1
|
Chung JS, Wang Y, Henderson J, Singhal U, Qiao Y, Zaslavsky AB, Hovelson DH, Spratt DE, Reichert Z, Palapattu GS, Taichman RS, Tomlins SA, Morgan TM. Circulating Tumor Cell-Based Molecular Classifier for Predicting Resistance to Abiraterone and Enzalutamide in Metastatic Castration-Resistant Prostate Cancer. Neoplasia 2019; 21:802-809. [PMID: 31276932 PMCID: PMC6612010 DOI: 10.1016/j.neo.2019.06.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 01/04/2023]
Abstract
While circulating tumor cell (CTC)-based detection of AR-V7 has been demonstrated to predict patient response to second-generation androgen receptor therapies, the rarity of AR-V7 expression in metastatic castrate-resistant prostate cancer (mCRPC) suggests that other drivers of resistance exist. We sought to use a multiplex gene expression platform to interrogate CTCs and identify potential markers of resistance to abiraterone and enzalutamide. 37 patients with mCRPC initiating treatment with enzalutamide (n = 16) or abiraterone (n = 21) were prospectively enrolled for CTC collection and gene expression analysis using a panel of 89 prostate cancer-related genes. Gene expression from CTCs was correlated with PSA response and radioclinical progression-free survival (PFS) using Kaplan-Meier and Cox regression analyses. Twenty patients (54%) had detectable CTCs. At a median follow-up of 11.3 months, increased expression of the following genes was significantly associated with shorter PSA PFS and radioclinical PFS: AR, AR-V7, PSA, PSCA, TSPAN8, NKX3.1, and WNT5B. Additionally, high SPINK1 expression was associated with increased PFS. A predictive model including all eight genes gave an area under the curve (AUC) of 0.84 for PSA PFS and 0.86 for radioclinical PFS. In comparison, the AR-V7 only model resulted in AUC values of 0.65 and 0.64.These data demonstrate that clinically relevant information regarding gene expression can be obtained from whole blood using a CTC-based approach. Multigene classifiers in this setting may allow for the development of noninvasive predictive biomarkers to guide clinical management.
Collapse
Key Words
- arsi, androgen receptor signaling inhibitors
- auc, area under the curve
- ctc, circulating tumor cell
- mcrpc, metastatic castrate-resistant prostate cancer
- epcam, epithelial cell adhesion molecule
- emt, epithelial mesenchymal transition
- hr, hazard ratio
- iqr, interquartile range
- irb, institutional review board
- lhrh, luteinizing hormone-releasing hormone
- pfs, progression free survival
Collapse
Affiliation(s)
- Jae-Seung Chung
- Department of Urology, University of Michigan, Ann Arbor, MI, USA; Department of Urology, Inje University, Haeundae Paik Hospital, Busan, Republic of Korea
| | - Yugang Wang
- Department of Urology, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - James Henderson
- Department of Urology, University of Michigan, Ann Arbor, MI, USA; Consulting for Computing, Statistics, and Analytics Research (CSCAR), University of Michigan, Ann Arbor, MI, USA
| | - Udit Singhal
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Yuanyuan Qiao
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alexander B Zaslavsky
- Department of Urology, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Daniel H Hovelson
- Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, Michigan Medicine, Ann Arbor, MI, USA
| | - Daniel E Spratt
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Department of Radiation Oncology, Michigan Medicine, Ann Arbor, MI, USA
| | - Zachery Reichert
- Department of Hematology/Oncology, University of Michigan, Ann Arbor,MI, USA
| | - Ganesh S Palapattu
- Department of Urology, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Russell S Taichman
- Department of Periodontics and Oral Medicine, University of Michigan, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Scott A Tomlins
- Department of Urology, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA; Michigan Center for Translational Pathology, Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, MI, USA; University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Feltes BC. Architects meets Repairers: The interplay between homeobox genes and DNA repair. DNA Repair (Amst) 2018; 73:34-48. [PMID: 30448208 DOI: 10.1016/j.dnarep.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Homeobox genes are widely considered the major protagonists of embryonic development and tissue formation. For the past decades, it was established that the deregulation of these genes is intimately related to developmental abnormalities and a broad range of diseases in adults. Since the proper regulation and expression of homeobox genes are necessary for a successful developmental program and tissue function, their relation to DNA repair mechanisms become a necessary discussion. However, important as it is, studies focused on the interplay between homeobox genes and DNA repair are scarce, and there is no critical discussion on the subject. Hence, in this work, I aim to provide the first review of the current knowledge of the interplay between homeobox genes and DNA repair mechanisms, and offer future perspectives on this, yet, young ground for new researches. Critical discussion is conducted, together with a careful assessment of each reviewed topic.
