1
|
Hawker B, Dhakal M, Connor B, McCaughey-Chapman A. Modeling demyelination and endogenous remyelination in spinal cord ex vivo rat organotypic slice cultures. Front Cell Neurosci 2024; 18:1345042. [PMID: 38988661 PMCID: PMC11233765 DOI: 10.3389/fncel.2024.1345042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/17/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Demyelination of the spinal cord is a prominent feature of multiple sclerosis (MS) and spinal cord injuries (SCI), where impaired neuronal communication between the brain and periphery has devastating consequences on neurological function. Demyelination precedes remyelination, an endogenous process in which oligodendrocyte precursor cells (OPCs) differentiate into mature, myelinating oligodendrocytes with the ability to restore the myelin sheath and reinstate functional nerve signaling. However, in MS or SCI, demyelination is more severe, persistent, and inhibitory to OPC-mediated remyelination, leading to a permanent loss of neuronal function. Currently, there are no effective treatments for demyelination, and existing pre-clinical models typically focus on brain tissue with little characterization of demyelination within the spinal cord. Organotypic slice cultures are a useful tool to study neurological disease, providing a more complex 3-dimensional system than standard 2-dimensional in vitro cell cultures. Methods Building on our previously developed rat brain slice culture protocol, we have extended our findings to develop a rat longitudinal spinal cord ex vivo model of demyelination. Results We generated rat longitudinal spinal cord slice cultures that remain viable for up to 6 weeks in culture and retain key anatomical features of the spinal cord's cytoarchitecture. We show that treating longitudinal spinal cord slices with lysolecithin (LPC) induced robust demyelination with some endogenous remyelination, which was not seen following exposure to lipopolysaccharide (LPS). Discussion Our ex vivo organotypic spinal cord slice culture system provides a platform to model demyelination and endogenous remyelination long-term, mimicking that observed in LPC-induced rodent models of demyelination. This platform is suitable for the development and testing of novel therapeutic strategies with ease of manipulation prior to in vivo experimentation.
Collapse
Affiliation(s)
| | | | | | - Amy McCaughey-Chapman
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Muttathukunnel P, Wälti M, Aboouf MA, Köster-Hegmann C, Haenggi T, Gassmann M, Pannzanelli P, Fritschy JM, Schneider Gasser EM. Erythropoietin regulates developmental myelination in the brain stimulating postnatal oligodendrocyte maturation. Sci Rep 2023; 13:19522. [PMID: 37945644 PMCID: PMC10636124 DOI: 10.1038/s41598-023-46783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Myelination is a process tightly regulated by a variety of neurotrophic factors. Here, we show-by analyzing two transgenic mouse lines, one overexpressing EPO selectively in the brain Tg21(PDGFB-rhEPO) and another with targeted removal of EPO receptors (EPORs) from oligodendrocyte progenitor cells (OPC)s (Sox10-cre;EpoRfx/fx mice)-a key function for EPO in regulating developmental brain myelination. Overexpression of EPO resulted in faster postnatal brain growth and myelination, an increased number of myelinating oligodendrocytes, faster axonal myelin ensheathment, and improved motor coordination. Conversely, targeted ablation of EPORs from OPCs reduced the number of mature oligodendrocytes and impaired motor coordination during the second postnatal week. Furthermore, we found that EPORs are transiently expressed in the subventricular zone (SVZ) during the second postnatal week and EPO increases the postnatal expression of essential oligodendrocyte pro-differentiation and pro-maturation (Nkx6.2 and Myrf) transcripts, and the Nfatc2/calcineurin pathway. In contrast, ablation of EPORs from OPCs inactivated the Erk1/2 pathway and reduced the postnatal expression of the transcripts. Our results reveal developmental time windows in which EPO therapies could be highly effective for stimulating oligodendrocyte maturation and myelination.
Collapse
Affiliation(s)
- Paola Muttathukunnel
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland
| | - Michael Wälti
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - Mostafa A Aboouf
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Christina Köster-Hegmann
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057, Zurich, Switzerland
| | - Tatjana Haenggi
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
| | - Max Gassmann
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057, Zurich, Switzerland
| | - Patrizia Pannzanelli
- Rita Levi Montalcini Center for Brain Repair, University of Turin, 10126, Turin, Italy
| | - Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland
- Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland
| | - Edith M Schneider Gasser
- Institute of Pharmacology and Toxicology, University of Zürich, 8057, Zürich, Switzerland.
- Center for Neuroscience Zurich (ZNZ), Zurich, Switzerland.
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zürich, 8057, Zurich, Switzerland.
| |
Collapse
|
3
|
Shumilov K, Xiao S, Ni A, Celorrio M, Friess SH. Recombinant Erythropoietin Induces Oligodendrocyte Progenitor Cell Proliferation After Traumatic Brain Injury and Delayed Hypoxemia. Neurotherapeutics 2023; 20:1859-1874. [PMID: 37768487 PMCID: PMC10684442 DOI: 10.1007/s13311-023-01443-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Traumatic brain injury (TBI) can result in axonal loss and demyelination, leading to persistent damage in the white matter. Demyelinated axons are vulnerable to pathologies related to an abnormal myelin structure that expose neurons to further damage. Oligodendrocyte progenitor cells (OPCs) mediate remyelination after recruitment to the injury site. Often this process is inefficient due to inadequate OPC proliferation. To date, no effective treatments are currently available to stimulate OPC proliferation in TBI. Recombinant human erythropoietin (rhEPO) is a pleiotropic neuroprotective cytokine, and its receptor is present in all stages of oligodendroglial lineage cell differentiation. Therefore, we hypothesized that rhEPO administration would enhance remyelination after TBI through the modulation of OPC response. Utilizing a murine model of controlled cortical impact and a primary OPC culture in vitro model, we characterized the impact of rhEPO on remyelination and proliferation of oligodendrocyte lineage cells. Myelin black gold II staining of the peri-contusional corpus callosum revealed an increase in myelinated area in association with an increase in BrdU-positive oligodendrocytes in injured mice treated with rhEPO. Furthermore, morphological analysis of OPCs showed a decrease in process length in rhEPO-treated animals. RhEPO treatment increased OPC proliferation after in vitro CSPG exposure. Erythropoietin receptor (EPOr) gene knockdown using siRNA prevented rhEPO-induced OPC proliferation, demonstrating that the rhEPO effect on OPC response is EPOr activation dependent. Together, our findings demonstrate that rhEPO administration may promote myelination by increasing oligodendrocyte lineage cell proliferation after TBI.
