation in the context of PD included BMPR2-GDF6, FZD4-WNT7B, ACKR2-CCL2, or the binding of EPGN and EREG to the EGFR, as well as the binding of SEMA6D to the receptors KDR and TYROBP. In summary, we have consolidated human transcriptomics datasets from twelve studies in the context of PD and identified sets of novel receptor-ligand pairs being dysregulated in the context of PD that warrant investigation in future functional studies.
Collapse
Affiliation(s)
- Michail Evgeniou
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (M.E.); (J.M.S.); (K.K.)
| | - Juan Manuel Sacnun
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (M.E.); (J.M.S.); (K.K.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Zytoprotec GmbH, 1090 Vienna, Austria
| | - Klaus Kratochwill
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria; (M.E.); (J.M.S.); (K.K.)
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Paul Perco
- Department of Internal Medicine IV, Medical University Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
8
|
El-Sayed A, Aleya L, Kamel M. The link among microbiota, epigenetics, and disease development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28926-28964. [PMID: 33860421 DOI: 10.1007/s11356-021-13862-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
The microbiome is a community of various microorganisms that inhabit or live on the skin of humans/animals, sharing the body space with their hosts. It is a sort of complex ecosystem of trillions of commensals, symbiotic, and pathogenic microorganisms, including trillions of bacteria, archaea, protozoa, fungi, and viruses. The microbiota plays a role in the health and disease status of the host. Their number, species dominance, and viability are dynamic. Their long-term disturbance is usually accompanied by serious diseases such as metabolic disorders, cardiovascular diseases, or even cancer. While epigenetics is a term that refers to different stimuli that induce modifications in gene expression patterns without structural changes in the inherited DNA sequence, these changes can be reversible or even persist for several generations. Epigenetics can be described as cell memory that stores experience against internal and external factors. Results from multiple institutions have contributed to the role and close interaction of both microbiota and epigenetics in disease induction. Understanding the mechanisms of both players enables a better understanding of disease induction and development and also opens the horizon to revolutionary therapeutic approaches. The present review illustrates the roles of diet, microbiome, and epigenetics in the induction of several chronic diseases. In addition, it discusses the application of epigenetic data to develop diagnostic biomarkers and therapeutics and evaluate their safety for patients. Understanding the interaction among all these elements enables the development of innovative preventive/therapeutic approaches for disease control.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, F-25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
9
|
Zhou X, He J, Wang Q, Ma T. MiRNA-128-3p Restrains Malignant Melanoma Cell Malignancy by Targeting NTRK3. Front Oncol 2021; 10:538894. [PMID: 33575204 PMCID: PMC7871904 DOI: 10.3389/fonc.2020.538894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
The functions of non-coding RNA, including microRNA (miRNA), have attracted considerable attention in the field of oncology, In this report, we examined the roles and molecular mechanisms of miR-128-3p, as related to the biological behaviors of malignant melanoma (MM). We found that miR-128-3p was expressed in low levels in these MM cells and may serve as a tumor suppressor by inhibiting proliferation, migration, and invasion, as well as inducing apoptosis in these MM cells. Moreover, neurotrophin receptor 3 (NTRK3), which serves as an oncogene that can enhance malignant behaviors of MM cells, was up-regulated in MM cells. Our current survey disclosed a complementary binding between miR-128-3p and the NTRK3 3' untranslated regions (3'-UTR), while luciferase activities of NTRK3 3'-UTR were restrained by miR-128-3p in 293T cells. The effects of pre-miR-128-3p and sh-NTRK3 as well as anti-miR-128-3p and NTRK3(+) appeared to function synergistically in producing malignant progression. Moreover, there were possible to have counteracted effects for pre-miR-128-3p and NTRK3(+) in malignant progression. These findings established that miR-128-3p can function as a tumor suppressor by inhibiting carcinogenesis of the oncogene, NTRK3. Collectively, miR-128-3p and NTRK3 genes participate in modulating the malignant behavior of MM, and may represent new therapeutic targets for MM.
