1
|
Mazzetti S, Calogero AM, Pezzoli G, Cappelletti G. Cross-talk between α-synuclein and the microtubule cytoskeleton in neurodegeneration. Exp Neurol 2023; 359:114251. [PMID: 36243059 DOI: 10.1016/j.expneurol.2022.114251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 12/30/2022]
Abstract
Looking at the puzzle that depicts the molecular determinants in neurodegeneration, many pieces are lacking and multiple interconnections among key proteins and intracellular pathways still remain unclear. Here we focus on the concerted action of α-synuclein and the microtubule cytoskeleton, whose interplay, indeed, is emerging but remains largely unexplored in both its physiology and pathology. α-Synuclein is a key protein involved in neurodegeneration, underlying those diseases termed synucleinopathies. Its propensity to interact with other proteins and structures renders the identification of neuronal death trigger extremely difficult. Conversely, the unbalance of microtubule cytoskeleton in terms of structure, dynamics and function is emerging as a point of convergence in neurodegeneration. Interestingly, α-synuclein and microtubules have been shown to interact and mediate cross-talks with other intracellular structures. This is supported by an increasing amount of evidence ranging from their direct interaction to the engagement of in-common partners and culminating with their respective impact on microtubule-dependent neuronal functions. Last, but not least, it is becoming even more clear that α-synuclein and tubulin work synergically towards pathological aggregation, ultimately resulting in neurodegeneration. In this respect, we supply a novel perspective towards the understanding of α-synuclein biology and, most importantly, of the link between α-synuclein with microtubule cytoskeleton and its impact for neurodegeneration and future development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | | | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
2
|
Phytochemicals as Regulators of Genes Involved in Synucleinopathies. Biomolecules 2021; 11:biom11050624. [PMID: 33922207 PMCID: PMC8145209 DOI: 10.3390/biom11050624] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein aggregates in neurons, nerve fibers or glial cells. Three main types of diseases belong to the synucleinopathies: Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. All of them develop as a result of an interplay of genetic and environmental factors. Emerging evidence suggests that epigenetic mechanisms play an essential role in the development of synucleinopathies. Since there is no disease-modifying treatment for these disorders at this time, interest is growing in plant-derived chemicals as a potential treatment option. Phytochemicals are substances of plant origin that possess biological activity, which might have effects on human health. Phytochemicals with neuroprotective activity target different elements in pathogenic pathways due to their antioxidants, anti-inflammatory, and antiapoptotic properties, and ability to reduce cellular stress. Multiple recent studies demonstrate that the beneficial effects of phytochemicals may be explained by their ability to modulate the expression of genes implicated in synucleinopathies and other diseases. These substances may regulate transcription directly via transcription factors (TFs) or play the role of epigenetic regulators through their effect on histone modification, DNA methylation, and RNA-based mechanisms. Here, we summarize new data about the impact of phytochemicals on the pathogenesis of synucleinopathies through regulation of gene expression.
Collapse
|
3
|
Fouka M, Mavroeidi P, Tsaka G, Xilouri M. In Search of Effective Treatments Targeting α-Synuclein Toxicity in Synucleinopathies: Pros and Cons. Front Cell Dev Biol 2020; 8:559791. [PMID: 33015057 PMCID: PMC7500083 DOI: 10.3389/fcell.2020.559791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD), multiple system atrophy (MSA) and Dementia with Lewy bodies (DLB) represent pathologically similar, progressive neurodegenerative disorders characterized by the pathological aggregation of the neuronal protein α-synuclein. PD and DLB are characterized by the abnormal accumulation and aggregation of α-synuclein in proteinaceous inclusions within neurons named Lewy bodies (LBs) and Lewy neurites (LNs), whereas in MSA α-synuclein inclusions are mainly detected within oligodendrocytes named glial cytoplasmic inclusions (GCIs). The presence of pathologically aggregated α-synuclein along with components of the protein degradation machinery, such as ubiquitin and p62, in LBs and GCIs is considered to underlie the pathogenic cascade that eventually leads to the severe neurodegeneration and neuroinflammation that characterizes these diseases. Importantly, α-synuclein is proposed to undergo pathogenic misfolding and oligomerization into higher-order structures, revealing self-templating conformations, and to exert the ability of "prion-like" spreading between cells. Therefore, the manner in which the protein