1
|
Guo P, Liu X, Zhang P, He Z, Li Z, Alini M, Richards RG, Grad S, Stoddart MJ, Zhou G, Zou X, Chan D, Tian W, Chen D, Gao M, Zhou Z, Liu S. A single-cell transcriptome of mesenchymal stromal cells to fabricate bioactive hydroxyapatite materials for bone regeneration. Bioact Mater 2021; 9:281-298. [PMID: 34820571 PMCID: PMC8586438 DOI: 10.1016/j.bioactmat.2021.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023] Open
Abstract
The osteogenic microenvironment of bone-repairing materials plays a key role in accelerating bone regeneration but remains incompletely defined, which significantly limits the application of such bioactive materials. Here, the transcriptional landscapes of different osteogenic microenvironments, including three-dimensional (3D) hydroxyapatite (HA) scaffolds and osteogenic medium (OM), for mesenchymal stromal cells (MSCs) in vitro were mapped at single-cell resolution. Our findings suggested that an osteogenic process reminiscent of endochondral ossification occurred in HA scaffolds through sequential activation of osteogenic-related signaling pathways, along with inflammation and angiogenesis, but inhibition of adipogenesis and fibrosis. Moreover, we revealed the mechanism during OM-mediated osteogenesis involves the ZBTB16 and WNT signaling pathways. Heterogeneity of MSCs was also demonstrated. In vitro ossification of LRRC75A+ MSCs was shown to have better utilization of WNT-related ossification process, and PCDH10+ MSCs with superiority in hydroxyapatite-related osteogenic process. These findings provided further understanding of the cellular activity modulated by OM conditions and HA scaffolds, providing new insights for the improvement of osteogenic biomaterials. This atlas provides a blueprint for research on MSC heterogeneity and the osteogenic microenvironment of HA scaffolds and a database reference for the application of bioactive materials for bone regeneration.
Collapse
Affiliation(s)
- Peng Guo
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Penghui Zhang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongyuan He
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen Li
- AO Research Institute Davos, Davos, Switzerland
| | - Mauro Alini
- AO Research Institute Davos, Davos, Switzerland
| | | | | | | | - Guangqian Zhou
- Shenzhen Key Laboratory of Anti-aging and Regenerative Medicine, Department of Medical Cell Biology and Genetics, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Danny Chan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing JiShuiTan Hospital, Beijing, China
- Corresponding author.
| | - Manman Gao
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Sport Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, China
- Corresponding author. Department of Sport Medicine, Inst Translat Med, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China.
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Corresponding author. Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| | - Shaoyu Liu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Wu W, Hu Z, Wang F, Gu H, Jiang X, Xu J, Zhan X, Zheng D, Zhang Z. Mxi1-0 regulates the growth of human umbilical vein endothelial cells through extracellular signal-regulated kinase 1/2 (ERK1/2) and interleukin-8 (IL-8)-dependent pathways. PLoS One 2017; 12:e0178831. [PMID: 28575053 PMCID: PMC5456372 DOI: 10.1371/journal.pone.0178831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/19/2017] [Indexed: 01/28/2023] Open
Abstract
Mxi1 plays an important role in the regulation of cell proliferation. Mxi1-0, a Mxi1 isoform, has a different N-terminal amino acid sequence, intracellular location and expression profile from Mxi1. However, the precise role of Mxi1-0 in cell proliferation and the molecular mechanism underlying its function remain poorly understood. Here, we showed that Mxi1-0 suppression decreased the proliferation of human umbilical vein endothelial cells (HUVECs) along with cell accumulation in the G2/M phase. Mxi1-0 suppression also significantly decreased the expression and secretion of interleukin (IL-8). Neutralizing IL-8 in conditioned medium (CM) from Mxi1-0-overexpressed HUVECs significantly eliminated CM-induced proliferation of HUVECs. In addition, Mxi1-0 suppression significantly decreased the activity of MAP kinase ERK1/2. Treatment of HUVECs with U0126, an ERK1/2 signaling inhibitor, attenuated autocrine production of IL-8 induced by Mxi1-0 overexpression. On the other hand, Mxi1-0 overexpression-induced IL-8 increased the level of phosphorylated ERK1/2 in HUVECs, and such increasing was diminished in cells incubated with CM, which neutralized with anti-IL-8 antibody. Taken together, our results suggest that Mxi1-0 regulates the growth of HUVECs via the IL-8 and ERK1/2 pathways, which apparently reciprocally activate each other.