Collapse
Affiliation(s)
- Xinxin Zhou
- Academy of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jiayuan He
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Qingyuan Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| | - Teng Ma
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Roles of TrkC Signaling in the Regulation of Tumorigenicity and Metastasis of Cancer. Cancers (Basel) 2020; 12:cancers12010147. [PMID: 31936239 PMCID: PMC7016819 DOI: 10.3390/cancers12010147] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tropomyosin receptor kinase (Trk) C contributes to the clinicopathology of a variety of human cancers, and new chimeric oncoproteins containing the tyrosine kinase domain of TrkC occur after fusion to the partner genes. Overexpression of TrkC and TrkC fusion proteins was observed in patients with a variety of cancers, including mesenchymal, hematopoietic, and those of epithelial cell lineage. Both microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) were involved in the regulation of TrkC expression through transcriptional and posttranscriptional alteration. Aberrant activation of TrkC and TrkC fusion proteins markedly induces the epithelial-mesenchymal transition (EMT) program, growth rate, tumorigenic capacity via constitutive activation of Ras-MAP kinase (MAPK), PI3K-AKT, and the JAK2-STAT3 pathway. The clinical trial of TrkC or TrkC fusion-positive cancers with newly developed Trk inhibitors demonstrated that Trk inhibitors were highly effective in inducing tumor regression in patients who do not harbor mutations in the kinase domain. Recently, there has been a progressive accumulation of mutations in TrkC or the TrkC fusion protein detected in the clinic and its related cancer cell lines caused by high-throughput DNA sequencing. Despite given the high overall response rate against Trk or Trk fusion proteins-positive solid tumors, acquired drug resistance was observed in patients with various cancers caused by mutations in the Trk kinase domain. To overcome acquired resistance caused by kinase domain mutation, next-generation Trk inhibitors have been developed, and these inhibitors are currently under investigation in clinical trials.
Collapse
|
11
|
Luo T, Zhang SG, Zhu LF, Zhang FX, Li W, Zhao K, Wen XX, Yu M, Zhan YQ, Chen H, Ge CH, Gao HY, Wang L, Yang XM, Li CY. A selective c-Met and Trks inhibitor Indo5 suppresses hepatocellular carcinoma growth. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:130. [PMID: 30885237 PMCID: PMC6421704 DOI: 10.1186/s13046-019-1104-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/11/2019] [Indexed: 11/18/2022]
Abstract
Background Human hepatocellular carcinoma (HCC) lacks effective curative therapy and there is an urgent need to develop a novel molecular-targeted therapy for HCC. Selective tyrosine kinase inhibitors have shown promise in treating cancers including HCC. Tyrosine kinases c-Met and Trks are potential therapeutic targets of HCC and strategies to interrupt c-Met and Trks cross-signaling may result in increased effects on HCC inhibition. Methods The effects of Indo5 on c-Met and Trks activity were determined with in vitro kinase activity assay, cell-based signaling pathway activation, and kinases-driven cell transformation. The in vivo anti-tumor activity was determined with xenograft mice and liver orthotopic mice models. The co-expression of c-Met and TrkB in 180 pairs of HCC and adjacent normal tissues were detected using immunohistochemical staining. Results Indo5, a novel lead compound displayed biochemical potency against both c-Met and Trks with selectivity over 13 human kinases. Indo5 abrogated HGF-induced c-Met signaling activation and BDNF/NGF-induced Trks signal activation, c-Met or TrkB-mediated cell transformation and migration. Furthermore, Indo5 significantly decreased the growth of HCC cells in xenograft mice and improved the survival of mice with liver orthotopic tumors. In addition, co-expression of c-Met and TrkB in HCC patients was a predictor of poor prognosis, and combined inhibition of c-Met and TrkB exerted a synergistic suppressive effect on HCC. Conclusions These findings indicate that Indo5 is associated with marked suppression of c-Met and Trks co-expressing HCC, supporting its clinical development as an antitumor treatment for HCC patients with co-active c-Met and Trks signaling. Electronic supplementary material The online version of this article (10.1186/s13046-019-1104-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teng Luo
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China.,Beijing Institute of Radiation Medicine, 27-Taiping Road, Beijing, 100850, People's Republic of China.,Institute of NBC Defence, Beijing, 102205, China
| | - Shou-Guo Zhang
- Beijing Institute of Radiation Medicine, 27-Taiping Road, Beijing, 100850, People's Republic of China
| | | | - Fei-Xiang Zhang
- Guangdong pharmaceutical university, School of Pharmacy, Guangzhou, 510006, China
| | - Wei Li
- Beijing Institute of Radiation Medicine, 27-Taiping Road, Beijing, 100850, People's Republic of China
| | - Ke Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiao-Xue Wen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Yi-Qun Zhan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Chang-Hui Ge
- Beijing Institute of Radiation Medicine, 27-Taiping Road, Beijing, 100850, People's Republic of China
| | - Hui-Ying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Lin Wang
- Beijing Institute of Radiation Medicine, 27-Taiping Road, Beijing, 100850, People's Republic of China.
| | - Xiao-Ming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China. .,School of Chemical Engineering and Technology, Department of pharmaceutical engineering, Tianjin University, Tianjin, 300072, China.