Collapse
Affiliation(s)
- Bruno César Feltes
- Institute of Informatics, Department of Theoretical Informatics, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
3
|
Physiological functions of programmed DNA breaks in signal-induced transcription. Nat Rev Mol Cell Biol 2017; 18:471-476. [PMID: 28537575 DOI: 10.1038/nrm.2017.43] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The idea that signal-dependent transcription might involve the generation of transient DNA nicks or even breaks in the regulatory regions of genes, accompanied by activation of DNA damage repair pathways, would seem to be counterintuitive, as DNA damage is usually considered harmful to cellular integrity. However, recent studies have generated a substantial body of evidence that now argues that programmed DNA single- or double-strand breaks can, at least in specific cases, have a role in transcription regulation. Here, we discuss the emerging functions of DNA breaks in the relief of DNA torsional stress and in promoter and enhancer activation.
Collapse
|
4
|
Padmanabhan A, Rao V, De Marzo AM, Bieberich CJ. Regulating NKX3.1 stability and function: Post-translational modifications and structural determinants. Prostate 2016; 76:523-33. [PMID: 26841725 DOI: 10.1002/pros.23144] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/15/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND The androgen-regulated homeodomain transcription factor NKX3.1 plays roles in early prostate development and functions as a prostate-specific tumor suppressor. Decreased expression of NKX3.1 protein is common in primary prostate cancer. Discordance between NKX3.1 mRNA and protein levels during prostate carcinogenesis suggested a key role for post-transcriptional modifications in regulating NKX3.1 protein levels in prostate epithelial cells. Subsequent studies revealed NKX3.1 to be modified post-translationally at multiple sites. METHODS We reviewed published literature to identify and summarize post-translational modifications and structural elements critical in regulating NKX3.1 stability and levels in prostate epithelial cells. RESULTS NKX3.1 is modified post-translationally at multiple sites by different protein kinases. These modifications together with several structural determinants were identified to play an important role in NKX3.1 stability and biology. CONCLUSIONS In this review, we provide a comprehensive overview of the known post-translational modifications and structural features that impact NKX3.1. Defining factors that regulate NKX3.1 in prostate epithelial cells will extend our understanding of molecular changes that may contribute to prostate cancer initiation and progression.
Collapse
Affiliation(s)
- Achuth Padmanabhan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Varsha Rao
- Department of Genetics, Stanford University, Palo Alto, California
| | - Angelo M De Marzo
- Departments of Pathology, Oncology and Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins and the Brady Urological Research Institute at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles J Bieberich
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| |
Collapse
|
5
|
Debelec-Butuner B, Ertunc N, Korkmaz KS. Inflammation contributes to NKX3.1 loss and augments DNA damage but does not alter the DNA damage response via increased SIRT1 expression. JOURNAL OF INFLAMMATION-LONDON 2015; 12:12. [PMID: 25705129 PMCID: PMC4336697 DOI: 10.1186/s12950-015-0057-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 01/29/2015] [Indexed: 01/01/2023]
Abstract
The oxidative stress response is a cellular defense mechanism that protects cells from oxidative damage and cancer development. The exact molecular mechanism by which reactive oxygen species (ROS) contribute to DNA damage and increase genome instability in prostate cancer merits further investigation. Here, we aimed to determine the effects of NKX3.1 loss on antioxidant defense in response to acute and chronic inflammation in an in vitro model. Oxidative stress-induced DNA damage resulted in increased H2AX(S139) phosphorylation (a hallmark of DNA damage), along with the degradation of the androgen receptor (AR), p53 and NKX3.1, upon treatment with conditioned medium (CM) obtained from activated macrophages or H2O2. Furthermore, the expression and stability of SIRT1 were increased by CM treatment but not by H2O2 treatment, although the level of ATM(S1981) phosphorylation was not changed compared with controls. Moreover, the deregulated antioxidant response resulted in upregulation of the pro-oxidant QSCN6 and the antioxidant GPX2 and downregulation of the antioxidant GPX3 after CM treatment. Consistently, the intracellular ROS level increased after chronic treatment, leading to a dose-dependent increase in the ability of LNCaP cells to tolerate oxidative damage. These data suggest that the inflammatory microenvironment is a major factor contributing to DNA damage and the deregulation of the oxidative stress response, which may be the underlying cause of the increased genetic heterogeneity during prostate tumor progression.
