1
|
Abdelrasoul A, Doan H, Lohi A, Cheng CH. Aquaporin-Based Biomimetic and Bioinspired Membranes for New Frontiers in Sustainable Water Treatment Technology: Approaches and Challenges. POLYMER SCIENCE SERIES A 2018. [DOI: 10.1134/s0965545x18040016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
2
|
Xia L, Andersen MF, Hélix-Nielsen C, McCutcheon JR. Novel Commercial Aquaporin Flat-Sheet Membrane for Forward Osmosis. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b02368] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lingling Xia
- Department
of Chemical and Biomolecular Engineering, Center for Environmental
Sciences and Engineering, University of Connecticut, 191 Auditorium Road, Unit 3222, Storrs, Connecticut 06269-3222, United States
| | | | - Claus Hélix-Nielsen
- Aquaporin A/S Nymøllevej 78, 2800 Kongens Lyngby, Denmark
- Department
of Environmental Engineering, Technical University of Denmark, Miljøvej 113, 2800 Kongens Lyngby, Denmark
- Faculty
of Chemistry and Chemical Engineering, University of Maribor, Smetanova
ulica 17, SLO-2000 Maribor, Slovenia
| | - Jeffrey R. McCutcheon
- Department
of Chemical and Biomolecular Engineering, Center for Environmental
Sciences and Engineering, University of Connecticut, 191 Auditorium Road, Unit 3222, Storrs, Connecticut 06269-3222, United States
| |
Collapse
|
3
|
Brown PS, Bhushan B. Bioinspired materials for water supply and management: water collection, water purification and separation of water from oil. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2016.0135. [PMID: 27354732 DOI: 10.1098/rsta.2016.0135] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/21/2016] [Indexed: 05/25/2023]
Abstract
Access to a safe supply of water is a human right. However, with growing populations, global warming and contamination due to human activity, it is one that is increasingly under threat. It is hoped that nature can inspire the creation of materials to aid in the supply and management of water, from water collection and purification to water source clean-up and rehabilitation from oil contamination. Many species thrive in even the driest places, with some surviving on water harvested from fog. By studying these species, new materials can be developed to provide a source of fresh water from fog for communities across the globe. The vast majority of water on the Earth is in the oceans. However, current desalination processes are energy-intensive. Systems in our own bodies have evolved to transport water efficiently while blocking other molecules and ions. Inspiration can be taken from such to improve the efficiency of desalination and help purify water containing other contaminants. Finally, oil contamination of water from spills or the fracking technique can be a devastating environmental disaster. By studying how natural surfaces interact with liquids, new techniques can be developed to clean up oil spills and further protect our most precious resource.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.
Collapse
Affiliation(s)
- Philip S Brown
- Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue, Columbus, OH 43210-1142, USA
| | - Bharat Bhushan
- Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue, Columbus, OH 43210-1142, USA
| |
Collapse
|
4
|
Jing P, Paraiso H, Burris B. Highly efficient integration of the viral portal proteins from different types of phages into planar bilayers for the black lipid membrane analysis. MOLECULAR BIOSYSTEMS 2015; 12:480-9. [PMID: 26661052 DOI: 10.1039/c5mb00573f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The planar lipid bilayer technology is a technique that yields incredibly useful structural function information about a single channel protein. It is also currently actively utilized as a powerful platform using biological protein nanopores for the development of single-molecule nanopore sensing technology, as well as ultrafast DNA sequencing technology. The portal protein, GP10, from the bacteriophage Φ29 was the first phage portal protein shown to be successfully inserted into planar bilayer membranes, thereby it may inspire more researchers to apply the techniques to portal proteins from the other bacteriophages. However, the technology is far from perfect since the insertion of the channel proteins into planar bilayer membranes is not only technically difficult but also time-consuming. For the fusion of phage portal proteins, vesicles are typically needed to be reconstituted with the portal proteins to form proteoliposomes. However, most of the phage portal proteins have low solubility, and may self-aggregate during the preparation of the proteoliposomes. Furthermore, the fusion of the formed proteoliposomes is sporadic, unpredictable and varied from person to person. Due to the lack of experimental consistency between labs, the results from different methodologies reported for generating fusible proteoliposomes are highly variable. In this research, we propose a new method for the preparation of the fusible proteoliposomes containing portal proteins from bacteriophages, to circumvent the problems aforementioned. Compared to the conventional methods, this method was able to avoid the protein aggregation issues during the vesicle preparation by eliminating the need for detergents and the subsequent time-consuming step for detergent removal. The proteoliposomes prepared by the method were shown to be more efficiently and rapidly inserted into planar bilayer membranes bathed in different conducting buffer solutions including those with nonelectrolytes such as glycerol and PEG. In addition, the method of forming proteoliposomes has significantly extended the shelf life of the proteoliposomes. To further explore its potentials, we have successfully applied the method to the insertion of a mutant portal protein, GP20, from T4 bacteriophage, a hydrophobic portal protein that has not been explored using the planar lipid bilayer membrane technique. The results suggest that this method could be used to prepare proteoliposomes formed by hydrophobic portal proteins from other bacteriophages.