| | - Chang-Yan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China. .,An Hui Medical University, Hefei, 230032, China. .,Guangdong pharmaceutical university, School of Pharmacy, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Neurotrophins and their involvement in digestive cancers. Cell Death Dis 2019; 10:123. [PMID: 30741921 PMCID: PMC6370832 DOI: 10.1038/s41419-019-1385-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/18/2022]
Abstract
Cancers of the digestive system, including esophageal, gastric, pancreatic, hepatic, and colorectal cancers, have a high incidence and mortality worldwide. Efficient therapies have improved patient care; however, many challenges remain including late diagnosis, disease recurrence, and resistance to therapies. Mechanisms responsible for these aforementioned challenges are numerous. This review focuses on neurotrophins, including NGF, BDNF, and NT3, and their specific tyrosine kinase receptors called tropomyosin receptor kinase (Trk A, B, C, respectively), associated with sortilin and the p75 neurotrophin receptor (p75NTR), and their implication in digestive cancers. Globally, p75NTR is a frequently downregulated tumor suppressor. On the contrary, Trk and their ligands are considered oncogenic factors. New therapies which target NT and/or their receptors, or use them as diagnosis biomarkers could help us to combat digestive cancers.
Collapse
|
13
|
Wan C, Wu M, Zhang S, Chen Y, Lu C. α7nAChR-mediated recruitment of PP1γ promotes TRAF6/NF-κB cascade to facilitate the progression of Hepatocellular Carcinoma. Mol Carcinog 2018; 57:1626-1639. [PMID: 30074282 DOI: 10.1002/mc.22885] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/13/2022]
Abstract
The cholinergic signaling pathways have been recently implicated in the development of various human cancers. However, the underlying molecular mechanism remains largely unclear. In the present study, we reported that α7 nicotinic acetylcholine receptor (α7nAChR), an important member of nicotinic acetylcholine receptors, interacts with Protein Phosphatase-1γ (PP1γ) in human Hepatocellular Carcinoma (HCC) tissues. In addition, we found that α7nAChR facilitates the ubiquitination and activation of TRAF6 in a PP1γ-dependent manner in HCC cells. Furthermore, we showed that ligand-bounded α7nAChR induces the degradation of IκBα, leading to resultant phosphorylation and nuclear accumulation of NF-κB p65. Accordingly, acetylcholine triggers the expression of critical NF-κB target genes, such as Cyclin D1 and PCNA, as well as the proliferation of HCC cells in a PP1γ- and α7nAChR-dependent manner. Furthermore, we revealed that nicotine-triggered α7nAChR activation promotes oncosphere formation and in vivo tumor growth of HCC cells. Moreover, we showed that the protein levels of both α7nAChR and PP1γ are significantly upregulated in human HCC specimens compared with adjacent non-cancerous ones, and that upregulated expression of the two proteins predict significantly worsened prognosis in HCC patients. These findings together indicate that the cholinergic receptor α7nAChR exerts a facilitating role in HCC development through PP1γ-dependent TRAF6/NF-κB signaling.
Collapse
Affiliation(s)
- Chunhua Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, China
| | - Miaomiao Wu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shusen Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China.,Department of Respiratory Medicine, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, Hebei, China
| | - Yuyan Chen
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, China
| | - Cuihua Lu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
14
|
Kim MS, Suh KW, Hong S, Jin W. TrkC promotes colorectal cancer growth and metastasis. Oncotarget 2018; 8:41319-41333. [PMID: 28455963 PMCID: PMC5522271 DOI: 10.18632/oncotarget.17289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 04/03/2017] [Indexed: 01/01/2023] Open
Abstract
The current work reveals that TrkC receptor is crucial to many aspects of tumorigenicity and metastasis of cancer. However, with only a few exceptions, such as colorectal cancer (CRC), where suppressing tumorigenic and metastatic ability via expression of TrkC as tumor suppressor have been proposed. These diverse lines of evidence led us to investigate whether TrkC is involved in CRC progression. By using mouse models and molecular biology analyses, we demonstrate that TrkC acts as an activator in tumorigenicity and metastasis of colorectal cancer. In this study, TrkC was frequently overexpressed in CRC cells, patients’ tumor samples and an azoxymethane/dextran sulphate sodium-induced mouse model of colitis-associated CRCs. TrkC expression was associated with a high-grade CRC phenotype, leading to significantly poorer survival. Also, TrkC expression promoted the acquisition of motility and invasiveness in CRC. Moreover, TrkC increased the ability to form tumor spheroids, a property associated with cancer stem cells. Importantly, knockdown of TrkC in malignant mouse or human CRC cells inhibited tumor growth and metastasis in a mouse xenograft model. Furthermore, TrkC enhanced metastatic potential and induced proliferation by aberrant gain of AKT activation and suppression of transforming growth factor (TGF)-β signalling. Interestingly, TrkC not only modulated the actions of TGF-β type II receptor, but also attenuated expression of this receptor. These findings reveal an unexpected physiological role of TrkC in the pathogenesis of CRC. Therefore, TrkC is a potential target for designing effective therapeutic strategies for CRC development.
