1
|
Wang H, Wang X, Xu L. Transforming growth factor-induced gene TGFBI is correlated with the prognosis and immune infiltrations of breast cancer. World J Surg Oncol 2024; 22:22. [PMID: 38245723 PMCID: PMC10799375 DOI: 10.1186/s12957-024-03301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/13/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Transforming growth factor β (TGFβ) is a critical regulator of lung metastasis of breast cancer and is correlated with the prognosis of breast cancer. However, not all TGFβ stimulated genes were functional and prognostic in breast cancer lung metastatic progress. In this study, we tried to determine the prognosis of TGFβ stimulated genes in breast cancer. METHODS TGFβ stimulated genes in MDA-MB-231 cells and lung metastasis-associated genes in LM2-4175 cells were identified through gene expression microarray. The prognosis of the induced gene (TGFBI) in breast cancer was determined through bioinformatics analysis and validated using tissue microarray. The immune infiltrations of breast cancer were determined through "ESTIMATE" and "TIMER". RESULTS TGFBI was up-regulated by TGFβ treatment and over-expressed in LM2-4175 cells. Through bioinformatics analysis, we found that higher expression of TGFBI was associated with shorted lung metastasis-free survival, relapse-free survival, disease-free survival, and overall survival of breast cancer. Moreover, the prognosis of TGFBI was validated in 139 Chinese breast cancer patients. Chinese breast cancer patients with higher TGFBI expression had lower overall survival. Correspondingly, breast cancer patients with higher TGFBI methylation had higher overall survival. TGFBI was correlated with the score of the TGFβ signaling pathway and multiple immune-related signaling pathways in breast cancer. The stromal score, immune score, and the infiltrations of immune cells were also correlated with TGFBI expression in breast cancer. CONCLUSIONS TGFβ-induced gene TGFBI was correlated with the prognosis and immune infiltrations of breast cancer.
Collapse
Affiliation(s)
- Haiwei Wang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| | - Xinrui Wang
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
2
|
Zhou S, Zang S, Hu Y, Shen Y, Li H, Chen W, Li P, Shen Y. Transcriptome-scale spatial gene expression in rat arcuate nucleus during puberty. Cell Biosci 2022; 12:8. [PMID: 35063020 PMCID: PMC8781439 DOI: 10.1186/s13578-022-00745-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Background A variety of neurons in hypothalamus undergo a complicated regulation on transcription activity of multiple genes for hypothalamic–pituitary–gonadal axis activation during pubertal development. Identification of puberty-associated cell composition and characterization of the unique transcriptional signatures across different cells are beneficial to isolation of specific neurons and advanced understanding of their functions. Methods The hypothalamus of female Sprague–Dawley rats in postnatal day-25, 35 and 45 were used to define the dynamic spatial atlas of gene expression in the arcuate nucleus (ARC) by 10× Genomics Visium platform. A surface protein expressed selectively by kisspeptin neurons was used to sort neurons by flow cytometric assay in vitro. The transcriptome of the isolated cells was examined using Smart sequencing. Results Four subclusters of neurons with similar gene expression signatures in ARC were identified. Only one subcluster showed the robust expression of Kiss1, which could be isolated by a unique membrane surface biomarker Solute carrier family 18 member A3 (SLC18A3). Moreover, genes in different subclusters presenting three expression modules distinctly functioned in each pubertal stage. Different types of cells representing distinct functions on glial or neuron differentiation, hormone secretion as well as estradiol response precisely affect and coordinate with each other, resulting in a complicated regulatory network for hypothalamic–pituitary–gonadal axis initiation and modulation. Conclusion Our data revealed a comprehensive transcriptomic overview of ARC within different pubertal stages, which could serve as a valuable resource for the study of puberty and sexual development disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00745-2.