Collapse
Affiliation(s)
- Bilge Debelec-Butuner
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey ; Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Ege University, Bornova, Izmir, 35100 Turkey
| | - Nursah Ertunc
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Cancer Biology Laboratory, Faculty of Engineering, Ege University, Bornova, 35100 Izmir, Turkey
| |
Collapse
|
6
|
TNFα-mediated loss of β-catenin/E-cadherin association and subsequent increase in cell migration is partially restored by NKX3.1 expression in prostate cells. PLoS One 2014; 9:e109868. [PMID: 25360740 PMCID: PMC4215977 DOI: 10.1371/journal.pone.0109868] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 09/03/2014] [Indexed: 12/29/2022] Open
Abstract
Inflammation-induced carcinogenesis is associated with increased proliferation and migration/invasion of various types of tumor cells. In this study, altered β-catenin signaling upon TNFα exposure, and relation to loss of function of the tumor suppressor NKX3.1 was examined in prostate cancer cells. We used an in vitro prostate inflammation model to demonstrate altered sub-cellular localization of β-catenin following increased phosphorylation of Akt(S473) and GSK3β(S9). Consistently, we observed that subsequent increase in β-catenin transactivation enhanced c-myc, cyclin D1 and MMP2 expressions. Consequently, it was also observed that the β-catenin-E-cadherin association at the plasma membrane was disrupted during acute cytokine exposure. Additionally, it was demonstrated that disrupting cell-cell interactions led to increased migration of LNCaP cells in real-time migration assay. Nevertheless, ectopic expression of NKX3.1, which is degraded upon proinflammatory cytokine exposure in inflammation, was found to induce the degradation of β-catenin by inhibiting Akt(S473) phosphorylation, therefore, partially rescued the disrupted β-catenin-E-cadherin interaction as well as the cell migration in LNCaP cells upon cytokine exposure. As, the disrupted localization of β-catenin at the cell membrane as well as increased Akt(S308) priming phosphorylation was observed in human prostate tissues with prostatic inflammatory atrophy (PIA), high-grade prostatic intraepithelial neoplasia (H-PIN) and carcinoma lesions correlated with loss of NKX3.1 expression. Thus, the data indicate that the β-catenin signaling; consequently sub-cellular localization is deregulated in inflammation, associates with prostatic atrophy and PIN pathology.