Collapse
Affiliation(s)
- Kirill Shumilov
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Campus Box 8208, One Children's Place, St. Louis, MO, 63110, USA
| | - Sophia Xiao
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Campus Box 8208, One Children's Place, St. Louis, MO, 63110, USA
| | - Allen Ni
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Campus Box 8208, One Children's Place, St. Louis, MO, 63110, USA
| | - Marta Celorrio
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Campus Box 8208, One Children's Place, St. Louis, MO, 63110, USA
| | - Stuart H Friess
- Department of Pediatrics, Washington University in St. Louis School of Medicine, Campus Box 8208, One Children's Place, St. Louis, MO, 63110, USA.
| |
Collapse
|
4
|
Klotz L, Antel J, Kuhlmann T. Inflammation in multiple sclerosis: consequences for remyelination and disease progression. Nat Rev Neurol 2023; 19:305-320. [PMID: 37059811 DOI: 10.1038/s41582-023-00801-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2023] [Indexed: 04/16/2023]
Abstract
Despite the large number of immunomodulatory or immunosuppressive treatments available to treat relapsing-remitting multiple sclerosis (MS), treatment of the progressive phase of the disease has not yet been achieved. This lack of successful treatment approaches is caused by our poor understanding of the mechanisms driving disease progression. Emerging concepts suggest that a combination of persisting focal and diffuse inflammation within the CNS and a gradual failure of compensatory mechanisms, including remyelination, result in disease progression. Therefore, promotion of remyelination presents a promising intervention approach. However, despite our increasing knowledge regarding the cellular and molecular mechanisms regulating remyelination in animal models, therapeutic increases in remyelination remain an unmet need in MS, which suggests that mechanisms of remyelination and remyelination failure differ fundamentally between humans and demyelinating animal models. New and emerging technologies now allow us to investigate the cellular and molecular mechanisms underlying remyelination failure in human tissue samples in an unprecedented way. The aim of this Review is to summarize our current knowledge regarding mechanisms of remyelination and remyelination failure in MS and in animal models of the disease, identify open questions, challenge existing concepts, and discuss strategies to overcome the translational roadblock in the field of remyelination-promoting therapies.
Collapse
Affiliation(s)
- Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Jack Antel
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada
| | - Tanja Kuhlmann
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Québec, Canada.
- Institute of Neuropathology, University Hospital Münster, Münster, Germany.
| |
Collapse
|
5
|
Collongues N, Becker G, Jolivel V, Ayme-Dietrich E, de Seze J, Binamé F, Patte-Mensah C, Monassier L, Mensah-Nyagan AG. A Narrative Review on Axonal Neuroprotection in Multiple Sclerosis. Neurol Ther 2022; 11:981-1042. [PMID: 35610531 PMCID: PMC9338208 DOI: 10.1007/s40120-022-00363-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/03/2022] [Indexed: 01/08/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) resulting in demyelination and neurodegeneration. The therapeutic strategy is now largely based on reducing inflammation with immunosuppressive drugs. Unfortunately, when disease progression is observed, no drug offers neuroprotection apart from its anti-inflammatory effect. In this review, we explore current knowledge on the assessment of neurodegeneration in MS and look at putative targets that might prove useful in protecting the axon from degeneration. Among them, Bruton's tyrosine kinase inhibitors, anti-apoptotic and antioxidant agents, sex hormones, statins, channel blockers, growth factors, and molecules preventing glutamate excitotoxicity have already been studied. Some of them have reached phase III clinical trials and carry a great message of hope for our patients with MS.
Collapse
Affiliation(s)
- Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France. .,Center for Clinical Investigation, INSERM U1434, Strasbourg, France. .,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France. .,University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.
| | - Guillaume Becker
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Valérie Jolivel
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Estelle Ayme-Dietrich
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Jérôme de Seze
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France.,Center for Clinical Investigation, INSERM U1434, Strasbourg, France.,Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Fabien Binamé
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Christine Patte-Mensah
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| | - Laurent Monassier
- University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France.,NeuroCardiovascular Pharmacology and Toxicology Laboratory, UR7296, University Hospital of Strasbourg, Strasbourg, France
| | - Ayikoé Guy Mensah-Nyagan
- Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France
| |
Collapse
|
6
|
Erythropoietin Nanobots: Their Feasibility for the Controlled Release of Erythropoietin and Their Neuroprotective Bioequivalence in Central Nervous System Injury. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: Erythropoietin (EPO) plays important roles in neuroprotection in central nervous system injury. Due to the limited therapeutic time window and coexistence of hematopoietic/extrahematopoietic receptors displaying heterogenic and phylogenetic differences, fast, targeted delivery agents, such as nanobots, are needed. To confirm the feasibility of EPO-nanobots (ENBs) as therapeutic tools, the authors evaluated controlled EPO release from ENBs and compared the neuroprotective bioequivalence of these substances after preconditioning sonication. Methods: ENBs were manufactured by a nanospray drying technique with preconditioning sonication. SH-SY5Y neuronal cells were cotreated with thapsigargin and either EPO or ENBs before cell viability, EPO receptor activation, and endoplasmic reticulum stress-related pathway deactivation were determined over 24 h. Results: Preconditioning sonication (50–60 kHz) for 1 h increased the cumulative EPO release from the ENBs (84% versus 25% at 24 h). Between EPO and ENBs at 24 h, both neuronal cell viability (both > 65% versus 15% for thapsigargin alone) and the expression of the proapoptotic/apoptotic biomolecular markers JAK2, PDI, PERK, GRP78, ATF6, CHOP, TGF-β, and caspase-3 were nearly the same or similar. Conclusion: ENBs controlled EPO release in vitro after preconditioning sonication, leading to neuroprotection similar to that of EPO at 24 h.
Collapse
|
7
|
Sutiwisesak R, Burns TC, Rodriguez M, Warrington AE. Remyelination therapies for multiple sclerosis: optimizing translation from animal models into clinical trials. Expert Opin Investig Drugs 2021; 30:857-876. [PMID: 34126015 DOI: 10.1080/13543784.2021.1942840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Multiple sclerosis (MS) is the most common inflammatory disease of the central nervous system (CNS). Demyelination, the main pathology in MS, contributes to clinical symptoms and long-term neurological deficits if left untreated. Remyelination, the natural repair of damaged myelin by cells of the oligodendrocyte lineage, occurs in MS, but eventually fails in most patients as they age. Encouraging timely remyelination can restore axon conduction and minimize deficits.Areas covered: We discuss and correlate human MS pathology with animal models, propose methods to deplete resident oligodendrocyte progenitor cells (OPCs) to determine whether mature oligodendrocytes support remyelination, and review remyelinating agents, mechanisms of action, and available clinical trial data.Expert opinion: The heterogeneity of human MS may limit successful translation of many candidate remyelinating agents; some patients lack the biological targets necessary to leverage current approaches. Development of therapeutics for remyelination has concentrated almost exclusively on mobilization of innate OPCs. However, mature oligodendrocytes appear an important contributor to remyelination in humans. Limiting the contribution of OPC mediated repair in models of MS would allow the evaluation of remyelination-promoting agents on mature oligodendrocytes. Among remyelinating reagents reviewed, only rHIgM22 targets both OPCs and mature oligodendrocytes.