Collapse
Affiliation(s)
- Weiling Wu
- Children’s Health Center, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Zhenzhen Hu
- Clinical Molecular Diagnostic Laboratory, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Feng Wang
- Children’s Health Center, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Hao Gu
- The Second Clinical School, Nanjing Medical University, Nanjing, Jiangsu, P. R.China
| | - Xiuqin Jiang
- Clinical Molecular Diagnostic Laboratory, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Jinjin Xu
- Clinical Molecular Diagnostic Laboratory, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
| | - Xi Zhan
- Center for Vascular and inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Datong Zheng
- Children’s Health Center, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- Clinical Molecular Diagnostic Laboratory, The Second Hospital, Nanjing Medical University, Nanjing, Jiangsu, P. R. China
- The Second Clinical School, Nanjing Medical University, Nanjing, Jiangsu, P. R.China
- * E-mail:
| | - Zhengdong Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, P. R.China
| |
Collapse
|
3
|
Ko JY, Yoo KH, Song SA, Kim DY, Kong HK, Ahn C, Lee HW, Kang DH, Oh GT, Park JH. Inactivation of max-interacting protein 1 induces renal cilia disassembly through reduction in levels of intraflagellar transport 20 in polycystic kidney. J Biol Chem 2013; 288:6488-97. [PMID: 23316056 DOI: 10.1074/jbc.m112.413302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cilia in ciliated cells consist of protruding structures that sense mechanical and chemical signals from the extracellular environment. Cilia are assembled with variety molecules via a process known as intraflagellar transport (IFT). What controls the length of cilia in ciliated cells is critical to understand ciliary disease such as autosomal dominant polycystic kidney disease, which involves abnormally short cilia. But this control mechanism is not well understood. Previously, multiple tubular cysts have been observed in the kidneys of max-interacting protein 1 (Mxi1)-deficient mice aged 6 months or more. Here, we clarified the relationship between Mxi1 inactivation and cilia disassembly. Cilia phenotypes were observed in kidneys of Mxi1-deficient mice using scanning electron microscopy to elucidate the effect of Mxi1 on renal cilia phenotype, and cilia disassembly was observed in Mxi1-deficient kidney. In addition, genes related to cilia were validated in vitro and in vivo using quantitative PCR, and Ift20 was selected as a candidate gene in this study. The length of cilium decreased, and p-ERK level induced by a cilia defect increased in kidneys of Mxi1-deficient mice. Ciliogenesis of Mxi1-deficient mouse embryonic fibroblasts (MEFs) decreased, and this abnormality was restored by Mxi1 transfection in Mxi1-deficient MEFs. We confirmed that ciliogenesis and Ift20 expression were regulated by Mxi1 in vitro. We also determined that Mxi1 regulates Ift20 promoter activity via Ets-1 binding to the Ift20 promoter. These results indicate that inactivating Mxi1 induces ciliary defects in polycystic kidney.
Collapse
Affiliation(s)
- Je Yeong Ko
- From the Department of Biological Science, Sookmyung Women's University, Seoul 140-742, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Xu W, Liu M, Peng X, Zhou P, Zhou J, Xu K, Xu H, Jiang S. miR-24-3p and miR-27a-3p promote cell proliferation in glioma cells via cooperative regulation of MXI1. Int J Oncol 2012; 42:757-66. [PMID: 23254855 DOI: 10.3892/ijo.2012.1742] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/29/2012] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non‑coding RNAs which regulate gene expression at the post-transcriptional level. Abnormal expression of miRNAs occurs frequently in tumors. Although the two miRNAs miR‑24‑3p and miR‑27a‑3p come from two duplicated gene clusters of miR‑23a~27a~24‑2 and miR‑23b~27b~24‑1 which are found to be deregulated in a variety of cancers, the role of cooperation of the two clusters and the function of the two miRNAs in tumors have not been completely characterized. Here, we show that overexpression of miR‑24‑3p and miR‑27a‑3p could promote cell proliferation using the MTT assay. By integrated bioinformatic analysis and experimental confirmation, we identified MXI1, which has been found to act as a tumor suppressor gene by affecting c‑Myc, as a direct target of miR‑24‑3p and miR‑27a‑3p. While targeting the MXI1 3' untranslated region by miR‑24‑3p or miR‑27a‑3p, luciferase activity was attenuated. The two miRNAs promote glioma cell proliferation via targeting MXI1 and the experiment was confirmed by the rescue experiments. Furthermore, our results show that two clusters of miR-23a~27a~24-2 and miR‑23b~27b~24‑1 regulate MXI1 synergistically. These findings reveal, for the first time, the novel functions of cooperation of miR‑24‑3p and miR‑27a‑3p from two clusters in promoting cell proliferation through MXI1. Additionally, we observed that miR‑27a‑3p is upregulated in glioma tissues.
Collapse
Affiliation(s)
- Weiyi Xu
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|