is produced, is modified within neural cells and is degraded, represents a major focus of current research efforts in the field. Given that α-synuclein protein load is critical to disease pathogenesis, the identification of means to limit intracellular protein burden and halt α-synuclein propagation represents an obvious therapeutic approach in synucleinopathies. However, up to date the development of effective therapeutic strategies to prevent degeneration in synucleinopathies is limited, due to the lack of knowledge regarding the precise mechanisms underlying the observed pathology. This review critically summarizes the recent developed strategies to counteract α-synuclein toxicity, including those aimed to increase protein degradation, to prevent protein aggregation and cell-to-cell propagation, or to engage antibodies against α-synuclein and discuss open questions and unknowns for future therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | - Maria Xilouri
- Center of Clinical Research, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
4
|
Calogero AM, Mazzetti S, Pezzoli G, Cappelletti G. Neuronal microtubules and proteins linked to Parkinson's disease: a relevant interaction? Biol Chem 2020; 400:1099-1112. [PMID: 31256059 DOI: 10.1515/hsz-2019-0142] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022]
Abstract
Neuronal microtubules are key determinants of cell morphology, differentiation, migration and polarity, and contribute to intracellular trafficking along axons and dendrites. Microtubules are strictly regulated and alterations in their dynamics can lead to catastrophic effects in the neuron. Indeed, the importance of the microtubule cytoskeleton in many human diseases is emerging. Remarkably, a growing body of evidence indicates that microtubule defects could be linked to Parkinson's disease pathogenesis. Only a few of the causes of the progressive neuronal loss underlying this disorder have been identified. They include gene mutations and toxin exposure, but the trigger leading to neurodegeneration is still unknown. In this scenario, the evidence showing that mutated proteins in Parkinson's disease are involved in the regulation of the microtubule cytoskeleton is intriguing. Here, we focus on α-Synuclein, Parkin and Leucine-rich repeat kinase 2 (LRRK2), the three main proteins linked to the familial forms of the disease. The aim is to dissect their interaction with tubulin and microtubules in both physiological and pathological conditions, in which these proteins are overexpressed, mutated or absent. We highlight the relevance of such an interaction and suggest that these proteins could trigger neurodegeneration via defective regulation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Alessandra M Calogero
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy.,Fondazione Grigioni per il Morbo di Parkinson, via Zuretti 35, I-20135 Milan, Italy
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, via Zuretti 35, I-20135 Milan, Italy.,Parkinson Institute, ASST "G.Pini-CTO", via Bignami 1, I-20133 Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy.,Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, via Balzaretti, I-20133 Milan, Italy
| |
Collapse
|
5
|
Early defects in translation elongation factor 1α levels at excitatory synapses in α-synucleinopathy. Acta Neuropathol 2019; 138:971-986. [PMID: 31451907 DOI: 10.1007/s00401-019-02063-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 01/08/2023]
Abstract
Cognitive decline and dementia in neurodegenerative diseases are associated with synapse dysfunction and loss, which may precede neuron loss by several years. While misfolded and aggregated α-synuclein is recognized in the disease progression of synucleinopathies, the nature of glutamatergic synapse dysfunction and loss remains incompletely understood. Using fluorescence-activated synaptosome sorting (FASS), we enriched excitatory glutamatergic synaptosomes from mice overexpressing human alpha-synuclein (h-αS) and wild-type littermates to unprecedented purity. Subsequent label-free proteomic quantification revealed a set of proteins differentially expressed upon human alpha-synuclein overexpression. These include overrepresented proteins involved in the synaptic vesicle cycle, ER-Golgi trafficking, metabolism and cytoskeleton. Unexpectedly, we found and validated a steep reduction of eukaryotic translation elongation factor 1 alpha (eEF1A1) levels in excitatory synapses at early stages of h-αS mouse model pathology. While eEF1A1 reduction correlated with the loss of postsynapses, its immunoreactivity was found on both sides of excitatory synapses. Moreover, we observed a reduction in eEF1A1 immunoreactivity in the cingulate gyrus neuropil of patients with Lewy body disease along with a reduction in PSD95 levels. Altogether, our results suggest a link between structural impairments underlying cognitive decline in neurodegenerative disorders and local synaptic defects. eEF1A1 may therefore represent a limiting factor to synapse maintenance.