Collapse
Affiliation(s)
- Rujapope Sutiwisesak
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Terry C Burns
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| | - Moses Rodriguez
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| | - Arthur E Warrington
- Departments of Neurology and Neurologic Surgery Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Failed, Interrupted, or Inconclusive Trials on Neuroprotective and Neuroregenerative Treatment Strategies in Multiple Sclerosis: Update 2015-2020. Drugs 2021; 81:1031-1063. [PMID: 34086251 PMCID: PMC8217012 DOI: 10.1007/s40265-021-01526-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/06/2023]
Abstract
In the recent past, a plethora of drugs have been approved for the treatment of multiple sclerosis (MS). These therapeutics are mainly confined to immunomodulatory or immunosuppressive strategies but do not sufficiently address remyelination and neuroprotection. However, several neuroregenerative agents have shown potential in pre-clinical research and entered Phase I to III clinical trials. Although none of these compounds have yet proceeded to approval, understanding the causes of failure can broaden our knowledge about neuroprotection and neuroregeneration in MS. Moreover, most of the investigated approaches are characterised by consistent mechanisms of action and proved convincing efficacy in animal studies. Therefore, learning from their failure will help us to enforce the translation of findings acquired in pre-clinical studies into clinical application. Here, we summarise trials on MS treatment published since 2015 that have either failed or were interrupted due to a lack of efficacy, adverse events, or for other reasons. We further outline the rationale underlying these drugs and analyse the background of failure to gather new insights into MS pathophysiology and optimise future study designs. For conciseness, this review focuses on agents promoting remyelination and medications with primarily neuroprotective properties or unconventional approaches. Failed clinical trials that pursue immunomodulation are presented in a separate article.
Collapse
|
9
|
Hwang CH. Targeted Delivery of Erythropoietin Hybridized with Magnetic Nanocarriers for the Treatment of Central Nervous System Injury: A Literature Review. Int J Nanomedicine 2020; 15:9683-9701. [PMID: 33311979 PMCID: PMC7726550 DOI: 10.2147/ijn.s287456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/21/2020] [Indexed: 12/15/2022] Open
Abstract
Although the incidence of central nervous system injuries has continued to rise, no promising treatments have been elucidated. Erythropoietin plays an important role in neuroprotection and neuroregeneration as well as in erythropoiesis. Moreover, the current worldwide use of erythropoietin in the treatment of hematologic diseases allows for its ready application in patients with central nervous system injuries. However, erythropoietin has a very short therapeutic time window (within 6–8 hours) after injury, and it has both hematopoietic and nonhematopoietic receptors, which exhibit heterogenic and phylogenetic differences. These differences lead to limited amounts of erythropoietin binding to in situ erythropoietin receptors. The lack of high-quality evidence for clinical use and the promising results of in vitro/in vivo models necessitate fast targeted delivery agents such as nanocarriers. Among current nanocarriers, noncovalent polymer-entrapping or polymer-adsorbing erythropoietin obtained by nanospray drying may be the most promising. With the incorporation of magnetic nanocarriers into an erythropoietin polymer, spatiotemporal external magnetic navigation is another area of great interest for targeted delivery within the therapeutic time window. Intravenous administration is the most readily used route. Manufactured erythropoietin nanocarriers should be clearly characterized using bioengineering analyses of the in vivo size distribution and the quality of entrapment or adsorption. Further preclinical trials are required to increase the therapeutic bioavailability (in vivo biological identity alteration, passage through the lung capillaries or the blood brain barrier, and timely degradation followed by removal of the nanocarriers from the body) and decrease the adverse effects (hematological complications, neurotoxicity, and cytotoxicity), especially of the nanocarrier.
Collapse
Affiliation(s)
- Chang Ho Hwang
- Department of Physical and Rehabilitation Medicine, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Republic of Korea
| |
Collapse
|
10
|
Zhang L, Zhuang X, Chen Y, Niu Z, Xia H. Plasma Erythropoietin, IL-17A, and IFNγ as Potential Biomarkers of Motor Function Recovery in a Canine Model of Spinal Cord Injury. J Mol Neurosci 2020; 70:1821-1828. [PMID: 32418163 PMCID: PMC7561571 DOI: 10.1007/s12031-020-01575-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/30/2020] [Indexed: 02/15/2023]
Abstract
Traumatic spinal cord injury (SCI) is a devastating neurological disease for which an accurate, cost-effective prediction of motor function recovery is in pressing need. A plethora of neurochemical changes involved in the pathophysiological process of SCI may serve as a new source of biomarkers for patient outcomes. Five dogs were included in this study. We characterized the plasma cytokine profiles in acute phase (0, 1, and 3 days after SCI) and subacute phase (7, 14, and 21 days after SCI) with microarray analysis. The motor function recovery following SCI was monitored by Olby scores. The expression level of differentially expressed proteins (DEPs) was measured with enzyme-linked immunosorbent assay (ELISA). Then, correlations with the Olby scores and receiver operating characteristic curve (ROC) analysis were performed. We identified 12 DEPs including 10 pro-inflammatory and 2 anti-inflammatory cytokines during the 21-day study period. Among those, the expression levels of erythropoietin (EPO), IL-17A, and IFNγ significantly correlated with the Olby scores with R2 values of 0.870, 0.740, and 0.616, respectively. The results of the ROC analysis suggested that plasma EPO, IL-17A, and IFNγ exhibited a significant predictive power with an area under the curve (AUC) of 0.656, 0.848, and 0.800 for EPO, IL-17A, and IFNγ, respectively. Our results provide a longitudinal description of the changes in plasma cytokine expression in the acute and subacute stages of canine SCI. These data reveal novel panels of inflammation-related cytokines which have the potential to be evaluated as biomarkers for predicting motor function prognosis after SCI.