Collapse
Affiliation(s)
- Min Soo Kim
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea
| | - Kwang Wook Suh
- Department of Surgery, Ajou University School of Medicine, Yeongto-gu, Suwon 443-380, Korea
| | - Suntaek Hong
- Laboratory of Cancer Cell Biology, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea
| | - Wook Jin
- Laboratory of Molecular Disease and Cell Regulation, Department of Biochemistry, School of Medicine, Gachon University, Incheon 406-840, Korea.,Gachon Medical Research Institute, Gil Medical Center, Incheon, 405-760, Korea
| |
Collapse
|
15
|
Zhang L, Zhang Y, Wong SH, Law PTY, Zhao S, Yu J, Chan MTV, Wu WKK. Common Deregulation of Seven Biological Processes by MicroRNAs in Gastrointestinal Cancers. Sci Rep 2018; 8:3287. [PMID: 29459716 PMCID: PMC5818544 DOI: 10.1038/s41598-018-21573-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/07/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are frequently dysregulated in human neoplasms, including gastrointestinal cancers. Nevertheless, the global influence of microRNA dysregulation on cellular signaling is still unknown. Here we sought to elucidate cellular signaling dysregulation by microRNAs in gastrointestinal cancers at the systems biology level followed by experimental validation. Signature dysregulated microRNAs in gastric, colorectal and liver cancers were defined based on our previous studies. Targets of signature dysregulated miRNAs were predicted using multiple computer algorithms followed by gene enrichment analysis to identify biological processes perturbed by dysregulated microRNAs. Effects of microRNAs on endocytosis were measured by epidermal growth factor (EGF) internalization assay. Our analysis revealed that, aside from well-established cancer-related signaling pathways, several novel pathways, including axon guidance, neurotrophin/nerve growth factor signaling, and endocytosis, were found to be involved in the pathogenesis of gastrointestinal cancers. The regulation of EGF receptor (EGFR) endocytosis by two predicted miRNAs, namely miR-17 and miR-145, was confirmed experimentally. Functionally, miR-145, which blocked EGFR endocytosis, prolonged EGFR membrane signaling and altered responsiveness of colon cancer cells to EGFR-targeting drugs. In conclusion, our analysis depicts a comprehensive picture of cellular signaling dysregulation, including endocytosis, by microRNAs in gastrointestinal cancers.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuchen Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny H Wong
- Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Priscilla T Y Law
- Department of Microbiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Shan Zhao
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China. .,Institute of Digestive Diseases and State Key Laboratory of Digestive Diseases, LKS Institute of Health Sciences and Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
16
|
Catic A, Kurtovic-Kozaric A, Johnson SH, Vasmatzis G, Pins MR, Kogan J. A novel cytogenetic and molecular characterization of renal metanephric adenoma: Identification of partner genes involved in translocation t(9;15)(p24;q24). Cancer Genet 2017; 214-215:9-15. [PMID: 28595733 DOI: 10.1016/j.cancergen.2017.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/25/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
Renal metanephric adenoma (MA) is a rare benign tumor frequently misclassified when microscopic features alone are applied. The correct classification of a renal tumor is critical for diagnostic, prognostic, and therapeutic purposes. Despite the advancements in cancer genomics, up until recently relatively few genetic alterations critical to MA development have been recognized. Recent data suggest that 90% of MA have BRAFV600E mutations; the genetics of the remaining 10% are unclear. To date, only one case of a chromosomal translocation, t(9;15)(p24;q24) associated with MA has been reported. However, the potential role of the KANK1 gene, which lies near the breakpoint of the short arm of chromosome 9p24, in the etiology of MA was not examined. We identified the same cytogenetic aberration utilizing molecular cytogenetic techniques in a 22-year-old female patient, and further investigated the genes involved in the translocation that might have contributed to tumorigenesis. A series of fluorescence in situ hybridization (FISH) probes identified the rearranged genes to be KANK1 on chromosome 9 (9p24.3) and NTRK3 on chromosome 15 (15q25.3). Mate-Pair genome sequencing validated the balanced translocation between 9p24.3 and 15q25.3, involving genes KANK1 and NTRK3, respectively. BRAFV600E mutational analysis was normal. Our findings indicate that gene fusions may be one mechanism by which functionally relevant genes are altered in the development of MA. Molecular and cytogenetic analyses have elucidated a novel genetic aberration, which helps to provide a better understanding of this genomic change and assist in diagnosis and classification of new subgroups/entities in metanephric adenomas.