Collapse
|
6
|
Lee HJ, Ricarte D, Ortiz D, Lee SJ. Models of multiple system atrophy. Exp Mol Med 2019; 51:1-10. [PMID: 31740682 PMCID: PMC6861264 DOI: 10.1038/s12276-019-0346-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/09/2022] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease with diverse clinical manifestations, including parkinsonism, cerebellar syndrome, and autonomic failure. Pathologically, MSA is characterized by glial cytoplasmic inclusions in oligodendrocytes, which contain fibrillary forms of α-synuclein. MSA is categorized as one of the α-synucleinopathy, and α-synuclein aggregation is thought to be the culprit of the disease pathogenesis. Studies on MSA pathogenesis are scarce relative to studies on the pathogenesis of other synucleinopathies, such as Parkinson’s disease and dementia with Lewy bodies. However, recent developments in cellular and animal models of MSA, especially α-synuclein transgenic models, have driven advancements in research on this disease. Here, we review the currently available models of MSA, which include toxicant-induced animal models, α-synuclein-overexpressing cellular models, and mouse models that express α-synuclein specifically in oligodendrocytes through cell type-specific promoters. We will also discuss the results of studies in recently developed transmission mouse models, into which MSA brain extracts were intracerebrally injected. By reviewing the findings obtained from these model systems, we will discuss what we have learned about the disease and describe the strengths and limitations of the models, thereby ultimately providing direction for the design of better models and future research. A review of the models available for studying multiple system atrophy (MSA), a Parkinson’s-like disease, may help identify new treatment options. MSA is difficult to diagnose and unresponsive to drugs. Similar to Parkinson’s disease, it involves accumulation of protein aggregates in brain and spinal cord cells, but the causes are poorly understood. He-Jin Lee at Konkuk University, and Seung-Jae Lee at Seoul National University College of Medicine in South Korea and coworkers have reviewed the models available to study the disease, including toxin-induced and transgenic animal models, and recent evidence that transferring the protein aggregates into cells causes MSA symptoms. Each model mimics some aspects of the disease, but none captures the full range of symptoms. This review helps highlight research pathways that may illuminate treatments for this complex and debilitating adult-onset disease.
Collapse
Affiliation(s)
- He-Jin Lee
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea. .,Research Institute of Medical Science, Konkuk University, Seoul, 05029, South Korea. .,IBST, Konkuk University, Seoul, 05029, South Korea.
| | - Diadem Ricarte
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Darlene Ortiz
- Department of Anatomy, School of Medicine, Konkuk University, 120 Neungdong-Ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Seung-Jae Lee
- Department of Medicine and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea.
| |
Collapse
|
7
|
Jellinger KA, Wenning GK. Multiple system atrophy: pathogenic mechanisms and biomarkers. J Neural Transm (Vienna) 2016; 123:555-72. [PMID: 27098666 DOI: 10.1007/s00702-016-1545-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/31/2016] [Indexed: 12/13/2022]
Abstract
Multiple system atrophy (MSA) is a unique proteinopathy that differs from other α-synucleinopathies since the pathological process resulting from accumulation of aberrant α-synuclein (αSyn) involves the oligodendroglia rather than neurons, although both pathologies affect multiple parts of the brain, spinal cord, autonomic and peripheral nervous system. Both the etiology and pathogenesis of MSA are unknown, although animal models have provided insight into the basic molecular changes of this disorder. Accumulation of aberrant αSyn in oligodendroglial cells and preceded by relocation of p25α protein from myelin to oligodendroglia results in the formation of insoluble glial cytoplasmic inclusions that cause cell dysfunction and demise. These changes are associated with proteasomal, mitochondrial and lipid transport dysfunction, oxidative stress, reduced trophic transport, neuroinflammation and other noxious factors. Their complex interaction induces dysfunction of the oligodendroglial-myelin-axon-neuron complex, resulting in the system-specific pattern of neurodegeneration characterizing MSA as a synucleinopathy with oligodendroglio-neuronopathy. Propagation of modified toxic αSyn species from neurons to oligodendroglia by "prion-like" transfer and its spreading associated with neuronal pathways result in a multi-system involvement. No reliable biomarkers are currently available for the clinical diagnosis and prognosis of MSA. Multidisciplinary research to elucidate the genetic and molecular background of the deleterious cycle of noxious processes, to develop reliable diagnostic biomarkers and to deliver targets for effective treatment of this hitherto incurable disorder is urgently needed.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| | - Gregor K Wenning