Collapse
Affiliation(s)
- Lijian Zhang
- School of Clincial Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.,Ningxia Human Stem Cell Research Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiaoqing Zhuang
- Department of Nuclear Medicine, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| | - Yao Chen
- School of Clincial Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.,Department of Neurosurgery, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.,Ningxia Human Stem Cell Research Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhanfeng Niu
- Department of Neurosurgery, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, No. 804, Shengli Street, Xingqing District, Yinchuan, Ningxia, China. .,Ningxia Human Stem Cell Research Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
11
|
Gingele S, Stangel M. Emerging myelin repair agents in preclinical and early clinical development for the treatment of multiple sclerosis. Expert Opin Investig Drugs 2020; 29:583-594. [PMID: 32348161 DOI: 10.1080/13543784.2020.1762567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Remyelination is a highly effective regenerative process that can restore axon function, prevent axonal loss, and reverse clinical deficits after demyelination. Hence, the promotion of remyelination is a logical goal in patients with multiple sclerosis (MS) in which remyelination is often insufficient. However, despite great progress regarding the development of immunomodulatory therapies for MS and an abundance of promising evidence from preclinical experiments so far, no therapy has convincingly demonstrated clinically significant remyelination properties. Therefore, enhancing myelin repair is an urgent and unmet need in MS. AREAS COVERED We searched clinicaltrials.gov and pubmed.ncbi.nlm.nih.gov and focused on therapeutic agents in development from the preclinical stage to clinical phase II. We selected agents for which data are available from in vitro experiments and at least one toxic demyelination animal model that reached at least phase I in clinical development in MS patients. EXPERT OPINION The evidence to promote remyelination is very promising for several agents, some of which possess anti-muscarinergic properties. Since remyelination is a complex process that involves various coordinated steps, a combination of different therapeutic approaches addressing different aspects of this regenerative mechanism may be reasonable. Furthermore, suitable surrogate markers of remyelination are necessary for proof-of-concept clinical trials.
Collapse
Affiliation(s)
- Stefan Gingele
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School , Hannover, Germany
| | - Martin Stangel
- Clinical Neuroimmunology and Neurochemistry, Department of Neurology, Hannover Medical School , Hannover, Germany
| |
Collapse
|
12
|
Nguyen CT, Kim CR, Le TH, Koo KI, Hwang CH. Magnetically guided targeted delivery of erythropoietin using magnetic nanoparticles: Proof of concept. Medicine (Baltimore) 2020; 99:e19972. [PMID: 32384447 PMCID: PMC7220084 DOI: 10.1097/md.0000000000019972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The objective of this proof-of-concept study was to demonstrate the targeted delivery of erythropoietin (EPO) using magnetically guided magnetic nanoparticles (MNPs).MNPs consisting of a ferric-ferrous mixture (FeCl3·6H2O and FeCl2·4H2O) were prepared using a co-precipitation method. The drug delivery system (DDS) was manufactured via the spray-drying technique using a nanospray-dryer. The DDS comprised 7.5 mg sodium alginate, 150 mg MNPs, and 1000 IU EPO.Scanning electron microscopy revealed DDS particles no more than 500 nm in size. Tiny particles on the rough surfaces of the DDS particles were composed of MNPs and/or EPO, unlike the smooth surfaces of the only alginate particles. Transmission electron microscopy showed the tiny particles from 5 to 20 nm in diameter. Fourier-transform infrared spectroscopy revealed DDS peaks characteristic of MNPs as well as of alginate. Thermal gravimetric analysis presented that 50% of DDS weight was lost in a single step around 500°C. The mode size of the DDS particles was approximately 850 nm under in vivo conditions. Standard soft lithography was applied to DDS particles prepared with fluorescent beads using a microchannel fabricated to have one inlet and two outlets in a Y-shape. The fluorescent DDS particles reached only one outlet reservoir in the presence of a neodymium magnet. The neurotoxicity was evaluated by treating SH-SY5Y cells in 48-well plates (1 × 10 cells/well) with 2 μL of a solution containing sodium alginate (0.075 mg/mL), MNPs (1.5 mg/mL), or sodium alginate + MNPs. A cell viability assay kit was used to identify a 93% cell viability after MNP treatment and a 94% viability after sodium alginate + MNP treatment, compared with the control. As for the DDS particle neurotoxicity, a 95% cell viability was noticed after alginate-encapsulated MNPs treatment and a 93% cell viability after DDS treatment, compared with the control.The DDS-EPO construct developed here can be small under in vivo conditions enough to pass through the lung capillaries with showing the high coating efficiency. It can be guided using magnetic control without displaying significant neurotoxicity in the form of solution or particles.
Collapse
Affiliation(s)
| | - Chung Reen Kim
- Department of Physical Medicine and Rehabilitation, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan
| | - Thi Huong Le
- Department of Biomedical Engineering, University of Ulsan, Ulsan
| | - Kyo-in Koo
- Department of Biomedical Engineering, University of Ulsan, Ulsan
| | - Chang Ho Hwang
- Department of Biomedical Engineering, University of Ulsan, Ulsan
- Department of Physical and Rehabilitation Medicine, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Republic of Korea
| |
Collapse
|
13
|
Golubinskaya PA, Sarycheva MV, Burda SY, Puzanov MV, Nadezhdina NA, Kulikovskiy VF, Nadezhdin SV, Korokin MV, Burda YE. Pharmacological modulation of cell functional activity with valproic acid and erythropoietin. RESEARCH RESULTS IN PHARMACOLOGY 2019. [DOI: 10.3897/rrpharmacology.5.34710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: Valproic acid (VA) is carboxylic acid with a branched chain, which is used as an antiepileptic drug.
Valproic acid influence on cells in vivo: VA, which is an antiepileptic drug, is also a teratogen, which causes defects of a neural tube and an axial skeleton, although the mechanisms are not yet fully clear.
Valproic acid influence on mesenchymal stem cells (MSC) in vitro: It is shown that valproic acid reduces the intracellular level of oxygen active forms.
Valproic acid effect on tumor cells: VA inhibits tumor growth through several mechanisms, including the cell cycle stop, differentiation induction and inhibition of growth of tumor vessels.
Valproic acid influence on enzymes: It affects mainly GSK-3.
Valproic acid influence on animals’ cells: It is shown that VA can significantly improve an ability to develop in vitro and improve nuclear reprogramming of embryos.
Erythropoietin (EPO): Is an hypoxia-induced hormone and a cytokine, which is necessary for normal erythropoiesis. EPO is widely used in in vitro experiments.
Conclusion: Thus, the influence of VA and EPO on cells can be used in cell technologies.