Collapse
Affiliation(s)
- Aida Catic
- Department of Cytogenetics, ACL Laboratories, Rosemont, Illinois, USA; International Burch University, Department of Genetics and Bioengineering, Sarajevo, Bosnia and Herzegovina
| | - Amina Kurtovic-Kozaric
- International Burch University, Department of Genetics and Bioengineering, Sarajevo, Bosnia and Herzegovina; Department of Clinical Pathology, Cytology and Human Genetics, Clinical Center of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Sarah H Johnson
- Center for Individualized Medicine (CIM), Mayo Clinic, Rochester, Minnesota, USA
| | - George Vasmatzis
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael R Pins
- Department of Pathology, Advocate Lutheran General Hospital, Park Ridge, Illinois, USA; Department of Pathology, Chicago Medical School of Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Jillene Kogan
- Department of Cytogenetics, ACL Laboratories, Rosemont, Illinois, USA; Department of Pathology, Advocate Lutheran General Hospital, Park Ridge, Illinois, USA; Advocate Medical Group Genetics, Park Ridge, Illinois, USA.
| |
Collapse
|
17
|
Liang T, Chalasani NP, Williams KE, Sarasani V, Janga SC, Vuppalanchi R. Differential Expression of miRNAs in Nontumor Liver Tissue of Patients With Hepatocellular Cancer Caused by Nonalcoholic Steatohepatitis Cirrhosis. Clin Gastroenterol Hepatol 2017; 15:465-467. [PMID: 27780762 DOI: 10.1016/j.cgh.2016.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Affiliation(s)
- Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Naga P Chalasani
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kent Edward Williams
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Vishal Sarasani
- Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sarath Chandra Janga
- Centre for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Raj Vuppalanchi
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
18
|
The interaction between epigenetics, nutrition and the development of cancer. Nutrients 2015; 7:922-47. [PMID: 25647662 PMCID: PMC4344568 DOI: 10.3390/nu7020922] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 01/04/2015] [Accepted: 01/19/2015] [Indexed: 12/13/2022] Open
Abstract
Unlike the genome, the epigenome can be modified and hence some epigenetic risk markers have the potential to be reversed. Such modifications take place by means of drugs, diet or environmental exposures. It is widely accepted that epigenetic modifications take place during early embryonic and primordial cell development, but it is also important that we gain an understanding of the potential for such changes later in life. These “later life” epigenetic modifications in response to dietary intervention are the focus of this paper. The epigenetic modifications investigated include DNA methylation, histone modifications and the influence of microRNAs. The epigenotype could be used not only to predict susceptibility to certain cancers but also to assess the effectiveness of dietary modifications to reduce such risk. The influence of diet or dietary components on epigenetic modifications and the impact on cancer initiation or progression has been assessed herein.
Collapse
|
19
|
Croucher JL, Iyer R, Li N, Molteni V, Loren J, Gordon WP, Tuntland T, Liu B, Brodeur GM. TrkB inhibition by GNF-4256 slows growth and enhances chemotherapeutic efficacy in neuroblastoma xenografts. Cancer Chemother Pharmacol 2014; 75:131-41. [PMID: 25394774 DOI: 10.1007/s00280-014-2627-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 11/06/2014] [Indexed: 02/07/2023]
Abstract
PURPOSE Neuroblastoma (NB) is one of the most common and deadly pediatric solid tumors. NB is characterized by clinical heterogeneity, from spontaneous regression to relentless progression despite intensive multimodality therapy. There is compelling evidence that members of the tropomyosin receptor kinase (Trk) family play important roles in these disparate clinical behaviors. Indeed, TrkB and its ligand, brain-derived neurotrophic factor (BDNF), are expressed in 50-60 % of high-risk NBs. The BDNF/TrkB autocrine pathway enhances survival, invasion, metastasis, angiogenesis and drug resistance. METHODS We tested a novel pan-Trk inhibitor, GNF-4256 (Genomics Institute of the Novartis Research Foundation), in vitro and in vivo in a nu/nu athymic xenograft mouse model to determine its efficacy in inhibiting the growth of TrkB-expressing human NB cells (SY5Y-TrkB). Additionally, we assessed the ability of GNF-4256 to enhance NB cell growth inhibition in vitro and in vivo, when combined with conventional chemotherapeutic agents, irinotecan and temozolomide (Irino-TMZ). RESULTS GNF-4256 inhibits TrkB phosphorylation and the in vitro growth of TrkB-expressing NBs in a dose-dependent manner, with an IC₅₀ around 7 and 50 nM, respectively. Furthermore, GNF-4256 inhibits the growth of NB xenografts as a single agent (p < 0.0001 for mice treated at 40 or 100 mg/kg BID, compared to controls), and it significantly enhances the antitumor efficacy of irinotecan plus temozolomide (Irino-TMZ, p < 0.0071 compared to Irino-TMZ alone). CONCLUSIONS Our data suggest that GNF-4256 is a potent and specific Trk inhibitor capable of significantly slowing SY5Y-TrkB growth, both in vitro and in vivo. More importantly, the addition of GNF-4256 significantly enhanced the antitumor efficacy of Irino-TMZ, as measured by in vitro and in vivo growth inhibition and increased event-free survival in a mouse xenograft model, without additional toxicity. These data strongly suggest that inhibition of TrkB with GNF-4256 can enhance the efficacy of current chemotherapeutic treatment for recurrent/refractory high-risk NBs with minimal or no additional toxicity.