Collapse
|
3
|
Kheir V, Cortés-González V, Zenteno JC, Schorderet DF. Mutation update: TGFBI pathogenic and likely pathogenic variants in corneal dystrophies. Hum Mutat 2019; 40:675-693. [PMID: 30830990 DOI: 10.1002/humu.23737] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/26/2019] [Accepted: 02/28/2019] [Indexed: 01/07/2023]
Abstract
Human transforming growth factor β-induced (TGFBI), is a gene responsible for various corneal dystrophies. TGFBI produces a protein called TGFBI, which is involved in cell adhesion and serves as a recognition sequence for integrins. An alteration in cell surface interactions could be the underlying cause for the progressive accumulation of extracellular deposits in different layers of the cornea with the resulting changes of refractive index and transparency. To this date, 69 different pathogenic or likely pathogenic variants in TGFBI have been identified in a heterozygous or homozygous state in various corneal dystrophies, including a novel variant reported here. All disease-associated variants were inherited as autosomal-dominant traits but one; this latter was inherited as an autosomal recessive trait. Most corneal dystrophy-associated variants are located at amino acids Arg124 and Arg555. To keep the list of corneal dystrophy-associated variant current, we generated a locus-specific database for TGFBI (http://databases.lovd.nl/shared/variants/TGFBI) containing all pathogenic and likely pathogenic variants reported so far. Non-disease-associated variants are described in specific databases, like gnomAD and ExAC but are not listed here. This article presents the most recent up-to-date list of disease-associated variants.
Collapse
Affiliation(s)
- Valeria Kheir
- Institute for Research in Ophthalmology, Sion, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Vianney Cortés-González
- Department of Genetics, Hospital "Dr. Luis Sanchez Bulnes", Asociación Para Evitar la Ceguera en México, Mexico City, Mexico
| | - Juan C Zenteno
- Department of Genetics, Institute of Ophthalmology "Conde de Valenciana", Mexico City, Mexico.,Department of Biochemistry, Faculty of Medicine, UNAM, Mexico City, Mexico
| | - Daniel F Schorderet
- Institute for Research in Ophthalmology, Sion, Switzerland.,Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.,Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Lambert M, Jambon S, Depauw S, David-Cordonnier MH. Targeting Transcription Factors for Cancer Treatment. Molecules 2018; 23:molecules23061479. [PMID: 29921764 PMCID: PMC6100431 DOI: 10.3390/molecules23061479] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/11/2018] [Accepted: 06/15/2018] [Indexed: 12/15/2022] Open
Abstract
Transcription factors are involved in a large number of human diseases such as cancers for which they account for about 20% of all oncogenes identified so far. For long time, with the exception of ligand-inducible nuclear receptors, transcription factors were considered as “undruggable” targets. Advances knowledge of these transcription factors, in terms of structure, function (expression, degradation, interaction with co-factors and other proteins) and the dynamics of their mode of binding to DNA has changed this postulate and paved the way for new therapies targeted against transcription factors. Here, we discuss various ways to target transcription factors in cancer models: by modulating their expression or degradation, by blocking protein/protein interactions, by targeting the transcription factor itself to prevent its DNA binding either through a binding pocket or at the DNA-interacting site, some of these inhibitors being currently used or evaluated for cancer treatment. Such different targeting of transcription factors by small molecules is facilitated by modern chemistry developing a wide variety of original molecules designed to specifically abort transcription factor and by an increased knowledge of their pathological implication through the use of new technologies in order to make it possible to improve therapeutic control of transcription factor oncogenic functions.
Collapse
Affiliation(s)
- Mélanie Lambert
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Samy Jambon
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Sabine Depauw
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| | - Marie-Hélène David-Cordonnier
- INSERM UMR-S1172-JPARC (Jean-Pierre Aubert Research Center), Lille University and Hospital Center (CHU-Lille), Institut pour la Recherche sur le Cancer de Lille (IRCL), Place de Verdun, F-59045 Lille, France.
