1
|
Ito Y, Sun T, Tawada M, Kinashi H, Yamaguchi M, Katsuno T, Kim H, Mizuno M, Ishimoto T. Pathophysiological Mechanisms of Peritoneal Fibrosis and Peritoneal Membrane Dysfunction in Peritoneal Dialysis. Int J Mol Sci 2024; 25:8607. [PMID: 39201294 PMCID: PMC11354376 DOI: 10.3390/ijms25168607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
The characteristic feature of chronic peritoneal damage in peritoneal dialysis (PD) is a decline in ultrafiltration capacity associated with pathological fibrosis and angiogenesis. The pathogenesis of peritoneal fibrosis is attributed to bioincompatible factors of PD fluid and peritonitis. Uremia is associated with peritoneal membrane inflammation that affects fibrosis, neoangiogenesis, and baseline peritoneal membrane function. Net ultrafiltration volume is affected by capillary surface area, vasculopathy, peritoneal fibrosis, and lymphangiogenesis. Many inflammatory cytokines induce fibrogenic growth factors, with crosstalk between macrophages and fibroblasts. Transforming growth factor (TGF)-β and vascular endothelial growth factor (VEGF)-A are the key mediators of fibrosis and angiogenesis, respectively. Bioincompatible factors of PD fluid upregulate TGF-β expression by mesothelial cells that contributes to the development of fibrosis. Angiogenesis and lymphangiogenesis can progress during fibrosis via TGF-β-VEGF-A/C pathways. Complement activation occurs in fungal peritonitis and progresses insidiously during PD. Analyses of the human peritoneal membrane have clarified the mechanisms by which encapsulating peritoneal sclerosis develops. Different effects of dialysates on the peritoneal membrane were also recognized, particularly in terms of vascular damage. Understanding the pathophysiologies of the peritoneal membrane will lead to preservation of peritoneal membrane function and improvements in technical survival, mortality, and quality of life for PD patients.
Collapse
Affiliation(s)
- Yasuhiko Ito
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Ting Sun
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Mitsuhiro Tawada
- Department of Nephrology, Imaike Jin Clinic, Nagoya 464-0850, Japan
| | - Hiroshi Kinashi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Makoto Yamaguchi
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| | - Takayuki Katsuno
- Department of Nephrology and Rheumatology, Aichi Medical University Medical Center, Okazaki 444-2148, Japan;
| | - Hangsoo Kim
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (H.K.); (M.M.)
| | - Masashi Mizuno
- Department of Nephrology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; (H.K.); (M.M.)
| | - Takuji Ishimoto
- Department of Nephrology and Rheumatology, Aichi Medical University, Nagakute 480-1195, Japan (H.K.); (M.Y.); (T.I.)
| |
Collapse
|
2
|
Chen R, Zou L. Combined analysis of single-cell sequencing and bulk transcriptome sequencing reveals new mechanisms for non-healing diabetic foot ulcers. PLoS One 2024; 19:e0306248. [PMID: 38950058 PMCID: PMC11216623 DOI: 10.1371/journal.pone.0306248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Diabetic foot ulcers (DFUs) pose a significant challenge in diabetes care. Yet, a comprehensive understanding of the underlying biological disparities between healing and non-healing DFUs remains elusive. We conducted bioinformatics analysis of publicly available transcriptome sequencing data in an attempt to elucidate these differences. Our analysis encompassed differential analysis to unveil shifts in cell composition and gene expression profiles between non-healing and healing DFUs. Cell communication alterations were explored employing the Cellchat R package. Pseudotime analysis and cytoTRACE allowed us to dissect the heterogeneity within fibroblast subpopulations. Our findings unveiled disruptions in various cell types, localized low-grade inflammation, compromised systemic antigen processing and presentation, and extensive extracellular matrix signaling disarray in non-healing DFU patients. Some of these anomalies partially reverted in healing DFUs, particularly within the abnormal ECM-receptor signaling pathway. Furthermore, we distinguished distinct fibroblast subpopulations in non-healing and healing DFUs, each with unique biological functions. Healing-associated fibroblasts exhibited heightened extracellular matrix (ECM) remodeling and a robust wound healing response, while non-healing-associated fibroblasts showed signs of cellular senescence and complement activation, among other characteristics. This analysis offers profound insights into the wound healing microenvironment, identifies pivotal cell types for DFU healing promotion, and reveals potential therapeutic targets for DFU management.