- Division of Clinical Neurobiology, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
8
|
Bleasel JM, Halliday GM, Kim WS. Animal modeling an oligodendrogliopathy--multiple system atrophy. Acta Neuropathol Commun 2016; 4:12. [PMID: 26860328 PMCID: PMC4748629 DOI: 10.1186/s40478-016-0279-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/23/2016] [Indexed: 12/21/2022] Open
Abstract
Multiple system atrophy (MSA) is a rare, yet rapidly-progressive neurodegenerative disease that presents clinically with autonomic failure in combination with parkinsonism or cerebellar ataxia. The definitive neuropathology differentiating MSA from Lewy body diseases is the presence of α-synuclein aggregates in oligodendrocytes (called glial cytoplasmic inclusion or GCI) rather than the fibrillar aggregates in neurons (called Lewy bodies). This makes the pathological pathway(s) in MSA unique in that oligodendrocytes are involved rather than predominantly neurons, as is most other neurodegenerative disorders. MSA is therefore regarded as an oligodendrogliopathy. The etiology of MSA is unknown. No definitive risk factors have been identified, although α-synuclein and other genes have been variably linked to MSA risk. Utilization of postmortem brain tissues has greatly advanced our understanding of GCI pathology and the subsequent neurodegeneration. However, extrapolating the early pathogenesis of MSA from such resource has been difficult and limiting. In recent years, cell and animal models developed for MSA have been instrumental in delineating unique MSA pathological pathways, as well as aiding in clinical phenotyping. The purpose of this review is to bring together and discuss various animal models that have been developed for MSA and how they have advanced our understanding of MSA pathogenesis, particularly the dynamics of α-synuclein aggregation. This review will also discuss how animal models have been used to explore potential therapeutic avenues for MSA, and future directions of MSA modeling.
Collapse
|
9
|
Milisav I, Šuput D, Ribarič S. Unfolded Protein Response and Macroautophagy in Alzheimer's, Parkinson's and Prion Diseases. Molecules 2015; 20:22718-56. [PMID: 26694349 PMCID: PMC6332363 DOI: 10.3390/molecules201219865] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/30/2015] [Accepted: 12/09/2015] [Indexed: 12/13/2022] Open
Abstract
Proteostasis are integrated biological pathways within cells that control synthesis, folding, trafficking and degradation of proteins. The absence of cell division makes brain proteostasis susceptible to age-related changes and neurodegeneration. Two key processes involved in sustaining normal brain proteostasis are the unfolded protein response and autophagy. Alzheimer’s disease (AD), Parkinson’s disease (PD) and prion diseases (PrDs) have different clinical manifestations of neurodegeneration, however, all share an accumulation of misfolded pathological proteins associated with perturbations in unfolded protein response and macroautophagy. While both the unfolded protein response and macroautophagy play an important role in the prevention and attenuation of AD and PD progression, only macroautophagy seems to play an important role in the development of PrDs. Macroautophagy and unfolded protein response can be modulated by pharmacological interventions. However, further research is necessary to better understand the regulatory pathways of both processes in health and neurodegeneration to be able to develop new therapeutic interventions.
Collapse
Affiliation(s)
- Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
- Faculty of Health Sciences, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenija.
| | - Dušan Šuput
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
| | - Samo Ribarič
- Institute of Pathophysiology, Faculty of Medicine, Zaloška 4, Ljubljana SI-1000, Slovenia.
| |
Collapse
|
10
|
Stefanova N, Wenning GK. Animal models of multiple system atrophy. Clin Auton Res 2015; 25:9-17. [PMID: 25585910 PMCID: PMC4412689 DOI: 10.1007/s10286-014-0266-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/18/2014] [Indexed: 11/27/2022]
Abstract
Since their introduction in 1996, animal models of multiple system atrophy (MSA) have generated important insights into pathogenesis and interventional therapies. Toxin and genetic approaches have been used alone or in combination to replicate progressive motor and non-motor symptoms reflecting human neuropathology. Here, we review these developments and discuss the advantages and limitations of the MSA animal models, as well as their application in preclinical target validation.
