1
|
Shinada T, Kokubun K, Takano Y, Iki H, Kobayashi K, Hamasaki T, Taki Y. Effects of natural reduced water on cognitive functions in older adults: A RCT study. Heliyon 2024; 10:e38505. [PMID: 39397929 PMCID: PMC11471180 DOI: 10.1016/j.heliyon.2024.e38505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024] Open
Abstract
Oxidative stress and diabetes increase the risk of cognitive decline and dementia. Natural reduced water contains active hydrogen (hydrogen radicals), eliminates reactive oxygen species, and has antidiabetic effects. However, whether natural reduced water affects human cognitive function is unknown. Therefore, we implemented a double-blind intervention experiment in which participants consumed 1 L of natural reduced water or tap water daily for 6 months. The participants were healthy older adults living in Japan. The intervention group showed significant improvements in cognitive functions of attention function (p < 0.01) and short-term memory (p < 0.05). These results indicate that the continuous intake of natural reduced water improves several cognitive functions.
Collapse
Affiliation(s)
- Takamitsu Shinada
- Smart-Aging Research Center, Tohoku University, Sendai, 980-8575, Japan
| | - Keisuke Kokubun
- Smart-Aging Research Center, Tohoku University, Sendai, 980-8575, Japan
- Graduate School of Management, Kyoto University, Kyoto, 606-8501, Japan
| | - Yuji Takano
- Smart-Aging Research Center, Tohoku University, Sendai, 980-8575, Japan
- Department of Psychology, University of Human Environments, Matsuyama, 790-0825, Japan
| | - Hikari Iki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Koki Kobayashi
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| | - Takeki Hamasaki
- Laboratory of Functional Water, Food and Energy, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | - Yasuyuki Taki
- Smart-Aging Research Center, Tohoku University, Sendai, 980-8575, Japan
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, 980-8575, Japan
| |
Collapse
|
2
|
Hamasaki T, Teruya K, Katakura Y. Effect of Hita Tenryo Water™, a natural mineral water, on allergic symptoms induced by cedar in mice. Heliyon 2024; 10:e26915. [PMID: 38444511 PMCID: PMC10912610 DOI: 10.1016/j.heliyon.2024.e26915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024] Open
Abstract
The number of patients with allergies to pollen and food is increasing worldwide. In Japan, the prevalence of cedar pollinosis, a type I allergy, is nearly 30% and accounts of hay fever are rising. A potential natural remedy for these allergic diseases may be Hita Tenryo Water™ (referred to simply as Hita Tenryo water), water that is pumped from deep underground in the Hita region of Oita, Japan, which has been the subject of various research reports. Here, we investigated the potential of using Hita Tenryo water to suppress the onset of cedar pollinosis in a mouse model and explored the immunological mechanism of the suppression. Test model mice were given Hita Tenryo water ad libitum to drink and received intraperitoneal administration of (i) tap water (Hw1), (ii) 25% Hita Tenryo water (Hw2) or (iii) 100% Hita Tenryo (Hw3). There were no significant differences in body weight change, feed intake, or water intake among the groups during the experimental period. We examined nose rubbing and sneezing as allergic symptoms. The frequency of rubbing and sneezing tended to decrease in the Hw1 and Hw2 group, and significantly decreased in the Hw3 group compared to control. Total IgE levels in serum were also significantly reduced in Hita Tenryo water intraperitoneal administration groups. In vitro examination of the rate of release of β-hexosaminidase from BL-2H3 cells showed that there were no significantly differences between Hita Tenryo water-treated and control cells. In addition, measurement of Th2-related cytokine levels in concanavalin A-stimulated peripheral blood mononuclear cells revealed a significant decrease in IL-4, IL-6, and IL-10 levels in medium (p < 0.01). In contrast, production of IFN-γ significantly increased (p < 0.01). These results indicate that Hita Tenryo water may alleviate and/or suppress allergic symptoms.