Collapse
Affiliation(s)
- Peng Jing
- Department of Chemistry, College of Arts and Sciences, Indiana-Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805-1499, USA.
| | - Hallel Paraiso
- Department of Biology, College of Arts and Sciences, Indiana-Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805-1499, USA
| | - Benjamin Burris
- Department of Chemistry, College of Arts and Sciences, Indiana-Purdue University Fort Wayne, 2101 E. Coliseum Blvd., Fort Wayne, IN 46805-1499, USA.
| |
Collapse
|
5
|
Habel J, Hansen M, Kynde S, Larsen N, Midtgaard SR, Jensen GV, Bomholt J, Ogbonna A, Almdal K, Schulz A, Hélix-Nielsen C. Aquaporin-Based Biomimetic Polymeric Membranes: Approaches and Challenges. MEMBRANES 2015; 5:307-51. [PMID: 26264033 PMCID: PMC4584284 DOI: 10.3390/membranes5030307] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 07/22/2015] [Indexed: 12/12/2022]
Abstract
In recent years, aquaporin biomimetic membranes (ABMs) for water separation have gained considerable interest. Although the first ABMs are commercially available, there are still many challenges associated with further ABM development. Here, we discuss the interplay of the main components of ABMs: aquaporin proteins (AQPs), block copolymers for AQP reconstitution, and polymer-based supporting structures. First, we briefly cover challenges and review recent developments in understanding the interplay between AQP and block copolymers. Second, we review some experimental characterization methods for investigating AQP incorporation including freeze-fracture transmission electron microscopy, fluorescence correlation spectroscopy, stopped-flow light scattering, and small-angle X-ray scattering. Third, we focus on recent efforts in embedding reconstituted AQPs in membrane designs that are based on conventional thin film interfacial polymerization techniques. Finally, we describe some new developments in interfacial polymerization using polyhedral oligomeric silsesquioxane cages for increasing the physical and chemical durability of thin film composite membranes.
Collapse
Affiliation(s)
- Joachim Habel
- Technical University of Denmark, Department of Environmental Engineering, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark.
- Aquaporin A/S, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark.
| | - Michael Hansen
- University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Søren Kynde
- University of Copenhagen, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | - Nanna Larsen
- University of Copenhagen, Niels Bohr Institute, Hans Christian Ørsted building D, Universitetsparken, 5, 2100 Copenhagen, Denmark.
| | - Søren Roi Midtgaard
- University of Copenhagen, Copenhagen Biocenter, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark.
| | | | - Julie Bomholt
- Aquaporin A/S, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark.
| | - Anayo Ogbonna
- Aquaporin A/S, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark.
| | - Kristoffer Almdal
- Technical University of Denmark, Department of Micro- and Nanotechnology, Produktionstorvet, Building 423, 2800 Kgs. Lyngby.
| | - Alexander Schulz
- University of Copenhagen, Department of Plant and Environmental Sciences, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark.
| | - Claus Hélix-Nielsen
- Technical University of Denmark, Department of Environmental Engineering, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark.
- Aquaporin A/S, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark.
- University of Maribor, Laboratory for Water Biophysics and Membrane Processes, Faculty of Chemistry and Chemical Engineering, Smetanova ulica 17, 2000 Maribor, Slovenia.
| |
Collapse
|
6
|
Nikolov DB, Xu K, Himanen JP. Eph/ephrin recognition and the role of Eph/ephrin clusters in signaling initiation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2160-5. [PMID: 23628727 DOI: 10.1016/j.bbapap.2013.04.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 11/15/2022]
Abstract
The Eph receptors and their ephrin ligands play crucial roles in a large number of cell-cell interaction events, including those associated with axon pathfinding, neuronal cell migration and vasculogenesis. They are also involved in the patterning of most tissues and overall cell positioning in the development of the vertebrate body plan. The Eph/ephrin signaling system manifests several unique features that differentiate it from other receptor tyrosine kinases, including initiation of bi-directional signaling cascades and the existence of ligand and receptor subclasses displaying promiscuous intra-subclass interactions, but very rare inter-subclass interactions. In this review we briefly discuss these features and focus on recent studies of the unique and expansive high-affinity Eph/ephrin assemblies that form at the sites of cell-cell contact and are required for Eph signaling initiation. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.
Collapse
Affiliation(s)
- Dimitar B Nikolov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
7
|
Balakrishnan VS, Vad BS, Otzen DE. Novicidin's membrane permeabilizing activity is driven by membrane partitioning but not by helicity: a biophysical study of the impact of lipid charge and cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:996-1002. [PMID: 23562965 DOI: 10.1016/j.bbapap.2013.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/05/2013] [Accepted: 03/25/2013] [Indexed: 12/11/2022]
Abstract
We have investigated the interactions between the antimicrobial peptide Novicidin (Nc) and vesicles containing the phospholipid DOPC, with various amounts of DOPG and cholesterol using circular dichroism spectroscopy, calcein release, equilibrium dialysis and isothermal titration calorimetry. Nc adopts a random coil structure in the absence of lipids and in the presence of vesicles containing 100% DOPC. Lipids with 25-40% DOPG induce the highest level of helicity in Nc; higher DOPG levels lead to lower helicity levels and an altered tertiary arrangement of the peptide. However, the ability of Nc to permeabilize vesicles correlates not with helicity but rather with its overall membrane affinity, which is enthalpically favorable but opposed by entropy. Permeabilization declines with increasing mole percentage PG. Changes in helicity correlate with changes in enthalpy, reflecting the enthalpy of helix formation, but not with affinity. There is also a large favorable enthalpic interaction between Nc and lipids in the absence of negative charge and structural changes. Cholesterol slightly reduces membrane permeabilization but has little effect on Nc affinity and secondary structure, and probably protects the membrane by inducing the liquid ordered state. We conclude that helicity is not a prerequisite for activity, and charge-charge interactions are not the only major driving force for AMP interactions with membranes. Our data are compatible with a model in which a superficial binding mode with a large membrane surface binding area per peptide is more efficient than a more intimate embedding within the membrane environment.
Collapse
Affiliation(s)
- Vijay S Balakrishnan
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | | | | |
Collapse
|