Collapse
Affiliation(s)
- Ran Chen
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lijun Zou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
3
|
Jiang K, Lu S, Li D, Liu M, Jin H, Lei B, Wang S, Long K, He S, Zhong F. Blockade of C5aR1 alleviates liver inflammation and fibrosis in a mouse model of NASH by regulating TLR4 signaling and macrophage polarization. J Gastroenterol 2023; 58:894-907. [PMID: 37227481 PMCID: PMC10423130 DOI: 10.1007/s00535-023-02002-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/14/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is an advanced form of chronic fatty liver disease, which is a driver of hepatocellular carcinoma. However, the roles of the C5aR1 in the NASH remain poorly understood. Here, we aimed to investigate the functions and mechanisms of the C5aR1 on hepatic inflammation and fibrosis in murine NASH model. METHODS Mice were fed a normal chow diet with corn oil (ND + Oil), a Western diet with corn oil (WD + Oil) or a Western diet with carbon tetrachloride (WD + CCl4) for 12 weeks. The effects of the C5a-C5aR1 axis on the progression of NASH were analyzed and the underlying mechanisms were explored. RESULTS Complement factor C5a was elevated in NASH mice. C5 deficiency reduced hepatic lipid droplet accumulation in the NASH mice. The hepatic expression levels of TNFα, IL-1β and F4/80 were decreased in C5-deficient mice. C5 loss alleviated hepatic fibrosis and downregulated the expression levels of α-SMA and TGFβ1. C5aR1 deletion reduced inflammation and fibrosis in NASH mice. Transcriptional profiling of liver tissues and KEGG pathway analysis revealed that several pathways such as Toll-like receptor signaling, NFκB signaling, TNF signaling, and NOD-like receptor signaling pathway were enriched between C5aR1 deficiency and wild-type mice. Mechanistically, C5aR1 deletion decreased the expression of TLR4 and NLRP3, subsequently regulating macrophage polarization. Moreover, C5aR1 antagonist PMX-53 treatment mitigated the progression of NASH in mice. CONCLUSIONS Blockade of the C5a-C5aR1 axis reduces hepatic steatosis, inflammation, and fibrosis in NASH mice. Our data suggest that C5aR1 may be a potential target for drug development and therapeutic intervention of NASH.
Collapse
Affiliation(s)
- Keqing Jiang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, China
| | - Shibang Lu
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Dongxiao Li
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Mingjiang Liu
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Hu Jin
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Biao Lei
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Sifan Wang
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Kang Long
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, China
| | - Fudi Zhong
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China.
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Guangxi Medical University, Nanning, 530021, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, 530021, China.
| |
Collapse
|
4
|
Tada Y, Kasai K, Makiuchi N, Igarashi N, Kani K, Takano S, Honda H, Yanagibashi T, Watanabe Y, Usui-Kawanishi F, Furusawa Y, Ichimura-Shimizu M, Tabuchi Y, Takatsu K, Tsuneyama K, Nagai Y. Roles of Macrophages in Advanced Liver Fibrosis, Identified Using a Newly Established Mouse Model of Diet-Induced Non-Alcoholic Steatohepatitis. Int J Mol Sci 2022; 23:13251. [PMID: 36362037 PMCID: PMC9654696 DOI: 10.3390/ijms232113251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 10/29/2023] Open
Abstract
Macrophages play critical roles in the pathogenesis of non-alcoholic steatohepatitis (NASH). However, it is unclear which macrophage subsets are critically involved in the development of inflammation and fibrosis in NASH. In TSNO mice fed a high-fat/cholesterol/cholate-based diet, which exhibit advanced liver fibrosis that mimics human NASH, we found that Kupffer cells (KCs) were less abundant and recruited macrophages were more abundant, forming hepatic crown-like structures (hCLS) in the liver. The recruited macrophages comprised two subsets: CD11c+/Ly6C- and CD11c-/Ly6C+ cells. CD11c+ cells were present in a mesh-like pattern around the lipid droplets, constituting the hCLS. In addition, CD11c+ cells colocalized with collagen fibers, suggesting that this subset of recruited macrophages might promote advanced liver fibrosis. In contrast, Ly6C+ cells were present in doughnut-like inflammatory lesions, with a lipid droplet in the center. Finally, RNA sequence analysis indicates that CD11c+/Ly6C- cells promote liver fibrosis and hepatic stellate cell (HSC) activation, whereas CD11c-/Ly6C+ cells are a macrophage subset that play an anti-inflammatory role and promote tissue repair in NASH. Taken together, our data revealed changes in liver macrophage subsets during the development of NASH and shed light on the roles of the recruited macrophages in the pathogenesis of advanced fibrosis in NASH.