| |
Collapse
|
5
|
TIEG1 deficiency confers enhanced myocardial protection in the infarcted heart by mediating the Pten/Akt signalling pathway. Int J Mol Med 2017; 39:569-578. [PMID: 28204828 PMCID: PMC5360358 DOI: 10.3892/ijmm.2017.2889] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 01/19/2017] [Indexed: 12/15/2022] Open
Abstract
The transforming growth factor (TGF)-β-inducible early gene-1 (TIEG1) plays a crucial role in modulating cell apoptosis and proliferation in a number of diseases, including pancreatic cancer, leukaemia and osteoporosis. However, the functional role of TIEG1 in the heart has not been fully defined. In this study, we first investigated the role of TIEG1 in ischaemic heart disease. For in vitro experiments, cardiomyocytes were isolated from both TIEG1 knockout (KO) and wile-type (WT) mice, and the apoptotic ratios were evaluated after a 48-h ischaemic insult. A cell proliferation assay was performed after 7 days of incubation under normoxic conditions. In addition, the angiogenic capacity of endothelial cells was determined by tube formation assay. For in vivo experiments, a model of myocardial infarction (MI) was established using both TIEG1 KO and WT mice. Echocardiography was performed at 3 and 28 days post-MI, whereas the haemodynamics test was performed 28 days post-MI. Histological analyses of apoptosis, proliferation, angiogenesis and infarct zone assessments were performed using terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling (TUNEL) staining, BrdU immunostaining, α-smooth muscle actin (α-SMA)/CD31 immunostaining and Masson's trichrome staining, respectively. Changes in the expression of related proteins caused by TIEG1 deficiency were confirmed using both reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Our results demonstrated that the absence of TIEG1 prevented cardiomyocytes from undergoing apoptosis and promoted higher proliferation; it stimulated the proliferation of endothelial cells in vitro and in vivo. Improved cardiac function and less scar formation were observed in TIEG1 KO mice, and we also observed the altered expression of phosphatase and tensin homolog (Pten), Akt and Bcl-2/Bax, as well as vascular endothelial growth factor (VEGF). On the whole, our findings indicate that the absence of TIEG1 plays a cardioprotective role in ischaemic heart disease by promoting changes in Pten/Akt signalling.
Collapse
|
6
|
TGF-β regulates TGFBIp expression in corneal fibroblasts via miR-21, miR-181a, and Smad signaling. Biochem Biophys Res Commun 2016; 472:150-5. [DOI: 10.1016/j.bbrc.2016.02.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 02/21/2016] [Indexed: 12/12/2022]
|
7
|
Pathogenesis and treatments of TGFBI corneal dystrophies. Prog Retin Eye Res 2015; 50:67-88. [PMID: 26612778 DOI: 10.1016/j.preteyeres.2015.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 11/22/2022]
Abstract
Transforming growth factor beta-induced (TGFBI) corneal dystrophies are a group of inherited progressive corneal diseases. Accumulation of transforming growth factor beta-induced protein (TGFBIp) is involved in the pathogenesis of TGFBI corneal dystrophies; however, the exact molecular mechanisms are not fully elucidated. In this review article, we summarize the current knowledge of TGFBI corneal dystrophies including clinical manifestations, epidemiology, most common and recently reported associated mutations for each disease, and treatment modalities. We review our current understanding of the molecular mechanisms of granular corneal dystrophy type 2 (GCD2) and studies of other TGFBI corneal dystrophies. In GCD2 corneal fibroblasts, alterations of morphological characteristics of corneal fibroblasts, increased susceptibility to intracellular oxidative stress, dysfunctional and fragmented mitochondria, defective autophagy, and alterations of cell cycle were observed. Other studies of mutated TGFBIp show changes in conformational structure, stability and proteolytic properties in lattice and granular corneal dystrophies. Future research should be directed toward elucidation of the biochemical mechanism of deposit formation, the relationship between the mutated TGFBIp and the other materials in the extracellular matrix, and the development of gene therapy and pharmaceutical agents.