Collapse
Affiliation(s)
- Jamie L Croucher
- Oncology Research, The Children's Hospital of Philadelphia, CTRB Rm. 3018, 3501 Civic Center Blvd., Philadelphia, PA, 19104-4302, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen XH, Wu WG, Ding J. Aberrant TIG1 methylation associated with its decreased expression and clinicopathological significance in hepatocellular carcinoma. Tumour Biol 2013; 35:967-71. [DOI: 10.1007/s13277-013-1129-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022] Open
|
21
|
Kim MS, Kim GM, Choi YJ, Kim HJ, Kim YJ, Jin W. TrkC promotes survival and growth of leukemia cells through Akt-mTOR-dependent up-regulation of PLK-1 and Twist-1. Mol Cells 2013; 36:177-84. [PMID: 23832765 PMCID: PMC3887946 DOI: 10.1007/s10059-013-0061-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 05/21/2013] [Accepted: 06/10/2013] [Indexed: 11/30/2022] Open
Abstract
It has been suggested that activation of receptor PTKs is important for leukemogenesis and leukemia cell response to targeted therapy in hematological malignancies including leukemia. PTKs induce activation of the PI3K/Akt/mTOR pathway, which can result in prevention of apoptosis. Here, we describe an important role of the TrkC-associated molecular network in the process of leukemogenesis. TrkC was found to be frequently overexpressed in human leukemia cells and leukemia subtypes. In U937 human leukemia cells, blockade of TrkC using small hairpin RNA (shRNA) specific to TrkC or K562a, a specific inhibitor of TrkC, resulted in a significant decrease in growth and survival of the cells, which was closely associated with reduced mTOR level and Akt activity. In addition, TrkC enhances the survival and proliferation of leukemia, which is correlated with activation of the PI3K/Akt pathway. Moreover, TrkC significantly inhibits apoptosis via induction of the expression of PLK-1 and Twist-1 through activation of AKT/mTor pathway; therefore, it plays a key role in leukemogenesis. These findings reveal an unexpected physiological role for TrkC in the pathogenesis of leukemia and have important implications for understanding various hematological malignancies.
Collapse
Affiliation(s)
- Min Soo Kim
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840,
Korea
| | - Gyoung Mi Kim
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840,
Korea
| | - Yun-Jeong Choi
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840,
Korea
| | - Hye Joung Kim
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701,
Korea
| | - Yoo-Jin Kim
- Department of Hematology, Catholic Blood and Marrow Transplantation Center, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701,
Korea
| | - Wook Jin
- Department of Molecular Medicine, School of Medicine, Gachon University, Incheon 406-840,
Korea
- Gachon Medical Research Institute, Gil Medical Center, Incheon 405-760,
Korea
| |
Collapse
|
22
|
Luo Y, Kaz AM, Kanngurn S, Welsch P, Morris SM, Wang J, Lutterbaugh JD, Markowitz SD, Grady WM. NTRK3 is a potential tumor suppressor gene commonly inactivated by epigenetic mechanisms in colorectal cancer. PLoS Genet 2013; 9:e1003552. [PMID: 23874207 PMCID: PMC3708790 DOI: 10.1371/journal.pgen.1003552] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 04/23/2013] [Indexed: 12/03/2022] Open
Abstract
NTRK3 is a member of the neurotrophin receptor family and regulates cell survival. It appears to be a dependence receptor, and thus has the potential to act as an oncogene or as a tumor suppressor gene. NTRK3 is a receptor for NT-3 and when bound to NT-3 it induces cell survival, but when NT-3 free, it induces apoptosis. We identified aberrantly methylated NTRK3 in colorectal cancers through a genome-wide screen for hypermethylated genes. This discovery led us to assess whether NTRK3 could be a tumor suppressor gene in the colon. NTRK3 is methylated in 60% of colon adenomas and 67% of colon adenocarcinomas. NTRK3 methylation suppresses NTRK3 expression. Reconstitution of NTRK3 induces apoptosis in colorectal cancers, if NT-3 is absent. Furthermore, the loss of NTRK3 expression associates with neoplastic transformation in vitro and in vivo. We also found that a naturally occurring mutant NTRK3 found in human colorectal cancer inhibits the tumor suppressor activity of NTRK3. In summary, our findings suggest NTRK3 is a conditional tumor suppressor gene that is commonly inactivated in colorectal cancer by both epigenetic and genetic mechanisms whose function in the pathogenesis of colorectal cancer depends on the expression status of its ligand, NT-3. NTRK3 is a