Collapse
Affiliation(s)
- Takeki Hamasaki
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kiichro Teruya
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshinori Katakura
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
3
|
Lee J, Chung JO, Park SY, Rajamohan N, Singh A, Kim J, Lowe VJ, Lee S. Natural COA water inhibits mitochondrial ROS-mediated apoptosis through Plk3 downregulation under STZ diabetic stress in pancreatic β-cell lines. Biochem Biophys Rep 2022; 30:101247. [PMID: 35300109 PMCID: PMC8921297 DOI: 10.1016/j.bbrep.2022.101247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 01/04/2023] Open
Abstract
Diabetes from pancreatic β cell death and insulin resistance is a serious metabolic disease in the world. Although the overproduction of mitochondrial reactive oxygen species (ROS) plays an important role in the pathogenesis of diabetes, its specific molecular mechanism remains unclear. Here, we show that the natural Charisma of Aqua (COA) water plays a role in Streptozotocin (STZ) diabetic stress-induced cell death inhibition. STZ induces mitochondrial ROS by increasing Polo-like kinase 3 (Plk3), a major mitotic regulator, in both Beta TC-6 and Beta TC-tet mouse islet cells and leads to apoptosis. Overexpression of Plk3 regulates an increase in mitochondrial ROS as well as cell death, also these events were inhibited by Plk3 gene knockdown in STZ diabetic stimulated-Beta TC-6 cells. Interestingly, we found that natural COA water blocks mitochondrial ROS generation through the reduction of Plk3 and prevents apoptosis in STZ-treated beta cells. Furthermore, using the 3D organoid (ex vivo) system, we confirmed that the insulin secretion of the supernatant medium under STZ treated pancreatic β-cells is protected by the natural COA water. These findings demonstrate that the natural water COA has a beneficial role in maintaining β cell function through the inhibition of mitochondrial ROS-mediated cell death, and it might be introduced as a potential insulin stabilizer. Pancreatic β cell is stabilized through natural COA water in STZ-induced diabetes. Mitochondrial membrane potential (ΔΨm) is controlled by natural COA water. Plk3 expression under STZ treatment is negatively regulated by natural COA water. Insulin secretion is stabilized by natural COA water under STZ treatment in ex vivo (3D organoid) model.
Collapse
Affiliation(s)
- Jeyeon Lee
- Division of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jin Ook Chung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 501757, Republic of Korea
| | - Seon-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, 501757, Republic of Korea
| | | | - Aparna Singh
- Division of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
| | - JungJin Kim
- Division of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Corresponding author. Division of Radiology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - Val J. Lowe
- Division of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
- Corresponding author.
| | - SeungBaek Lee
- Division of Radiology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
- Corresponding author. Division of Radiology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
4
|
Shinada T, Takano Y, Kokubun K, Iki H, Taki Y. Effects of Natural Reduced Water on Cognitive Function, Body Composition, and Psychological Function in Older Adults: Study Protocol for a Randomized Controlled Trial. Methods Protoc 2021; 4:mps4040073. [PMID: 34698243 PMCID: PMC8544515 DOI: 10.3390/mps4040073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
Natural reduced water is natural water that contains active hydrogen and reduces oxidation. It is rare in the world, and in Japan, it is produced in the Hita area of Oita Prefecture (Hita Tenryosui water). Previous studies in humans have examined the effects of natural reduced water on diabetes, which is one of the known risks for dementia. Animal studies of natural reduced water have revealed anti-obesity and anti-anxiety effects. However, the effects of natural reduced water on cognitive function, body composition, and psychological function in humans are unknown. Therefore, we investigated the relationship between these items in elderly people who continuously consume natural reduced water. In this study, we recruited participants aged between 65 and 74 years. The participants were randomly and blindly assigned to a natural reduced water (Hita Tenryosui water) group or a control (tap water) group and drank 1 L of water daily for 6 months. Cognitive function, body composition, and psychological function were measured before and after the 6-month intervention period.