Collapse
Affiliation(s)
- Yuki Tada
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Kaichi Kasai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Nana Makiuchi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Naoya Igarashi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Koudai Kani
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Shun Takano
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Hiroe Honda
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Tsutomu Yanagibashi
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Yasuharu Watanabe
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Fumitake Usui-Kawanishi
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Yukihiro Furusawa
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| | - Mayuko Ichimura-Shimizu
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kiyoshi Takatsu
- Toyama Prefectural Institute for Pharmaceutical Research, 17-1 Nakataikouyama, Toyama 939-0363, Japan
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Tokushima University Graduate School of Biomedical Sciences, 3-8-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yoshinori Nagai
- Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Toyama 939-0398, Japan
| |
Collapse
|
5
|
Liu Y, Liu X, Zhou W, Zhang J, Wu J, Guo S, Jia S, Wang H, Li J, Tan Y. Integrated bioinformatics analysis reveals potential mechanisms associated with intestinal flora intervention in nonalcoholic fatty liver disease. Medicine (Baltimore) 2022; 101:e30184. [PMID: 36086766 PMCID: PMC10980383 DOI: 10.1097/md.0000000000030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 07/07/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that imposes a huge economic burden on global public health. And the gut-liver axis theory supports the therapeutic role of intestinal flora in the development and progression of NAFLD. To this end, we designed bioinformatics study on the relationship between intestinal flora disorder and NAFLD, to explore the possible molecular mechanism of intestinal flora interfering with NAFLD. METHODS Differentially expressed genes for NAFLD were obtained from the GEO database. And the disease genes for NAFLD and intestinal flora disorder were obtained from the disease databases. The protein-protein interaction network was established by string 11.0 database and visualized by Cytoscape 3.7.2 software. Cytoscape plug-in MCODE and cytoHubba were used to screen the potential genes of intestinal flora disorder and NAFLD, to obtain potential targets for intestinal flora to interfere in the occurrence and process of NAFLD. Enrichment analysis of potential targets was carried out using R 4.0.2 software. RESULTS The results showed that 7 targets might be the key genes for intestinal flora to interfere with NAFLD. CCL2, IL6, IL1B, and FOS are mainly related to the occurrence and development mechanism of NAFLD, while PTGS2, SPINK1, and C5AR1 are mainly related to the intervention of intestinal flora in the occurrence and development of NAFLD. The gene function is mainly reflected in basic biological processes, including the regulation of metabolic process, epithelial development, and immune influence. The pathway is mainly related to signal transduction, immune regulation, and physiological metabolism. The TNF signaling pathway, AGE-RAGE signaling pathway in diabetic activity, and NF-Kappa B signaling pathways are important pathways for intestinal flora to interfere with NAFLD. According to the analysis results, there is a certain correlation between intestinal flora disorder and NAFLD. CONCLUSION It is speculated that the mechanism by which intestinal flora may interfere with the occurrence and development of NAFLD is mainly related to inflammatory response and insulin resistance. Nevertheless, further research is needed to explore the specific molecular mechanisms.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinkui Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Zhou
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Jia
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jialin Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Guo Z, Chen J, Zeng Y, Wang Z, Yao M, Tomlinson S, Chen B, Yuan G, He S. Complement Inhibition Alleviates Cholestatic Liver Injury Through Mediating Macrophage Infiltration and Function in Mice. Front Immunol 2022; 12:785287. [PMID: 35069557 PMCID: PMC8777082 DOI: 10.3389/fimmu.2021.785287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/14/2021] [Indexed: 12/22/2022] Open