Collapse
Affiliation(s)
- Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Anichstr. 35, 6020, Innsbruck, Austria,
| | | |
Collapse
|
11
|
Chen J, Mills JD, Halliday GM, Janitz M. The role of transcriptional control in multiple system atrophy. Neurobiol Aging 2015; 36:394-400. [DOI: 10.1016/j.neurobiolaging.2014.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/29/2014] [Accepted: 08/12/2014] [Indexed: 12/15/2022]
|
12
|
Suzuki Y, Jin C, Iwase T, Yazawa I. β-III Tubulin fragments inhibit α-synuclein accumulation in models of multiple system atrophy. J Biol Chem 2014; 289:24374-82. [PMID: 25028513 DOI: 10.1074/jbc.m114.557215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple system atrophy (MSA) is a neurodegenerative disease caused by α-synuclein aggregation in oligodendrocytes and neurons. Using a transgenic mouse model overexpressing human α-synuclein in oligodendrocytes, we previously demonstrated that oligodendrocytic α-synuclein inclusions induce neuronal α-synuclein accumulation and progressive neuronal degeneration. α-Synuclein binds to β-III tubulin, leading to the neuronal accumulation of insoluble α-synuclein in an MSA mouse model. The present study demonstrates that α-synuclein co-localizes with β-III tubulin in the brain tissue from patients with MSA and MSA model transgenic mice as well as neurons cultured from these mice. Accumulation of insoluble α-synuclein in MSA mouse neurons was blocked by the peptide fragment β-III tubulin (residues 235-282). We have determined the α-synuclein-binding domain of β-III tubulin and demonstrated that a short fragment containing this domain can suppress α-synuclein accumulation in the primary cultured cells. Administration of a short α-synuclein-binding fragment of β-III tubulin may be a novel therapeutic strategy for MSA.
Collapse
Affiliation(s)
- Yasuyo Suzuki
- From the Laboratory of Research Resources, Research Institute, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Obu-shi, Aichi 474-8511, Japan and
| | - Chenghua Jin
- From the Laboratory of Research Resources, Research Institute, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Obu-shi, Aichi 474-8511, Japan and
| | - Tamaki Iwase
- the Department of Neurology, Nagoya City Koseiin Medical Welfare Center, Aichi 465-8610, Japan
| | - Ikuru Yazawa
- From the Laboratory of Research Resources, Research Institute, National Center for Geriatrics and Gerontology, 35 Gengo, Morioka, Obu-shi, Aichi 474-8511, Japan and
| |
Collapse
|
13
|
Palma JA, Kaufmann H. Novel therapeutic approaches in multiple system atrophy. Clin Auton Res 2014; 25:37-45. [PMID: 24928797 DOI: 10.1007/s10286-014-0249-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/23/2014] [Indexed: 01/12/2023]
Abstract
Multiple system atrophy (MSA) is a sporadic, adult onset, relentlessly progressive neurodegenerative disease characterized by autonomic abnormalities associated with parkinsonism, cerebellar dysfunction, pyramidal signs, or combinations thereof. Treatments that can halt or reverse the progression of MSA have not yet been identified. MSA is neuropathologically defined by the presence of α-synuclein-containing inclusions, particularly in the cytoplasm of oligodendrocytes (glial cytoplasmic inclusions, GCIs), which are associated with neurodegeneration. The mechanisms by which oligodendrocytic α-synuclein inclusions cause neuronal death in MSA are not completely understood. The MSA neurodegenerative process likely comprises cell-to-cell transmission of α-synuclein in a prion-like manner, α-synuclein aggregation, increased oxidative stress, abnormal expression of tubulin proteins, decreased expression of neurotrophic factors, excitotoxicity and microglial activation, and neuroinflammation. In an attempt to block each of these pathogenic mechanisms, several pharmacologic approaches have been tried and shown to exert neuroprotective effects in transgenic mouse or cellular models of MSA. These include sertraline, paroxetine, and lithium, which hamper arrival of α-synuclein to oligodendroglia; rifampicin, lithium, and non-steroidal anti-inflammatory drugs, which inhibit α-synuclein aggregation in oligodendrocytes; riluzole, rasagiline, fluoxetine and mesenchymal stem cells, which exert neuroprotective actions; and minocycline and intravenous immunoglobulins, which reduce neuroinflammation and microglial activation. These and other potential therapeutic strategies for MSA are summarized in this review.