Collapse
|
7
|
Erbaykent-Tepedelen B, Karamil S, Gonen-Korkmaz C, Korkmaz KS. DNA damage response (DDR) via NKX3.1 expression in prostate cells. J Steroid Biochem Mol Biol 2014; 141:26-36. [PMID: 24434284 DOI: 10.1016/j.jsbmb.2014.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 01/19/2023]
Abstract
It has been reported that NKX3.1 an androgen-regulated homeobox gene restricted to prostate and testicular tissues, encodes a homeobox protein, which transcriptionally regulates oxidative damage responses and enhances topoisomerase I re-ligation by a direct interaction with the ATM protein in prostate cells. In this study, we aimed to investigate the role of NKX3.1 in DNA double-strand break (DSB) repair. We demonstrate that the DNA damage induced by CPT-11 (irinotecan, a topo I inhibitor), doxorubicin (a topo II inhibitor), and H2O2 (a mediator of oxidative damage), but not by etoposide (another topo II inhibitor), is negatively influenced by NKX3.1 expression. We also examined γH2AX((S139)) foci formation and observed that the overexpression of NKX3.1 resulted a remarkable decrease in the formation of γH2AX((S139)) foci. Intriguingly, we observed in NKX3.1 silencing studies that the depletion of NKX3.1 correlated with a significant decrease in the levels of p-ATM((S1981)) and γH2AX((S139)). The data imply that the DNA damage response (DDR) can be altered, perhaps via a decrease in the topoisomerase I re-ligation function; this is consistent with the physical association of NKX3.1 with DDR mediators upon treatment of both PC-3 and LNCaP cells with CPT-11. Furthermore, the depletion of NKX3.1 resulted in a G1/S progression via the facilitation of an increase in E2F stabilization concurrent with the suppressed DDR. Thus, the topoisomerase I inhibitor-mediated DNA damage enhanced the physical association of NKX3.1 with γH2AX((S139)) on the chromatin in LNCaP cells, whereas NKX3.1 in the soluble fraction was associated with p-ATM((S1981)) and RAD50 in these cells. Overall, the data suggest that androgens and NKX3.1 expression regulate the progression of the cell cycle and concurrently activate the DDR. Therefore, androgen withdrawal may augment the development of an error-prone phenotype and, subsequently, the loss of DNA damage control during prostate cancer progression.
Collapse
Affiliation(s)
- Burcu Erbaykent-Tepedelen
- Ege University, Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Bornova, Izmir, Turkey.
| | - Selda Karamil
- Ege University, Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Bornova, Izmir, Turkey.
| | - Ceren Gonen-Korkmaz
- Ege University, Faculty of Pharmacy, Department of Pharmacology, Bornova, Izmir, Turkey.
| | - Kemal S Korkmaz
- Ege University, Faculty of Engineering, Department of Bioengineering, Cancer Biology Laboratory, Bornova, Izmir, Turkey.
| |
Collapse
|
8
|
Rinckleb AE, Surowy HM, Luedeke M, Varga D, Schrader M, Hoegel J, Vogel W, Maier C. The prostate cancer risk locus at 10q11 is associated with DNA repair capacity. DNA Repair (Amst) 2012; 11:693-701. [PMID: 22677538 DOI: 10.1016/j.dnarep.2012.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/16/2012] [Accepted: 05/14/2012] [Indexed: 12/28/2022]
Abstract
Genome-wide association studies (GWAS) have identified several single nucleotide polymorphisms (SNPs) that mildly predict prostate cancer risk. These SNPs are local tagging markers for causal gene alterations. Consideration of candidate genes in the tagged regions would be facilitated by additional information on the particular pathomechanisms which contribute to the observed risk increase. In this study we test for an association of prostate cancer tagging SNPs with alterations in DNA repair capacity, a phenotype that is frequently involved in cancer predisposition. DNA repair capacity was assessed on blood lymphocytes from 128 healthy probands after ionizing irradiation. We used the micronucleus (MN) assay to determine the cellular DNA double-strand break repair capacity and flow cytometry to measure damage induced mitotic delay (MD). Probands were genotyped for a panel of 14 SNPs, each representing an independent prostate cancer risk locus previously identified by GWAS. Associations between germline variants and DNA repair capacity were found for the SNPs rs1512268 (8p21), rs6983267 (8q24) and rs10993994 (10q11). The most significant finding was an association of homozygous rs10993994 T-allele carriers with a lower MN frequency (p=0.0003) and also a decreased MD index (p=0.0353). Cells with prostate cancer risk alleles at rs10993994 seem to cope more efficiently with DNA double strand breaks (less MN) in a shorter time (decreased MD index). This intriguing finding imposes concern about the accuracy of repair, with respect to the cancer risk that is mediated by T genotypes. To date, MSMB (microseminoprotein β) is favored as the causal gene at the 10q11 risk locus, since it was the first candidate gene known to be expressionally altered by rs10993994. Based on the present observation, candidate genes from the contexts of DNA repair and apoptosis may be more promising targets for expression studies with respect to the rs10993994 genotype.
Collapse
Affiliation(s)
- Antje E Rinckleb
- Department of Urology, University Hospital Ulm, 89075 Ulm, Germany
| | | | | | | | | | | | | | | |
Collapse
|