Collapse
|
14
|
Huang CT, Chen SH, Lin SC, Chen WT, Lue JH, Tsai YJ. Erythropoietin reduces nerve demyelination, neuropathic pain behavior and microglial MAPKs activation through erythropoietin receptors on Schwann cells in a rat model of peripheral neuropathy. Glia 2018; 66:2299-2315. [PMID: 30417431 DOI: 10.1002/glia.23461] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 04/15/2018] [Accepted: 05/08/2018] [Indexed: 12/21/2022]
Abstract
Neuroprotective effects of erythropoietin (EPO) on peripheral nerve injury remain uncertain. This study investigated the efficacy of EPO in attenuating median nerve chronic constriction injury (CCI)-induced neuropathy. Animals received an intraneural injection of EPO at doses of 1,000, 3,000, or 5,000 units/kg 15 min before median nerve CCI. Afterwards, the behavioral and electrophysiological tests were conducted. Immunohistochemistry and immunoblotting were used for qualitative and quantitative analysis of microglial and mitogen-activated protein kinases (MAPKs), including p38, JNK, and ERK, activation. Enzyme-linked immunosorbent assay and microdialysis were applied to measure pro-inflammatory cytokine and glutamate responses, respectively. EPO pre-treatment dose-dependently ameliorated neuropathic pain behavior, decreased microglial and MAPKs activation, and diminished the release of pro-inflammatory cytokines and glutamate in the ipsilateral cuneate nucleus after CCI. Moreover, EPO pre-treatment preserved myelination of the injured median nerve on morphological investigation and suppressed injury-induced discharges. We also observed that EPO receptor (EPOR) expression was up-regulated in the injured nerve after CCI. Double immunofluorescence showed that EPOR was localized to Schwann cells. Furthermore, siRNA-mediated knockdown of EPOR expression eliminated the therapeutic effects of EPO on attenuating the microglial and MAPKs activation, pro-inflammatory cytokine responses, injury discharges, and neuropathic pain behavior in CCI rats. In conclusion, binding of EPO to its receptors on Schwann cells maintains myelin integrity and blocks ectopic discharges in the injured median nerve, that in the end contribute to attenuation of neuropathic pain via reducing glutamate release from primary afferents and inhibiting activation of microglial MAPKs and production of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Chun-Ta Huang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Seu-Hwa Chen
- Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Chang Lin
- Division of Allergy and Immunology, Department of Internal Medicine, Cathay General Hospital, Taipei, Taiwan
| | - Wei-Ting Chen
- Department of Anesthesiology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - June-Horng Lue
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Ju Tsai
- Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
15
|
Ren H, Chen X, Tian M, Zhou J, Ouyang H, Zhang Z. Regulation of Inflammatory Cytokines for Spinal Cord Injury Repair Through Local Delivery of Therapeutic Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1800529. [PMID: 30479916 PMCID: PMC6247077 DOI: 10.1002/advs.201800529] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/06/2018] [Indexed: 05/29/2023]
Abstract
The balance of inflammation is critical to the repair of spinal cord injury (SCI), which is one of the most devastating traumas in human beings. Inflammatory cytokines, the direct mediators of local inflammation, have differential influences on the repair of the injured spinal cord. Some inflammatory cytokines are demonstrated beneficial to spinal cord repair in SCI models, while some detrimental. Various animal researches have revealed that local delivery of therapeutic agents efficiently regulates inflammatory cytokines and promotes repair from SCI. Quite a few clinical studies have also shown the promotion of repair from SCI through regulation of inflammatory cytokines. However, local delivery of a single agent affects only a part of the inflammatory cytokines that need to be regulated. Meanwhile, different individuals have differential profiles of inflammatory cytokines. Therefore, future studies may aim to develop personalized strategies of locally delivered therapeutic agent cocktails for effective and precise regulation of inflammation, and substantial functional recovery from SCI.
Collapse
Affiliation(s)
- Hao Ren
- The Third Affiliated Hospital of Guangzhou Medical UniversityNo. 63 Duobao RoadGuangzhou510150P. R. China
| | - Xuri Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Mengya Tian
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Jing Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineSchool of Basic Medical ScienceZhejiang UniversityNo. 866 Yuhangtang RoadHangzhou310058P. R. China
| | - Zhiyong Zhang
- Translational Research Center for Regenerative Medicine and 3D Printing TechnologiesGuangzhou Medical UniversityNo. 63 Duobao RoadGuangzhou510150P. R. China
| |
Collapse
|
16
|
Gyetvai G, Hughes T, Wedmore F, Roe C, Heikal L, Ghezzi P, Mengozzi M. Erythropoietin Increases Myelination in Oligodendrocytes: Gene Expression Profiling Reveals Early Induction of Genes Involved in Lipid Transport and Metabolism. Front Immunol 2017; 8:1394. [PMID: 29123527 PMCID: PMC5662872 DOI: 10.3389/fimmu.2017.01394] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
Several studies have shown that erythropoietin (EPO) has neuroprotective or neuroreparative actions on diseases of the nervous system and that improves oligodendrocyte (OL) differentiation and myelination in vivo and in vitro. This study aims at investigating the early molecular mechanisms for the pro-myelinating action of EPO at the gene expression level. For this purpose, we used a differentiating OL precursor cell line, rat central glia-4 cells. Cells were differentiated or not, and then treated with EPO for 1 or 20 h. RNA was extracted and changes in the gene expression profile were assessed using microarray analysis. Experiments were performed in biological replicates of n = 4. Differentiation alone changed the expression of 11% of transcripts (2,663 out of 24,272), representing 2,436 genes, half of which were upregulated and half downregulated. At 20 h of treatment, EPO significantly affected the expression of 99 genes that were already regulated by differentiation and of 150 genes that were not influenced by differentiation alone. Analysis of the transcripts most upregulated by EPO identified several genes involved in lipid transport (e.g., Cd36) and lipid metabolism (Ppargc1a/Pgc1alpha, Lpin1, Pnlip, Lpin2, Ppard, Plin2) along with Igf1 and Igf2, growth factors known for their pro-myelinating action. All these genes were only induced by EPO and not by differentiation alone, except for Pnlip which was highly induced by differentiation and augmented by EPO. Results were validated by quantitative PCR. These findings suggest that EPO might increase remyelination by inducing insulin-like growth factors and increasing lipid metabolism.