Abstract
Background and Aims Cholestatic liver injury (CLI), which is associated with inflammatory reactions and oxidative stress, is a serious risk factor for postoperative complications. Complement system is involved in a wide range of liver disorders, including cholestasis. The present study assessed the role of complement in CLI and the therapeutic effect of the site-targeted complement inhibitor CR2-Crry in CLI. Methods Wild-type and complement gene deficient mice underwent common bile duct ligation (BDL) to induce CLI or a sham operation, followed by treatment with CR2-Crry or GdCl3. The roles of complement in CLI and the potential therapeutic effects of CR2-Crry were investigated by biochemical analysis, flow cytometry, immunohistochemistry, ELISA, and quantitative RT-PCR. Results C3 deficiency and CR2-Crry significantly reduced liver injuries in mice with CLI, and also markedly decreasing the numbers of neutrophils and macrophages in the liver. C3 deficiency and CR2-Crry also significantly reduced neutrophil expression of Mac-1 and liver expression of VCAM-1. More importantly, C3 deficiency and CR2-Crry significantly inhibited M1 macrophage polarization in these mice. Intravenous injection of GdCl3 inhibited macrophage infiltration and activation in the liver. However, the liver injury increased significantly. BDL significantly increased the level of lipopolysaccharide (LPS) in portal blood, but not in peripheral blood. GdCl3 significantly increased LPS in peripheral blood, suggesting that macrophages clear portal blood LPS. Oral administration of ampicillin to in GdCl3 treated mice reduced LPS levels in portal blood and alleviated liver damage. In contrast, intraperitoneal injection LPS increased portal blood LPS and reversed the protective effect of ampicillin. Interestingly, C3 deficiency did not affect the clearance of LPS. Conclusions Complement is involved in CLI, perhaps mediating the infiltration and activation of neutrophils and macrophage M1 polarization in the liver. C3 deficiency and CR2-Crry significantly alleviated CLI. Inhibition of complement could preserve the protective function of macrophages in clearing LPS, suggesting that complement inhibition could be useful in treating CLI.
Collapse
Affiliation(s)
- Zhenya Guo
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Junze Chen
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Yonglian Zeng
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Zefeng Wang
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mei Yao
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Stephen Tomlinson
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, United States
| | - Bin Chen
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Guandou Yuan
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| | - Songqing He
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China
- Guangxi Key Laboratory of Immunology and Metabolism for Liver Diseases, Nanning, China
| |
Collapse
|
7
|
Wei T, Hao W, Tang L, Wu H, Huang S, Yang Y, Qian N, Liu J, Yang W, Duan X. Comprehensive RNA-Seq Analysis of Potential Therapeutic Targets of Gan-Dou-Fu-Mu Decoction for Treatment of Wilson Disease Using a Toxic Milk Mouse Model. Front Pharmacol 2021; 12:622268. [PMID: 33935715 PMCID: PMC8082393 DOI: 10.3389/fphar.2021.622268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
Background: Gan–Dou–Fu–Mu decoction (GDFMD) improves liver fibrosis in experimental and clinical studies including those on toxic mouse model of Wilson disease (Model). However, the mechanisms underlying the effect of GDFMD have not been characterized. Herein, we deciphered the potential therapeutic targets of GDFMD using transcriptome analysis. Methods: We constructed a tx-j Wilson disease (WD) mouse model, and assessed the effect of GDFMD on the liver of model mice by hematoxylin and eosin, Masson, and immunohistochemical staining. Subsequently, we identified differentially expressed genes (DEGs) that were upregulated in the Model (Model vs. control) and those that were downregulated upon GDFMD treatment (compared to the Model) using RNA-sequencing (RNA-Seq). Biological functions and signaling pathways in which the DEGs were involved were determined by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. A protein–protein interaction (PPI) network was constructed using the STRING database, and the modules were identified using