Collapse
Affiliation(s)
- Takamitsu Shinada
- Smart-Aging Research Center, Tohoku University, 4-1 Seiryo-Machi, Aoba-ku, Sendai 980-8575, Japan; (Y.T.); (K.K.); (Y.T.)
- Correspondence: ; Tel.: +81-22-717-8824
| | - Yuji Takano
- Smart-Aging Research Center, Tohoku University, 4-1 Seiryo-Machi, Aoba-ku, Sendai 980-8575, Japan; (Y.T.); (K.K.); (Y.T.)
- Department of Psychology, University of Human Environments, Matsuyama, Ehime 790-0825, Japan
| | - Keisuke Kokubun
- Smart-Aging Research Center, Tohoku University, 4-1 Seiryo-Machi, Aoba-ku, Sendai 980-8575, Japan; (Y.T.); (K.K.); (Y.T.)
| | - Hikari Iki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-Machi, Aoba-ku, Sendai 980-8575, Japan;
| | - Yasuyuki Taki
- Smart-Aging Research Center, Tohoku University, 4-1 Seiryo-Machi, Aoba-ku, Sendai 980-8575, Japan; (Y.T.); (K.K.); (Y.T.)
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-Machi, Aoba-ku, Sendai 980-8575, Japan;
| |
Collapse
|
5
|
Outcomes Assessment of Sustainable and Innovatively Simple Lifestyle Modification at the Workplace - Drinking Electrolyzed-Reduced Water (OASIS-ERW): A Randomized, Double-Blind, Placebo-Controlled Trial. Antioxidants (Basel) 2020; 9:antiox9070564. [PMID: 32605142 PMCID: PMC7402115 DOI: 10.3390/antiox9070564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/30/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress has been associated with many diseases as well as aging. Electrolyzed-reduced water (ERW) has been suggested to reduce oxidative stress and improve antioxidant potential. This study investigated the effects of drinking ERW on biomarkers of oxidative stress and health-related indices in healthy adults. We conducted a randomized, double-blind, placebo-controlled clinical trial on 65 participants, who were allocated into two groups. Of these, 61 received intervention (32 with ERW and 29 MW [mineral water]). All participants were instructed to drink 1.5 L/day of ERW or MW for eight weeks. Biomarkers of oxidative stress and health-related indices were assessed at baseline as well as after 4 weeks and 8 weeks of intervention. Of the primary outcome variables assessed, diacron-reactive oxygen metabolites (d-ROMs) and biological antioxidant potential showed a significant interaction between the groups and time, with d-ROMs levels significantly decreased at 8 weeks in ERW compared to those in MW. Among the secondary outcome variables, total, visceral, and subcutaneous fat mass significantly changed over time, with a significant association observed between the groups and time. Thus, daily ERW consumption may be a potential consideration for a sustainable and innovatively simple lifestyle modification at the workplace to reduce oxidative stress, increase antioxidant potential, and decrease fat mass.