Collapse
Affiliation(s)
- Georgina Gyetvai
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Trisha Hughes
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Florence Wedmore
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Cieron Roe
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Lamia Heikal
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Pietro Ghezzi
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| | - Manuela Mengozzi
- Department of Clinical and Experimental Medicine, Brighton and Sussex Medical School, Brighton, United Kingdom
| |
Collapse
|
17
|
Geary MB, Li H, Zingman A, Ketz J, Zuscik M, De Mesy Bentley KL, Noble M, Elfar JC. Erythropoietin accelerates functional recovery after moderate sciatic nerve crush injury. Muscle Nerve 2017; 56:143-151. [PMID: 28168703 DOI: 10.1002/mus.25459] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 10/29/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Erythropoietin (EPO) has been identified as a neuroregenerative agent. We hypothesize that it may accelerate recovery after crush injury and may vary with crush severity. METHODS Mice were randomized to mild, moderate, or severe crush of the sciatic nerve and were treated with EPO or vehicle control after injury. The sciatic function index (SFI) was monitored over the first week. Microstructural changes were analyzed by immunofluorescence for neurofilament (NF) and myelin (P0 ), and electron microscopy was used to assess ultrastructural changes. RESULTS In moderate crush injuries, EPO significantly improved SFI at 7 days post-injury, an effect not observed with other severity levels. Increases in the ratio of P0 to NF were observed after EPO treatment in moderate crush injuries. Electron microscopy demonstrated endothelial cell hypertrophy in the EPO group. CONCLUSIONS EPO accelerates recovery in moderately crushed nerves, which may be through effects on myelination and vascularization. Injury severity may influence the efficacy of EPO. Muscle Nerve 56: 143-151, 2017.
Collapse
Affiliation(s)
- Michael B Geary
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, New York, 14642, USA
| | - Haiyan Li
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, New York, 14642, USA
| | - Alissa Zingman
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - John Ketz
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| | - Michael Zuscik
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, New York, 14642, USA
| | - Karen L De Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, New York, 14642, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
| | - Mark Noble
- Department of Biomedical Genetics, Stem Cell Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - John C Elfar
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, New York, 14642, USA.,Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
18
|
Sundem L, Chris Tseng KC, Li H, Ketz J, Noble M, Elfar J. Erythropoietin Enhanced Recovery After Traumatic Nerve Injury: Myelination and Localized Effects. J Hand Surg Am 2016; 41:999-1010. [PMID: 27593486 PMCID: PMC5053901 DOI: 10.1016/j.jhsa.2016.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 06/08/2016] [Accepted: 08/06/2016] [Indexed: 02/02/2023]
Abstract
PURPOSE We previously found that administration of erythropoietin (EPO) shortens the course of recovery after experimental crush injury to the mouse sciatic nerve. The course of recovery was more rapid than would be expected if EPO's effects were caused by axonal regeneration, which raised the question of whether recovery was instead the result of promoting remyelination and/or preserving myelin on injured neurons. This study tested the hypothesis that EPO has a direct and local effect on myelination in vivo and in vitro. METHODS Animals were treated with EPO after standard calibrated sciatic nerve crush injury; immunohistochemical analysis was performed to assay for myelinated axons. Combined in vitro neuron-Schwann cell co-cultures were performed to assess EPO-mediated effects directly on myelination and putative protective effects against oxidative stress. In vivo local administration of EPO in a fibrin glue carrier was used to demonstrate early local effects of EPO treatment well in advance of possible neuroregenerative effects. RESULTS Systemic Administration of EPO maintained more in vivo myelinated axons at the site of nerve crush injury. In vitro, EPO treatment promoted myelin formation and protected myelin from the effects of nitric oxide exposure in co-cultures of Schwann cells and dorsal root ganglion neurons. In a novel, surgically applicable local treatment using Food and Drug Administration-approved fibrin glue as a vehicle, EPO was as effective as systemic EPO administration at time points earlier than those explainable using standard models of neuroregeneration. CONCLUSIONS In nerve crush injury, EPO may be exerting a primary influence on myelin status to promote functional recovery. CLINICAL RELEVANCE Mixed injury to myelin and axons may allow the opportunity for the repurposing of EPO for use as a myeloprotective agent in which injuries spare a requisite number of axons to allow early functional recovery.
Collapse
Affiliation(s)
- Leigh Sundem
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
| | | | - Haiyan Li
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY
| | - John Ketz
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY
| | - Mark Noble
- Department of Biomedical Genetics, Institute for Stem Cell and Regenerative Medicine, University of Rochester Medical Center, Rochester, NY
| | - John Elfar
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY; Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY.
| |
Collapse
|
19
|
Yang L, Yan X, Xu Z, Tan W, Chen Z, Wu B. Delayed administration of recombinant human erythropoietin reduces apoptosis and inflammation and promotes myelin repair and functional recovery following spinal cord compressive injury in rats. Restor Neurol Neurosci 2016; 34:647-63. [PMID: 26444376 DOI: 10.3233/rnn-150498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Liuzhu Yang
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
- Department of Orthopedics, Hezhou city pepole’s hospital, Hezhou, Guangxi, China
| | - Xinping Yan
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
| | - Zunying Xu
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
| | - Wei Tan
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
| | - Zhong Chen
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
| | - Bo Wu
- Department of Orthopedics, Southern Medical University, Zhujiang Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Erythropoietin Restores Long-Term Neurocognitive Function Involving Mechanisms of Neuronal Plasticity in a Model of Hyperoxia-Induced Preterm Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9247493. [PMID: 27493706 PMCID: PMC4963567 DOI: 10.1155/2016/9247493] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/31/2016] [Accepted: 06/13/2016] [Indexed: 12/22/2022]
Abstract
Cerebral white and grey matter injury is the leading cause of an adverse neurodevelopmental outcome in prematurely born infants. High oxygen concentrations have been shown to contribute to the pathogenesis of neonatal brain damage. Here, we focused on motor-cognitive outcome up to the adolescent and adult age in an experimental model of preterm brain injury. In search of the putative mechanisms of action we evaluated oligodendrocyte degeneration, myelination, and modulation of synaptic plasticity-related molecules. A single dose of erythropoietin (20,000 IU/kg) at the onset of hyperoxia (24 hours, 80% oxygen) in 6-day-old Wistar rats improved long-lasting neurocognitive development up to the adolescent and adult stage. Analysis of white matter structures revealed a reduction of acute oligodendrocyte degeneration. However, erythropoietin did not influence hypomyelination occurring a few days after injury or long-term microstructural white matter abnormalities detected in adult animals. Erythropoietin administration reverted hyperoxia-induced reduction of neuronal plasticity-related mRNA expression up to four months after injury. Thus, our findings highlight the importance of erythropoietin as a neuroregenerative treatment option in neonatal brain injury, leading to improved memory function in adolescent and adult rats which may be linked to increased neuronal network connectivity.