neurotrophin receptor and appears to be a dependence receptor in certain tissues. NTRK3 has been previously shown to be an oncogene in breast cancer and possibly hepatocellular carcinoma. Through a genome-wide methylation screen, we unexpectedly found that NTRK3 is commonly methylated in colorectal cancers but not in normal colon samples, which led us to assess whether NTRK3 could be a tumor suppressor gene in the colon. We now demonstrate that NTRK3 is frequently methylated in colorectal adenomas and cancers. Induced NTRK3 expression in the absence of its ligand, NT-3, causes apoptosis and suppresses in vitro anchorage-independent colony formation and in vivo tumor growth. Reintroduction of NT-3 releases colon cancer cells from NTRK3-mediated apoptosis, which is consistent with NTRK3 being a dependence receptor in the colon. Finally, somatic mutations of NTRK3 have been observed in primary human colorectal cancer. We provide evidence that a subset of these mutations inactivate tumor suppressor activities of NTRK3. These findings suggest that NTRK3 is a conditional tumor suppressor gene in the colon that is inactivated by both genetic and epigenetic mechanisms and whose function in the pathogenesis of colorectal cancer depends on the expression status of its ligand, NT-3.
Collapse
Affiliation(s)
- Yanxin Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Andrew M. Kaz
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Research and Development Service, VA Puget Sound Health Care System, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Samornmas Kanngurn
- Tumor Biology Research Unit and Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Piri Welsch
- Division of Medical Genetics, University of Washington Medical School, Seattle, Washington, United States of America
| | - Shelli M. Morris
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Jianping Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - James D. Lutterbaugh
- Department of Medicine and Ireland Cancer Center, Case Western Reserve University School of Medicine and Case Medical Center, Cleveland, Ohio, United States of America
| | - Sanford D. Markowitz
- Department of Medicine and Ireland Cancer Center, Case Western Reserve University School of Medicine and Case Medical Center, Cleveland, Ohio, United States of America
| | - William M. Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
23
|
Valdovinos-Flores C, Gonsebatt ME. Nerve growth factor exhibits an antioxidant and an autocrine activity in mouse liver that is modulated by buthionine sulfoximine, arsenic, and acetaminophen. Free Radic Res 2013; 47:404-12. [DOI: 10.3109/10715762.2013.783210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Sasahira T, Ueda N, Kurihara M, Matsushima S, Ohmori H, Fujii K, Bhawal UK, Yamamoto K, Kirita T, Kuniyasu H. Tropomyosin receptor kinases B and C are tumor progressive and metastatic marker in colorectal carcinoma. Hum Pathol 2013; 44:1098-106. [PMID: 23332094 DOI: 10.1016/j.humpath.2012.09.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/25/2012] [Accepted: 09/28/2012] [Indexed: 01/05/2023]
Abstract
Members of the tropomyosin receptor kinase (Trk) family have a high affinity for neurotrophins and regulate neuronal survival. The role of Trks in cancer is still controversial. The expression and role of TrkB and TrkC were examined in colorectal cancer (CRC). Immunohistochemical analysis of TrkB and TrkC was performed in 133 patients with CRC. Using human CRC cell lines, expression of vascular endothelial growth factor (VEGF) and transforming growth factor β, cell growth, invasion, and apoptosis were examined by knockdown methods. Immunohistochemistry showed positive results of TrkB and TrkC (23.3% and 12.8%, respectively). TrkB expression was associated with local progression (P = .0284), clinical stage (P = .0026), nodal metastasis (P = .0068), and peritoneal metastasis (P = .0026). TrkC expression was only related to liver metastasis (P = .0001). Coexpression of TrkB or TrkC and their ligands was found in 80.6% and 82.4% of cases, respectively. In vitro analysis using human CRC cells showed that TrkB positively regulated gene expression of VEGF-A (P < .05) and VEGF-C (P < .05), whereas TrkC suppressed transforming growth factor β expression (P < .05). TrkB and TrkC induced cell growth (P < .05) and invasion (P < .05), respectively. Both TrkB and TrkC showed antiapoptotic effect (P < .05). These results suggest that TrkB and TrkC have a tumor progressive function and may be a useful diagnostic and therapeutic target in CRC.