MCODE plugin with the Cytoscape software. Several genes identified in the RNA-Seq analysis were validated by real-time quantitative PCR. Results: Total of 2124 DEGs were screened through the Model vs. control and Model vs. GDFMD comparisons, and dozens of GO and KEGG pathway terms modulated by GDFMD were identified. Dozens of pathways involved in metabolism (including metabolic processes for organic acids, carboxylic acids, monocarboxylic acids, lipids, fatty acids, cellular lipids, steroids, alcohols, eicosanoids, long-chain fatty acids), immune and inflammatory response (such as complement and coagulation cascades, cytokine–cytokine receptor interaction, inflammatory mediator regulation of TRP channels, antigen processing and presentation, T-cell receptor signaling pathway), liver fibrosis (such as ECM-receptor interactions), and cell death (PI3K-Akt signaling pathway, apoptosis, TGF-beta signaling pathway, etc.) were identified as potential targets of GDFMD in the Model. Some hub genes and four modules were identified in the PPI network. The results of real-time quantitative PCR analysis were consistent with those of RNA-Seq analysis. Conclusions: We performed gene expression profiling of GDFMD-treated WD model mice using RNA-Seq analysis and found the genes, pathways, and processes effected by the treatment. Our study provides a theoretical basis to prevent liver fibrosis resulting from WD using GDFMD.
Collapse
Affiliation(s)
- Taohua Wei
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,Graduate School, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Hefei, China
| | - Wenjie Hao
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,Graduate School, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Hefei, China
| | - Lulu Tang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Hefei, China
| | - Huan Wu
- Scientific Research and Experiment Center, Anhui University of Chinese Medicine, Hefei, China
| | - Shi Huang
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Yue Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,Graduate School, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Hefei, China
| | - Nannan Qian
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,Graduate School, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Hefei, China
| | - Jie Liu
- Institute for Medical Virology, Goethe University Frankfurt Am Main, Frankfurt, Germany
| | - Wenming Yang
- Department of Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China.,Graduate School, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'An Medicine, Ministry of Education, Hefei, China
| | - Xianchun Duan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
8
|
Hayashi M, Abe K, Fujita M, Takahashi A, Sekine H, Ohira H. Association between serum ficolin-1 level and disease progression in primary biliary cholangitis. PLoS One 2020; 15:e0238300. [PMID: 32915797 PMCID: PMC7485786 DOI: 10.1371/journal.pone.0238300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/13/2020] [Indexed: 12/12/2022] Open
Abstract
Pattern recognition molecules (PRMs) in the complement system contribute to homeostasis as mediators of complement activation. The contribution of PRMs to primary biliary cholangitis (PBC) is unknown. In the current study, we aimed to assess the association between PRMs and the clinical findings of PBC. A total of 122 PBC patients and 20 healthy controls were enrolled. We measured four different PRMs (mannose-binding lectin [MBL], ficolin-1, ficolin-2 and ficolin-3) using stored sera, and retrospectively analyzed the associations between PRMs and laboratory findings, histological findings, and the development of cirrhosis-related conditions. Ficolin-1 levels were significantly higher in the PBC patients than in the healthy controls (152 ng/mL vs 102 ng/mL, P = 0.034), but no significant differences were observed regarding MBL, ficolin-2, and ficolin-3 levels. Ficolin-1 was significantly correlated with alkaline phosphatase (ALP). Low ficolin-1 levels were significantly associated with the development of cirrhosis-related conditions independent for histological stage and ALP levels (hazard ratio: 0.933; 95% confidence interval: 0.875-0.994; P = 0.032). Patients with low levels of ficolin-1 (< 77 ng/mL) had a significantly increased rate of developing cirrhosis-related conditions. Low ficolin-1 levels were associated with disease progression independent of histological stage and ALP levels in patients with PBC.