Collapse
|
8
|
Song MJ, Lee JJ, Nam YH, Kim TG, Chung YW, Kim M, Choi YE, Shin MH, Kim HP. Modulation of dendritic cell function by Trichomonas vaginalis-derived secretory products. BMB Rep 2015; 48:103-8. [PMID: 24965578 PMCID: PMC4352611 DOI: 10.5483/bmbrep.2015.48.2.116] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Indexed: 01/22/2023] Open
Abstract
Trichomoniasis caused by the parasitic protozoan Trichomonas vaginalis is the most common sexually transmitted disease in the world. Dendritic cells are antigen presenting cells that initiate immune responses by directing the activation and differentiation of naïve T cells. In this study, we analyzed the effect of Trichomonas vaginalis-derived Secretory Products on the differentiation and function of dendritic cells. Differentiation of bone marrow-derived dendritic cells in the presence of T. vaginalis-derived Secretory Products resulted in inhibition of lipopolysaccharide-induced maturation of dendritic cells, down-regulation of IL-12, and up-regulation of IL-10. The protein components of T. vaginalis-derived Secretory Products were shown to be responsible for altered function of bone marrow-derived dendritic cells. Chromatin immunoprecipitation assay demonstrated that IL-12 expression was regulated at the chromatin level in T. vaginalis-derived Secretory Productstreated dendritic cells. Our results demonstrated that T. vaginalis-derived Secretory Products modulate the maturation and cytokine production of dendritic cells leading to immune tolerance. [BMB Reports 2015; 48(2): 103-108]
Collapse
Affiliation(s)
- Min-Ji Song
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jong-Joo Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Young Hee Nam
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Tae-Gyun Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Youn Wook Chung
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Mikyoung Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Ye-Eun Choi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine; Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Myeong Heon Shin
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
9
|
TIEG1 Inhibits Angiotensin II–induced Cardiomyocyte Hypertrophy by Inhibiting Transcription Factor GATA4. J Cardiovasc Pharmacol 2015; 66:196-203. [DOI: 10.1097/fjc.0000000000000265] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Yang SS, Tan JL, Liu DS, Loreni F, Peng X, Yang QQ, He WF, Yao ZH, Zhang XR, Dal Prà I, Luo GX, Wu J. eIF6 modulates myofibroblast differentiation at TGF-β1 transcription level via H2A.Z occupancy and Sp1 recruitment. J Cell Sci 2015; 128:3977-89. [PMID: 26395397 DOI: 10.1242/jcs.174870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/13/2015] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic initiation factor 6 (eIF6) is a pivotal regulator of ribosomal function, participating in translational control. Previously our data suggest that eIF6 acts as a key binding protein of P311 (a hypertrophic scar-related protein). However, a comprehensive investigation of its functional role and the underlying mechanisms in modulation myofibroblast (a key effector of hypertrophic scar formation) differentiation remains unclear. Here, we identified that eIF6 is a novel regulator of the TGF-β1 expression at transcription level, which has a key role in myofibroblast differentiation. Mechanistically, this effect is associated with eIF6 altering the occupancy of the TGF-β1 promoter by H2A.Z and Sp1. Accordingly, modulation of eIF6 expression in myofibroblasts significantly affects their differentiation via the TGF-β/Smad signaling pathway, which was verified in vivo by the observation that heterozygote eIF6+/− mice exhibited enhanced TGF-β1 production coupled with increased α-SMA+ myofibroblasts after skin injury. Overall, our data reveal that a novel transcriptional regulatory mechanism of eIF6 that acts on facilitating Sp1 recruitment to TGF-β1 promoter via H2A.Z depletion and thus results in increased TGF-β1 transcription, which contributes to myofibroblast differentiation.