Collapse
Affiliation(s)
- Tomonori Sasahira
- Department of Molecular Pathology, Nara Medical University School of Medicine, Kashihara, Nara 634-8521, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hougland MT, Harrison BJ, Magnuson DSK, Rouchka EC, Petruska JC. The Transcriptional Response of Neurotrophins and Their Tyrosine Kinase Receptors in Lumbar Sensorimotor Circuits to Spinal Cord Contusion is Affected by Injury Severity and Survival Time. Front Physiol 2013; 3:478. [PMID: 23316162 PMCID: PMC3540763 DOI: 10.3389/fphys.2012.00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/07/2012] [Indexed: 01/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) results in changes to the anatomical, neurochemical, and physiological properties of cells in the central and peripheral nervous system. Neurotrophins, acting by binding to their cognate Trk receptors on target cell membranes, contribute to modulation of anatomical, neurochemical, and physiological properties of neurons in sensorimotor circuits in both the intact and injured spinal cord. Neurotrophin signaling is associated with many post-SCI changes including maladaptive plasticity leading to pain and autonomic dysreflexia, but also therapeutic approaches such as training-induced locomotor improvement. Here we characterize expression of mRNA for neurotrophins and Trk receptors in lumbar dorsal root ganglia (DRG) and spinal cord after two different severities of mid-thoracic injury and at 6 and 12 weeks post-SCI. There was complex regulation that differed with tissue, injury severity, and survival time, including reversals of regulation between 6 and 12 weeks, and the data suggest that natural regulation of neurotrophins in the spinal cord may continue for months after birth. Our assessments determined that a coordination of gene expression emerged at the 12-week post-SCI time point and bioinformatic analyses address possible mechanisms. These data can inform studies meant to determine the role of the neurotrophin signaling system in post-SCI function and plasticity, and studies using this signaling system as a therapeutic approach.
Collapse
Affiliation(s)
- M Tyler Hougland
- Department of Anatomical Sciences and Neurobiology, University of Louisville Louisville, KY, USA ; Laboratory of Neural Physiology and Plasticity, Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery Louisville, KY, USA
| | | | | | | | | |
Collapse
|
26
|
Zhang Y, Yang B, Du Z, Bai T, Gao YT, Wang YJ, Lou C, Wang FM, Bai Y. Aberrant methylation of SPARC in human hepatocellular carcinoma and its clinical implication. World J Gastroenterol 2012; 18:2043-52. [PMID: 22563191 PMCID: PMC3342602 DOI: 10.3748/wjg.v18.i17.2043] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/25/2011] [Accepted: 02/27/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the methylation status of secreted protein acidic and rich in cysteine (SPARC) in human hepatocellular carcinoma (HCC) and evaluate its clinical implication.
METHODS: The methylation status of SPARC was analyzed in one HCC cell line (SMMC-7721) and 60 pairs of HCC and corresponding nontumorous tissues by methylation-specific polymerase chain reaction and bisulfite sequencing. The expression of SPARC mRNA and protein were examined by reverse transcription polymerase chain reaction and immunohistochemistry, respectively. The correlations between the methylation status and the gene expression, the clinicopathological parameters, as well as the prognosis after surgery were analyzed.
RESULTS: In the SMMC-7721 cell line, the loss of SPARC expression was correlated with the aberrant methylation and could be reactivated by the demethylating agent 5-aza-2’-deoxycytidine. Methylation frequency of SPARC in HCC was significantly higher than that in the corresponding nontumorous tissues (45/60 vs 7/60, P < 0.001), and it was correlated with the pathological classification (P = 0.019). The downregulation of the SPARC mRNA expression in HCC was correlated with the SPARC methylation (P = 0.040). The patients with methylated SPARC had a poorer overall survival than those without methylated SPARC (28.0 mo vs 41.0 mo, P = 0.043).
CONCLUSION: Aberrant methylation is an important mechanism for SPARC inactivation in HCC and SPARC methylation may be a promising biomarker for the diagnosis and prognosis of HCC.
Collapse
|
27
|
Wang Y, Liu C, Guo QL, Yan JQ, Zhu XY, Huang CS, Zou WY. Intrathecal 5-azacytidine inhibits global DNA methylation and methyl- CpG-binding protein 2 expression and alleviates neuropathic pain in rats following chronic constriction injury. Brain Res 2011; 1418:64-9. [DOI: 10.1016/j.brainres.2011.08.040] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 08/13/2011] [Accepted: 08/16/2011] [Indexed: 11/30/2022]
|