Collapse
|
6
|
Yahiro T, Hara T, Matsumoto T, Ikebe E, Fife-Koshinomi N, Xu Z, Hiratsuka T, Iha H, Inomata M. Long-Term Potable Effects of Alkalescent Mineral Water on Intestinal Microbiota Shift and Physical Conditioning. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:2710587. [PMID: 31827547 PMCID: PMC6885775 DOI: 10.1155/2019/2710587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 09/03/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND An alkalescent (pH 8.3) mineral water (AMW) of Hita basin, located in the northwestern part of Kyushu island in Japan, has been recognized for the unique quality of ingredients including highly concentrated silicic acid, sodium, potassium, and hydrogen carbonate. The biological effects of AMW intake were evaluated with a particular focus on its "antiobesity" properties through its modulation of the gut microbiota population. METHODS Two groups of C57BL6/J mice (8-week-old male) were maintained with a standard diet and tap water (control: TWC group) or AMW (AMW group) for 6 months and the following outputs were quantitated: (1) food and water intake, (2) body weight (weekly), (3) body fat measurements by CT scan (monthly), (4) sera biochemical values (TG, ALT, AST, and ALP), and (5) UCP-1 mRNA in fat tissues (terminal point). Two groups of ICR mice (7-week-old male) were maintained with the same method and their feces were collected at the 0, 1st, 3rd, and 6th month at which time the population rates of gut microbiota were quantitated using metagenomic sequencing analysis of 16S-rRNA. RESULTS Among all antiobesity testing items, even though a weekly dietary consumption was increased (p=0.012), both ratios of weight gain (p=1.21E - 10) and visceral fat accumulation (p=0.029) were significantly reduced in the AMW group. Other criteria including water intake (p=0.727), the amounts of total (p=0.1602), and subcutaneous fat accumulation (p=0.052) were within the margin of error and UCP-1 gene expression level (p=0.171) in the AMW group was 3.89-fold higher than that of TWC. Among 8 major gut bacteria families, Lactobacillaceae (increased, p=0.029) and Clostridiaceae (decreased, p=0.029) showed significant shift in the whole population. CONCLUSION We observed significantly reduced (1) weight gaining ratio (average -1.86%, up to -3.3%), (2) visceral fat accumulation ratio (average -4.30%, up to -9.1%), and (3) changes in gut microbiota population. All these consequences could support the "health benefit" functionality of AMW.
Collapse
Affiliation(s)
- Takaaki Yahiro
- Department of Microbiology, Oita University Faculty of Medicine, Oita, Japan
- Department of Pathology, Tsurumi Hospital, Beppu, Oita, Japan
| | - Takao Hara
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Oita, Japan
| | - Takashi Matsumoto
- Department of Microbiology, Oita University Faculty of Medicine, Oita, Japan
| | - Emi Ikebe
- Department of Microbiology, Oita University Faculty of Medicine, Oita, Japan
| | | | - Zhaojun Xu
- Environmental Medicine Research Center, Quanzhou Medical College, Quanzhou, Fujian 362011, China
| | - Takahiro Hiratsuka
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Oita, Japan
| | - Hidekatsu Iha
- Department of Microbiology, Oita University Faculty of Medicine, Oita, Japan
| | - Masafumi Inomata
- Department of Gastroenterological and Pediatric Surgery, Oita University Faculty of Medicine, Oita, Japan
| |
Collapse
|
7
|
Masuda K, Tanaka Y, Kanehisa M, Ninomiya T, Inoue A, Higuma H, Kawashima C, Nakanishi M, Okamoto K, Akiyoshi J. Natural reduced water suppressed anxiety and protected the heightened oxidative stress in rats. Neuropsychiatr Dis Treat 2017; 13:2357-2362. [PMID: 28932120 PMCID: PMC5598750 DOI: 10.2147/ndt.s138289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND In Japan, the effects of reduced water, such as hydrogen-rich electrolyzed reduced water and natural reduced water, like Hita Tenryosui water®, have been examined. The purpose of the present study was to identify the role of natural reduced water in anxiety and blood biochemical analysis. MATERIALS AND METHODS Natural reduced water and distilled water were administered to rats for 180 consecutive days, and their effect on anxiety-like behavior and depression was examined by using elevated plus maze, light/dark, forced swimming, and conditioned fear tests. Before and after administration of natural reduced or distilled water, we performed blood and urine analyses. RESULTS Natural reduced water exhibited anxiolytic-like effects in the conditioned fear and elevated plus maze tests. The mean levels of urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) in the natural reduced water were significantly lower than the distilled water group. Natural reduced water group also showed decrease in blood-urea nitrogen levels compared with the distilled water group. CONCLUSION These results indicate that natural reduced water may decrease anxiety-related behaviors and prevent heightened oxidative stress.