Collapse
Affiliation(s)
- Si-si Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jiang-lin Tan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Dai-song Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Fabrizio Loreni
- Department of Biology, University ‘Tor Vergata’, Via Ricerca Scientifica, Roma 00133, Italy
| | - Xu Peng
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Qing-qing Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Wei-feng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Zhi-hui Yao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Xiao-rong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Ilaria Dal Prà
- Histology and Embryology Section, Department of Life and Reproduction Sciences, University of Verona Medical School, Verona, Venetia, Italy
| | - Gao-xing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| |
Collapse
|
11
|
Quantitative epigenetic co-variation in CpG islands and co-regulation of developmental genes. Sci Rep 2014; 3:2576. [PMID: 23999385 PMCID: PMC6505400 DOI: 10.1038/srep02576] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/16/2013] [Indexed: 12/21/2022] Open
Abstract
The genome-wide variation of multiple epigenetic modifications in CpG islands (CGIs) and the interactions between them are of great interest. Here, we optimized an entropy-based strategy to quantify variation of epigenetic modifications and explored their interaction across mouse embryonic stem cells, neural precursor cells and brain. Our results showed that four epigenetic modifications (DNA methylation, H3K4me2, H3K4me3 and H3K27me3) of CGIs in the mouse genome undergo combinatorial variation during neuron differentiation. DNA methylation variation was positively correlated with H3K27me3 variation, and negatively correlated with H3K4me2/3 variation. We identified 5,194 CGIs differentially modified by epigenetic modifications (DEM-CGIs). Among them, the differentially DNA methylated CGIs overlapped significantly with the CGIs differentially modified by H3K27me3. Moreover, DEM-CGIs may contribute to co-regulation of related developmental genes including core transcription factors. Our entropy-based strategy provides an effective way of investigating dynamic cross-talk among epigenetic modifications in various biological processes at the macro scale.
Collapse
|
12
|
Yang WJ, Song MJ, Park EY, Lee JJ, Park JH, Park K, Park JH, Kim HP. Transcription factors Sp1 and Sp3 regulate expression of human ABCG2 gene and chemoresistance phenotype. Mol Cells 2013; 36:368-75. [PMID: 23996530 PMCID: PMC3887993 DOI: 10.1007/s10059-013-0191-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 12/21/2022] Open
Abstract
ABCG2 is a member of the ATP binding cassette (ABC) transmembrane proteins that plays an important role in stem cell biology and drug resistance of cancer cells. In this study, we investigated how expression of human ABCG2 gene is regulated in lung cancer A549 cells. Binding of Sp1 and Sp3 transcription factors to the ABCG2 promoter in vitro and in vivo was elucidated by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. The ABCG2 promoter activity was impaired when Sp1 sites were mutated but was enhanced by overexpression of Sp1 or Sp3 proteins. Knockdown of Sp1 or Sp3 expression by short interfering RNA significantly decreased the expression of ABCG2 mRNA and protein, resulting in attenuated formation of the side population in A549 cells. In addition, Sp1 inhibition in vivo by mithramycin A suppressed the percentage of the side population fraction and sphere forming activities of A549 cells. Moreover, inhibiting Sp1- or Sp3-dependent ABCG2 expression caused chemosensitization to the anticancer drug cisplatin. Collectively, our results demonstrate that Sp1 and Sp3 transcription factors are the primary determinants for activating basal transcription of the ABCG2 gene and play an important role in maintaining the side population phenotype of lung cancer cells.