Collapse
|
21
|
Moallem SA, Mohamadpour AH, Abnous K, Sankian M, Sadeghnia HR, Tsatsakis A, Shahsavand S. Erythropoietin in the treatment of carbon monoxide neurotoxicity in rat. Food Chem Toxicol 2015; 86:56-64. [DOI: 10.1016/j.fct.2015.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/05/2015] [Accepted: 09/23/2015] [Indexed: 01/25/2023]
|
22
|
Abstract
Certain groups of neonates are at high risk of developing long-term neurodevelopmental impairment and might be considered candidates for neuroprotective interventions. This article explores some of these high-risk groups, relevant mechanisms of brain injury, and specific mechanisms of cellular injury and death. The potential of erythropoietin (Epo) to act as a neuroprotective agent for neonatal brain injury is discussed. Clinical trials of Epo neuroprotection in preterm and term infants are updated.
Collapse
|
23
|
Chen H, Zhang Y, Yang Z, Zhang H. Human umbilical cord Wharton's jelly-derived oligodendrocyte precursor-like cells for axon and myelin sheath regeneration. Neural Regen Res 2014; 8:890-9. [PMID: 25206380 PMCID: PMC4145923 DOI: 10.3969/j.issn.1673-5374.2013.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 02/15/2013] [Indexed: 12/13/2022] Open
Abstract
Human umbilical mesenchymal stem cells from Wharton's jelly of the umbilical cord were induced to differentiate into oligodendrocyte precursor-like cells in vitro. Oligodendrocyte precursor cells were transplanted into contused rat spinal cords. Immunofluorescence double staining indicated that transplanted cells survived in injured spinal cord, and differentiated into mature and immature oligodendrocyte precursor cells. Biotinylated dextran amine tracing results showed that cell transplantation promoted a higher density of the corticospinal tract in the central and caudal parts of the injured spinal cord. Luxol fast blue and toluidine blue staining showed that the volume of residual myelin was significantly increased at 1 and 2 mm rostral and caudal to the lesion epicenter after cell transplantation. Furthermore, immunofluorescence staining verified that the newly regenerated myelin sheath was derived from the central nervous system. Basso, Beattie and Bresnahan testing showed an evident behavioral recovery. These results suggest that human umbilical mesenchymal stem cell-derived oligodendrocyte precursor cells promote the regeneration of spinal axons and myelin sheaths.
Collapse
Affiliation(s)
- Hong Chen
- Department of Anesthesiology, Military General Hospital of Beijing PLA, Beijing 100700, China
| | - Yan Zhang
- Affiliated Bayi Brain Hospital, Military General Hospital of Beijing PLA, Beijing 100700, China
| | - Zhijun Yang
- Affiliated Bayi Brain Hospital, Military General Hospital of Beijing PLA, Beijing 100700, China
| | - Hongtian Zhang
- Affiliated Bayi Brain Hospital, Military General Hospital of Beijing PLA, Beijing 100700, China
| |
Collapse
|
24
|
Jantzie LL, Miller RH, Robinson S. Erythropoietin signaling promotes oligodendrocyte development following prenatal systemic hypoxic-ischemic brain injury. Pediatr Res 2013; 74:658-67. [PMID: 24108187 PMCID: PMC3865073 DOI: 10.1038/pr.2013.155] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/10/2013] [Indexed: 11/09/2022]
Abstract
BACKGROUND Brain injury from preterm birth causes white matter injury (WMI), and it leads to chronic neurological deficits including cerebral palsy, epilepsy, cognitive, and behavioral delay. Immature O4+ oligodendrocytes are particularly vulnerable to WMI. Understanding how the developing brain recovers after injury is essential to finding more effective therapeutic strategies. Erythropoietin (EPO) promotes neuronal recovery after injury; however, its role in enhancing oligodendroglial lineage recovery is unclear. Previously, we found that recombinant EPO (rEPO) treatment enhances myelin basic protein (MBP) expression and functional recovery in adult rats after prenatal transient systemic hypoxia-ischemia (TSHI). We hypothesized that after injury, rEPO would enhance oligodendroglial lineage cell genesis, survival, maturation, and myelination. METHODS In vitro assays were used to define how rEPO contributes to specific stages of oligodendrocyte development and recovery after TSHI. RESULTS After prenatal TSHI injury, rEPO promotes genesis of oligodendrocyte progenitors from oligodendrospheres, survival of oligodendrocyte precursor cells (OPCs) and O4+ immature oligodendrocytes, O4+ cell process extension, and MBP expression. rEPO did not alter OPC proliferation. CONCLUSION Together, these studies demonstrate that EPO signaling promotes critical stages of oligodendroglial lineage development and recovery after prenatal TSHI injury. EPO treatment may be beneficial to preterm and other infant patient populations with developmental brain injury hallmarked by WMI.
Collapse
Affiliation(s)
- Lauren L. Jantzie
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert H. Miller
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Shenandoah Robinson
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA,Department of Neurosurgery, F.M. Kirby Center for Neurobiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA,Corresponding Author: Shenandoah Robinson, MD Department of Neurological Surgery Boston Children's Hospital 300 Longwood Avenue Boston, MA 02215 Ph: 617-355-1485 Fax: 617-703-0906,
| |
Collapse
|
25
|
Cervellini I, Annenkov A, Brenton T, Chernajovsky Y, Ghezzi P, Mengozzi M. Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor. Mol Med 2013; 19:223-9. [PMID: 23821361 DOI: 10.2119/molmed.2013.00013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/27/2013] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (EPO) has protective effects in neurodegenerative and neuroinflammatory diseases, including in animal models of multiple sclerosis, where EPO decreases disease severity. EPO also promotes neurogenesis and is protective in models of toxic demyelination. In this study, we asked whether EPO could promote neurorepair by also inducing remyelination. In addition, we investigated whether the effect of EPO could be mediated by the classical erythropoietic EPO receptor (EPOR), since it is still questioned if EPOR is functional in nonhematopoietic cells. Using CG4 cells, a line of rat oligodendrocyte precursor cells, we found that EPO increases the expression of myelin genes (myelin oligodendrocyte glycoprotein [MOG] and myelin basic protein [MBP]). EPO had no effect in wild-type CG4 cells, which do not express EPOR, whereas it increased MOG and MBP expression in cells engineered to overexpress EPOR (CG4-EPOR). This was reflected in a marked increase in MOG protein levels, as detected by Western blot. In these cells, EPO induced by 10-fold the early growth response gene 2 (Egr2), which is required for peripheral myelination. However, Egr2 silencing with a siRNA did not reverse the effect of EPO, indicating that EPO acts through other pathways. In conclusion, EPO induces the expression of myelin genes in oligodendrocytes and this effect requires the presence of EPOR. This study demonstrates that EPOR can mediate neuroreparative effects.