Collapse
Affiliation(s)
- Koji Masuda
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Hasama-Machi, Oita, Japan
| | - Yoshihiro Tanaka
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Hasama-Machi, Oita, Japan
| | - Masayuki Kanehisa
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Hasama-Machi, Oita, Japan
| | - Taiga Ninomiya
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Hasama-Machi, Oita, Japan
| | - Ayako Inoue
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Hasama-Machi, Oita, Japan
| | - Haruka Higuma
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Hasama-Machi, Oita, Japan
| | - Chiwa Kawashima
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Hasama-Machi, Oita, Japan
| | - Mari Nakanishi
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Hasama-Machi, Oita, Japan
| | - Kana Okamoto
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Hasama-Machi, Oita, Japan
| | - Jotaro Akiyoshi
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Hasama-Machi, Oita, Japan
| |
Collapse
|
8
|
Potential Health Benefits of Deep Sea Water: A Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:6520475. [PMID: 28105060 PMCID: PMC5221345 DOI: 10.1155/2016/6520475] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/27/2016] [Indexed: 02/06/2023]
Abstract
Deep sea water (DSW) commonly refers to a body of seawater that is pumped up from a depth of over 200 m. It is usually associated with the following characteristics: low temperature, high purity, and being rich with nutrients, namely, beneficial elements, which include magnesium, calcium, potassium, chromium, selenium, zinc, and vanadium. Less photosynthesis of plant planktons, consumption of nutrients, and organic decomposition have caused lots of nutrients to remain there. Due to this, DSW has potential to become a good source for health. Research has proven that DSW can help overcome health problems especially related to lifestyle-associated diseases such as cardiovascular disease, diabetes, obesity, cancer, and skin problems. This paper reviews the potential health benefits of DSW by referring to the findings from previous researches.
Collapse
|
9
|
Water structure changes induced by ceramics can be detected by increased permeability through aquaporin. Biochem Biophys Rep 2016; 5:353-358. [PMID: 28955842 PMCID: PMC5600359 DOI: 10.1016/j.bbrep.2016.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 11/27/2022] Open
Abstract
Aquporins are intrinsic membrane proteins that function as water channel to transport water and/or mineral nutrients across biological membranes. In this study, we aimed to clarify whether water structure can be changed by the presence of ceramics and whether such a change can be determined by aquaporin. First, we confirmed that ceramics could transform tap water into active tap water by increasing water permeability through aquaporin. We also found that this change in water permeability by treatment with ceramics occurred in distilled water. The distilled water was determined to exhibit the same aquaporin permeability as the original tap water. Our data indicate that the aquaporin permeability of water can be changed by severe physical shocks, such as slapping and sonication, which is consistent with the implication that the aquaporin permeability is closely related to the structure of the water. In this study, using aquaporins, we first reported that the treatment of water with ceramics can affect the structure of water, and the water can retain the structure for a given period under certain condition The ceramics can change the structure of distilled water. The aquaporin permeability is closely related to the structure of water. Aquaporin permeability of the water is increased with vigorous slapping. We first reported that ceramics can affect the structure of water which can be determined by aquaporin.