Collapse
Affiliation(s)
- Jose-Alberto Palma
- Department of Neurology, Dysautonomia Center, New York University School of Medicine, 530 First Av, Suite 9Q, New York, NY, 10016, USA
| | | |
Collapse
|
14
|
Kuzdas-Wood D, Stefanova N, Jellinger KA, Seppi K, Schlossmacher MG, Poewe W, Wenning GK. Towards translational therapies for multiple system atrophy. Prog Neurobiol 2014; 118:19-35. [PMID: 24598411 PMCID: PMC4068324 DOI: 10.1016/j.pneurobio.2014.02.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 02/07/2014] [Accepted: 02/21/2014] [Indexed: 12/28/2022]
Abstract
Multiple system atrophy (MSA) is a fatal adult-onset neurodegenerative disorder of uncertain etiopathogenesis manifesting with autonomic failure, parkinsonism, and ataxia in any combination. The underlying neuropathology affects central autonomic, striatonigral and olivopontocerebellar pathways and it is associated with distinctive glial cytoplasmic inclusions (GCIs, Papp-Lantos bodies) that contain aggregates of α-synuclein. Current treatment options are very limited and mainly focused on symptomatic relief, whereas disease modifying options are lacking. Despite extensive testing, no neuroprotective drug treatment has been identified up to now; however, a neurorestorative approach utilizing autologous mesenchymal stem cells has shown remarkable beneficial effects in the cerebellar variant of MSA. Here, we review the progress made over the last decade in defining pathogenic targets in MSA and summarize insights gained from candidate disease-modifying interventions that have utilized a variety of well-established preclinical MSA models. We also discuss the current limitations that our field faces and suggest solutions for possible approaches in cause-directed therapies of MSA.
Collapse
Affiliation(s)
- Daniela Kuzdas-Wood
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Nadia Stefanova
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | | | - Klaus Seppi
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Michael G Schlossmacher
- Divisions of Neuroscience and Neurology, The Ottawa Hospital Research Institute, University of Ottawa, 451 Smyth Road, RGH #1412, Ottawa, ON, K1H 8M5, Canada
| | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria
| | - Gregor K Wenning
- Department of Neurology, Innsbruck Medical University, Anichstraße 35, Innsbruck 6020, Austria.
| |
Collapse
|
15
|
Suzuki Y, Jin C, Yazawa I. Cystatin C triggers neuronal degeneration in a model of multiple system atrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:790-9. [PMID: 24405769 DOI: 10.1016/j.ajpath.2013.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/04/2013] [Accepted: 11/04/2013] [Indexed: 01/17/2023]
Abstract
Multiple system atrophy is an intractable neurodegenerative disease caused by α-synuclein (α-syn) accumulation in oligodendrocytes and neurons. With the use of a transgenic mouse model overexpressing human α-syn in oligodendrocytes, we demonstrated that oligodendrocytic α-syn inclusions induce neuronal α-syn accumulation, resulting in progressive neuronal degeneration. The mechanism through which oligodendrocytic α-syn inclusions trigger neuronal α-syn accumulation leading to multiple system atrophy is unknown. In this study, we identified cystatin C, an oligodendrocyte-derived secretory protein that triggers α-syn up-regulation and insoluble α-syn accumulation, in neurons of the mouse central nervous system. Cystatin C was released by mouse oligodendrocytes overexpressing human α-syn, and extracellular cystatin C increased the expression of the endogenous α-syn gene in wild-type mouse neurons. These neurons then accumulate insoluble α-syn and may undergo apoptosis. Cystatin C is a potential pathogenic signal triggering neurodegeneration in multiple system atrophy.
Collapse
Affiliation(s)
- Yasuyo Suzuki
- Laboratory of Research Resources, Research Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Chenghua Jin
- Laboratory of Research Resources, Research Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi, Japan
| | - Ikuru Yazawa
- Laboratory of Research Resources, Research Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Aichi, Japan.