Collapse
|
26
|
Chong ZZ, Shang YC, Mu Y, Cui S, Yao Q, Maiese K. Targeting erythropoietin for chronic neurodegenerative diseases. Expert Opin Ther Targets 2013; 17:707-20. [PMID: 23510463 DOI: 10.1517/14728222.2013.780599] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Since erythropoietin (EPO) and EPO receptor (EPOR) are expressed in the central nervous system (CNS) beyond hematopoietic system, EPO illustrates a robust biological function in maintaining neuronal survival and regulating neurogenesis and may play a crucial role in neurodegenerative diseases. AREAS COVERED EPO is capable of modulating multiple cellular signal transduction pathways to promote neuronal survival and enhance the proliferation and differentiation of neuronal progenitor cells. Initially, EPO binds to EPOR to activate the Janus-tyrosine kinase 2 (Jak2) protein followed by modulation of protein kinase B (Akt), mammalian target of rapamycin, signal transducer and activators of transcription 5, mitogen-activated protein kinases, protein tyrosine phosphatases, Wnt1 and nuclear factor κB. As a result, EPO may actively prevent the progression of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis and motor neuron diseases. EXPERT OPINION Novel knowledge of the cell signaling pathways regulated by EPO in the CNS will allow us to establish the foundation for the development of therapeutic strategies against neurodegenerative diseases. Further investigation of the role of EPO in neurodegenerative diseases can not only formulate EPO as a therapeutic candidate, but also further identify novel therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- University of Medicine and Dentistry of New Jersey, Cancer Center, New Jersey NJ 07103, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Wigmore P. The effect of systemic chemotherapy on neurogenesis, plasticity and memory. Curr Top Behav Neurosci 2013; 15:211-240. [PMID: 23239468 DOI: 10.1007/7854_2012_235] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Chemotherapy has been enormously successful in treating many forms of cancer and improving patient survival rates. With the increasing numbers of survivors, a number of cognitive side effects have become apparent. These have been called "chemobrain" or "chemofog" among patient groups, who describe the symptoms as a decline in memory, concentration and executive functions. Changes which, although subtle, can cause significant distress among patients and prevent a return to the quality of life experienced before treatment. This cognitive side effect of chemotherapy was not anticipated as it had been assumed that chemotherapy agents, administered systematically, could not cross the blood-brain barrier and that the brain was therefore protected from their action. It is now realised that low concentrations of many chemotherapy agents cross the blood-brain barrier and even those that are completely prevented from doing so, can induce the production of inflammatory cytokines in peripheral tissues which in turn can cross the blood-brain barrier and impact on the brain. A large number of patient studies have shown that cognitive decline is found in a proportion of patients treated with a variety of chemotherapy agents for different types of cancer. The deficits experienced by these patients can last for up to several years and have a deleterious effect on educational attainment and ability to return to work. Imaging studies of patients after systemic chemotherapy show that this treatment produces structural and functional changes in the brain some of which seem to persist even when the cognitive deficits have ceased. This suggests that, with time, brain plasticity may be able to compensate for the deleterious effects of chemotherapy treatment. A number of mechanisms have been suggested for the changes in brain structure and function found after chemotherapy. These include both central and peripheral inflammatory changes, demyelination of white matter tracts, a reduction in stem cell proliferation in both the hippocampal neurogenic region and by oligodendrocyte precursors as well as changes in hormonal or growth factor levels. A number of possible treatments have been suggested which range from pharmacological interventions to cognitive behavioural therapies. Some of these have only been tested in animal models while others have produced varying degrees of improvement in patient populations. Currently, there is no recognised treatment and a greater understanding of the causes of the cognitive decline experienced after chemotherapy will be key to finding ways of preventing or treating the effects of chemobrain.
Collapse
Affiliation(s)
- Peter Wigmore
- School of Biomedical Sciences, Queen's Medical Centre, Nottingham, NG7 2UH, UK,
| |
Collapse
|
28
|
Abstract
The hematopoietic growth factor erythropoietin (Epo) circulates in plasma and controls the oxygen carrying capacity of the blood (Fisher. Exp Biol Med (Maywood) 228:1-14, 2003). Epo is produced primarily in the adult kidney and fetal liver and was originally believed to play a role restricted to stimulation of early erythroid precursor proliferation, inhibition of apoptosis, and differentiation of the erythroid lineage. Early studies showed that mice with targeted deletion of Epo or the Epo receptor (EpoR) show impaired erythropoiesis, lack mature erythrocytes, and die in utero around embryonic day 13.5 (Wu et al. Cell 83:59-67, 1995; Lin et al. Genes Dev. 10:154-164, 1996). These animals also exhibited heart defects, abnormal vascular development as well as increased apoptosis in the brain suggesting additional functions for Epo signaling in normal development of the central nervous system and heart. Now, in addition to its well-known role in erythropoiesis, a diverse array of cells have been identified that produce Epo and/or express the Epo-R including endothelial cells, smooth muscle cells, and cells of the central nervous system (Masuda et al. J Biol Chem. 269:19488-19493, 1994; Marti et al. Eur J Neurosci. 8:666-676, 1996; Bernaudin et al. J Cereb Blood Flow Metab. 19:643-651, 1999; Li et al. Neurochem Res. 32:2132-2141, 2007). Endogenously produced Epo and/or expression of the EpoR gives rise to autocrine and paracrine signaling in different organs particularly during hypoxia, toxicity, and injury conditions. Epo has been shown to regulate a variety of cell functions such as calcium flux (Korbel et al. J Comp Physiol B. 174:121-128, 2004) neurotransmitter synthesis and cell survival (Velly et al. Pharmacol Ther. 128:445-459, 2010; Vogel et al. Blood. 102:2278-2284, 2003). Furthermore Epo has neurotrophic effects (Grimm et al. Nat Med. 8:718-724, 2002; Junk et al. Proc Natl Acad Sci U S A. 99:10659-10664, 2002), can induce an angiogenic phenotype in cultured endothelial cells and is a potent angiogenic factor in vivo (Ribatti et al. Eur J Clin Invest. 33:891-896, 2003) and might enhance ventilation in hypoxic conditions (Soliz et al. J Physiol. 568:559-571, 2005; Soliz et al. J Physiol. 583, 329-336, 2007). Thus multiple functions have been identified breathing new life and exciting possibilities into what is really an old growth factor.This review will address the function of Epo in non-hematopoietic tissues with significant emphasis on the brain and heart.
Collapse
Affiliation(s)
- Omolara O Ogunshola
- Institute of Veterinary Physiology, Vetsuisse Faculty and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
29
|
Cross-talk between neural stem cells and immune cells: the key to better brain repair? Nat Neurosci 2012; 15:1078-87. [DOI: 10.1038/nn.3163] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|