Collapse
|
10
|
Ha SY, Sung J, Ju H, Karube K, Kim SJ, Kim WS, Seto M, Ko YH. Epstein–Barr virus-positive nodal peripheral T cell lymphomas: Clinicopathologic and gene expression profiling study. Pathol Res Pract 2013; 209:448-54. [DOI: 10.1016/j.prp.2013.04.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 02/05/2023]
|
11
|
Ding X, Matsumoto T, Gena P, Liu C, Pellegrini-Calace M, Zhong S, Sun X, Zhu Y, Katsuhara M, Iwasaki I, Kitagawa Y, Calamita G. Water and CO2permeability of SsAqpZ, the cyanobacteriumSynechococcussp. PCC7942 aquaporin. Biol Cell 2013; 105:118-28. [DOI: 10.1111/boc.201200057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 12/22/2012] [Indexed: 01/14/2023]
|
12
|
Liu C, Fukumoto T, Matsumoto T, Gena P, Frascaria D, Kaneko T, Katsuhara M, Zhong S, Sun X, Zhu Y, Iwasaki I, Ding X, Calamita G, Kitagawa Y. Aquaporin OsPIP1;1 promotes rice salt resistance and seed germination. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 63:151-8. [PMID: 23262183 DOI: 10.1016/j.plaphy.2012.11.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 11/14/2012] [Indexed: 05/07/2023]
Abstract
OsPIP1;1 is one of the most abundant aquaporins in rice leaves and roots and is highly responsible to environmental stresses. However, its biochemical and physiological functions are still largely unknown. The oocyte assay data showed OsPIP1;1 had lower water channel activity in contrast to OsPIP2;1. EGFP and immunoelectron microscopy studies revealed OsPIP1;1 was predominantly localized in not only plasma membrane but also in some ER-like intracellular compartments in the cells. OsPIP1;1 exhibited low water channel activity in Xenopus oocytes but coexpression of OsPIP2;1 significantly enhanced its water permeability. Stop-flow assay indicated that 10His-OsPIP1;1-reconstituted proteoliposomes had significantly higher water permeability than the control liposomes. Overexpression of OsPIP1;1 greatly altered many physiological features of transgenic plants in a dosage-dependent manner. Moderate expression of OsPIP1;1 increased rice seed yield, salt resistance, root hydraulic conductivity, and seed germination rate. This work suggests OsPIP1;1 functions as an active water channel and plays important physiological roles.
Collapse
Affiliation(s)
- Chengwei Liu
- Graduate School of Bioresource Sciences, Akita Prefectural University, Shimoshinjo, Akita 010-0195, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Li Y, Hamasaki T, Teruya K, Nakamichi N, Gadek Z, Kashiwagi T, Yan H, Kinjo T, Komatsu T, Ishii Y, Shirahata S. Suppressive effects of natural reduced waters on alloxan-induced apoptosis and type 1 diabetes mellitus. Cytotechnology 2011; 64:281-97. [PMID: 22143345 PMCID: PMC3386384 DOI: 10.1007/s10616-011-9414-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 11/18/2011] [Indexed: 11/29/2022] Open
Abstract
Insulin-producing cells express limited activities of anti-oxidative enzymes. Therefore, reactive oxygen species (ROS) produced in these cells play a crucial role in cytotoxic effects. Furthermore, diabetes mellitus (DM) development is closely linked to higher ROS levels in insulin-producing cells. Hita Tenryosui Water® (Hita T. W., Hita, Japan) and Nordenau water (Nord. W., Nordenau, Germany), referred to as natural reduced waters (NRWs), scavenge ROS in cultured cells, and therefore, might be a possibility as an alternative to conventional pharmacological agents against DM. Therefore, this study aimed to investigate the role of NRWs in alloxan (ALX)-induced β-cell apoptosis as well as in ALX-induced diabetic mice. NRWs equally suppressed DNA fragmentation levels. Hita T. W. and Nord. W. ameliorated ALX-induced sub-G1 phase production from approximately 40% of control levels to 8.5 and 11.8%, respectively. NRWs restored serum insulin levels (p < 0.01) and reduced blood glucose levels (p < 0.01) in ALX-induced mice. Hita T. W. restored tissue superoxide dismutase (SOD) (p < 0.05) activity but not tissue catalase activity. Hita T. W. did not elevate SOD or catalase activity in HIT-T15 cells. Nord. W. restored SOD (p < 0.05) and catalase (p < 0.05) activity in both cultured cells and pancreatic tissue to normal levels. Even though variable efficacies were observed between Hita T. W. and Nord. W., both waters suppressed ALX-induced DM development in CD-1 male mice by administering NRWs for 8 weeks. Our results suggest that Hita T. W. and Nord. W. protect against ALX-induced β-cell apoptosis, and prevent the development of ALX-induced DM in experimental animals by regulating ALX-derived ROS generation and elevating anti-oxidative enzymes. Therefore, the two NRWs tested here are promising candidates for the prevention of DM development.
Collapse
Affiliation(s)
- Yuping Li
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 812-8581, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|