| |
Collapse
|
16
|
Prots I, Veber V, Brey S, Campioni S, Buder K, Riek R, Böhm KJ, Winner B. α-Synuclein oligomers impair neuronal microtubule-kinesin interplay. J Biol Chem 2013; 288:21742-54. [PMID: 23744071 DOI: 10.1074/jbc.m113.451815] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Early α-synuclein (α-Syn)-induced alterations are neurite pathologies resulting in Lewy neurites. α-Syn oligomers are a toxic species in synucleinopathies and are suspected to cause neuritic pathology. To investigate how α-Syn oligomers may be linked to aberrant neurite pathology, we modeled different stages of α-Syn aggregation in vitro and investigated the interplay of α-Syn aggregates with proteins involved in axonal transport. The interaction of wild type α-Syn (WTS) and α-Syn variants (E57K, A30P, and aSyn(30-110)) with kinesin, tubulin, and the microtubule (MT)-associated proteins, MAP2 and Tau, is stronger for multimers than for monomers. WTS seeds but not α-Syn oligomers significantly and dose-dependently reduced Tau-promoted MT assembly in vitro. In contrast, MT gliding velocity across kinesin-coated surfaces was significantly decreased in the presence of α-Syn oligomers but not WTS seeds or fibrils (aSyn(30-110) multimers). In a human dopaminergic neuronal cell line, mild overexpression of the oligomerizing E57K α-Syn variant significantly impaired neurite network morphology without causing profound cell death. In accordance with these findings, MT stability, neuritic kinesin, and neuritic kinesin-dependent cargoes were significantly reduced by the presence of α-Syn oligomers. In summary, different α-Syn species act divergently on the axonal transport machinery. These findings provide new insights into α-Syn oligomer-driven neuritic pathology as one of the earliest events in synucleinopathies.
Collapse
Affiliation(s)
- Iryna Prots
- Junior Research Group III, Nikolaus Fiebiger Centre for Molecular Medicine, Universitaetsklinikum Erlangen, Glueckstrasse 6, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Multiple system atrophy (MSA) is a predominantly sporadic, adult-onset, fatal neurodegenerative disease of unknown etiology. MSA is characterized by autonomic failure, levodopa-unresponsive parkinsonism, cerebellar ataxia and pyramidal signs in any combination. MSA belongs to a group of neurodegenerative disorders termed α-synucleinopathies, which also include Parkinson's disease and dementia with Lewy bodies. Their common pathological feature is the occurrence of abnormal α-synuclein positive inclusions in neurons or glial cells. In MSA, the main cell type presenting aggregates composed of α-synuclein are oligodendroglial cells . This pathological hallmark, also called glial cytoplasmic inclusions (GCIs) , is associated with progressive and profound neuronal loss in various regions of the brain. The development of animal models of MSA is justified by the limited understanding of the mechanisms of neurodegeneration and GCIs formation, which is paralleled by a lack of therapeutic strategies. Two main types of rodent models have been generated to replicate different features of MSA neuropathology. On one hand, neurotoxin-based models have been produced to reproduce neuronal loss in substantia nigra pars compacta and striatum. On the other hand, transgenic mouse models with overexpression of α-synuclein in oligodendroglia have been used to reproduce GCIs-related pathology. This chapter gives an overview of the atypical Parkinson's syndrome MSA and summarizes the currently available MSA animal models and their relevance for pre-clinical testing of disease-modifying therapies.
Collapse
Affiliation(s)
- Lisa Fellner
- Division of Neurobiology, Department of Neurology, Innsbruck Medical University, Anichstrasse 35, 6020, Innsbruck, Austria,
| | | | | |
Collapse
|
18
|
α-Synuclein accumulation reduces GABAergic inhibitory transmission in a model of multiple system atrophy. Biochem Biophys Res Commun 2012; 428:348-53. [PMID: 23098910 DOI: 10.1016/j.bbrc.2012.10.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/14/2012] [Indexed: 12/22/2022]
Abstract
Multiple system atrophy is a neurodegenerative disease caused by abnormal α-synuclein (α-syn) accumulation in oligodendrocytes and neurons. We previously demonstrated that transgenic (Tg) mice that selectively overexpressed human α-syn in oligodendrocytes exhibited neuronal α-syn accumulation. Microtubule β-III tubulin binds to endogenous neuronal α-syn to form an insoluble complex, leading to progressive neuronal degeneration. α-Syn accumulation is increased in the presynaptic terminals of Tg mice neurons and may reduce neurotransmitter release. To clarify the mechanisms underlying its involvement in neuronal dysfunction, in the present study, we investigated the effects of neuronal α-syn accumulation on synaptic function in Tg mice. Using whole-cell patch-clamp recording, we found that the frequency of miniature inhibitory postsynaptic currents was reduced in Tg mice. Furthermore, a microtubule depolymerizing agent restored normal frequencies of miniature inhibitory postsynaptic currents in Tg mice. These findings suggest that α-syn and β-III tubulin protein complex plays roles for regulation of synaptic vesicle release in GABAergic interneurons, and it causes to reduce GABAergic inhibitory transmission.
Collapse
|