Collapse
Affiliation(s)
- Wook-Jin Yang
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Min-Ji Song
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Eun Young Park
- Department of Biological Science, Sookmyung Women's University, Seoul 140-742, Korea
| | - Jong-Joo Lee
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Joo-Hong Park
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Keunhee Park
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| | - Jong Hoon Park
- Department of Biological Science, Sookmyung Women's University, Seoul 140-742, Korea
| | - Hyoung-Pyo Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul 120-752, Korea
| |
Collapse
|
13
|
Xi S, Xu H, Shan J, Tao Y, Hong JA, Inchauste S, Zhang M, Kunst TF, Mercedes L, Schrump DS. Cigarette smoke mediates epigenetic repression of miR-487b during pulmonary carcinogenesis. J Clin Invest 2013; 123:1241-61. [PMID: 23426183 PMCID: PMC3582115 DOI: 10.1172/jci61271] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/03/2013] [Indexed: 02/03/2023] Open
Abstract
MicroRNAs are critical mediators of stem cell pluripotency, differentiation, and malignancy. Limited information exists regarding microRNA alterations that facilitate initiation and progression of human lung cancers. In this study, array techniques were used to evaluate microRNA expression in normal human respiratory epithelia and lung cancer cells cultured in the presence or absence of cigarette smoke condensate (CSC). Under relevant exposure conditions, CSC significantly repressed miR-487b. Subsequent experiments demonstrated that miR-487b directly targeted SUZ12, BMI1, WNT5A, MYC, and KRAS. Repression of miR-487b correlated with overexpression of these targets in primary lung cancers and coincided with DNA methylation, de novo nucleosome occupancy, and decreased H2AZ and TCF1 levels within the miR-487b genomic locus. Deoxy-azacytidine derepressed miR-487b and attenuated CSC-mediated silencing of miR-487b. Constitutive expression of miR-487b abrogated Wnt signaling, inhibited in vitro proliferation and invasion of lung cancer cells mediated by CSC or overexpression of miR-487b targets, and decreased growth and metastatic potential of lung cancer cells in vivo. Collectively, these findings indicate that miR-487b is a tumor suppressor microRNA silenced by epigenetic mechanisms during tobacco-induced pulmonary carcinogenesis and suggest that DNA demethylating agents may be useful for activating miR-487b for lung cancer therapy.
Collapse
Affiliation(s)
- Sichuan Xi
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, USA.
Advanced Biomedical Computing Center, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, USA
| | - Hong Xu
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, USA.
Advanced Biomedical Computing Center, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, USA
| | - Jigui Shan
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, USA.
Advanced Biomedical Computing Center, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, USA
| | - Yongguang Tao
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, USA.
Advanced Biomedical Computing Center, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, USA
| | - Julie A. Hong
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, USA.
Advanced Biomedical Computing Center, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, USA
| | - Suzanne Inchauste
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, USA.
Advanced Biomedical Computing Center, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, USA
| | - Mary Zhang
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, USA.
Advanced Biomedical Computing Center, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, USA
| | - Tricia F. Kunst
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, USA.
Advanced Biomedical Computing Center, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, USA
| | - Leandro Mercedes
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, USA.
Advanced Biomedical Computing Center, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, USA
| | - David S. Schrump
- Thoracic Oncology Section, Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.
Laboratory of Cancer Prevention, National Cancer Institute, Frederick, Maryland, USA.
Advanced Biomedical Computing Center, SAIC-Frederick, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
14
|
Mo WJ, Li J, Lu HP, Feng ZB. Expression of Sp3 and VEGF in hepatocellular carcinoma and their correlation. Shijie Huaren Xiaohua Zazhi 2012; 20:3101-3106. [DOI: 10.11569/wcjd.v20.i32.3101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of transcription factor Sp3 and vascular endothelial growth factor (VEGF) in hepatocellular carcinoma (HCC) and their correlation.
METHODS: Immunohistochemical method was used to detect the expression of Sp3 and VEGF in 111 cases of HCC and tumor-adjacent liver tissue. The correlations between Sp3 and VEGF expression, and between these two indices and clinicopathologic characteristics of HCC were analyzed.
RESULTS: The positive rate of moderate or strong Sp3 expression in HCC was significantly higher than that in tumor-adjacent liver tissue (82.9% vs 29.7%, P = 0.000). There is a positive correlation between Sp3 and VEGF expression in HCC (r = 0.352, P = 0.000). Both Sp3 and VEGF expression was related with tumor differentiation. In addition, expression of Sp3 was related with tumor size, and expression of VEGF was related with TNM stage. The prognosis of cases with high Sp3 expression was poorer than those with low Sp3 expression (P = 0.041).
CONCLUSION: Sp3 is expected to be an index for diagnosis of HCC. Combined detection of Sp3 and VEGF expression may be used to evaluate the malignant degree of HCC.
Collapse
|