Collapse
Affiliation(s)
- Manabu Hayashi
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| | - Kazumichi Abe
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Masashi Fujita
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Atsushi Takahashi
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Hideharu Sekine
- Department of Immunology, Fukushima Medical University, Fukushima, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
9
|
Sadik CD, Miyabe Y, Sezin T, Luster AD. The critical role of C5a as an initiator of neutrophil-mediated autoimmune inflammation of the joint and skin. Semin Immunol 2018; 37:21-29. [PMID: 29602515 DOI: 10.1016/j.smim.2018.03.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/15/2023]
Abstract
The deposition of IgG autoantibodies in peripheral tissues and the subsequent activation of the complement system, which leads to the accumulation of the anaphylatoxin C5a in these tissues, is a common hallmark of diverse autoimmune diseases, including rheumatoid arthritis (RA) and pemphigoid diseases (PDs). C5a is a potent chemoattractant for granulocytes and mice deficient in its precursor C5 or its receptor C5aR1 are resistant to granulocyte recruitment and, consequently, to tissue inflammation in several models of autoimmune diseases. However, the mechanism whereby C5a/C5aR regulates granulocyte recruitment in these diseases has remained elusive. Mechanistic studies over the past five years into the role of C5a/C5aR1 in the K/BxN serum arthritis mouse model have provided novel insights into the mechanisms C5a/C5aR1 engages to initiate granulocyte recruitment into the joint. It is now established that the critical actions of C5a/C5aR1 do not proceed in the joint itself, but on the luminal endothelial surface of the joint vasculature, where C5a/C5aR1 mediate the arrest of neutrophils on the endothelium by activating β2 integrin. Then, C5a/C5aR1 induces the release of leukotriene B4 (LTB4) from the arrested neutrophils. The latter, subsequently, initiates by autocrine/paracrine actions via its receptor BLT1 the egress of neutrophils from the blood vessel lumen into the interstitial. Compelling evidence suggests that this C5a/C5aR1-LTB4/BLT1 axis driving granulocyte recruitment in arthritis may represent a more generalizable biological principle critically regulating effector cell recruitment in other IgG autoantibody-induced diseases, such as in pemphigoid diseases. Thus, dual inhibition of C5a and LTB4, as implemented in nature by the lipocalin coversin in the soft-tick Ornithodoros moubata, may constitute a most effective therapeutic principle for the treatment of IgG autoantibody-driven diseases.
Collapse
Affiliation(s)
- Christian D Sadik
- Department of Dermatology, Allergy, and Venereology University of Lübeck, 23538, Lübeck, Germany.
| | - Yoshishige Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tanya Sezin
- Department of Dermatology, Allergy, and Venereology University of Lübeck, 23538, Lübeck, Germany
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Martin IV, Bohner A, Boor P, Shagdarsuren E, Raffetseder U, Lammert F, Floege J, Ostendorf T, Weber SN. Complement C5a receptors C5L2 and C5aR in renal fibrosis. Am J Physiol Renal Physiol 2017; 314:F35-F46. [PMID: 28903945 DOI: 10.1152/ajprenal.00060.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Complement factor C5a has two known receptors, C5aR, which mediates proinflammatory effects, and C5L2, a potential C5a decoy receptor. We previously identified C5a/C5aR signaling as a potent profibrotic pathway in the kidney. Here we tested for the first time the role of C5L2 in renal fibrosis. In unilateral ureteral obstruction (UUO)-induced kidney fibrosis, the expression of C5aR and C5L2 increased similarly and gradually as fibrosis progressed and was particularly prominent in injured dilated tubules. Genetic deficiency of either C5aR or C5L2 significantly reduced UUO-induced tubular injury. Expression of key proinflammatory mediators, however, significantly increased in C5L2- compared with C5aR-deficient mice, but this had no effect on the number of renal infiltrating macrophages or T cells. Moreover, in C5L2-/- mice, the cytokine and matrix metalloproteinase-inhibitor tissue inhibitor of matrix metalloproteinase-1 was specifically enhanced. Consequently, in C5L2-/- mice the degree of renal fibrosis was similar to wild type (WT), albeit with reduced mRNA expression of some fibrosis-related genes. In contrast, C5aR-/- mice had significantly reduced renal fibrosis compared with WT and C5L2-/- mice in UUO. In vitro experiments with primary tubular cells demonstrated that deficiency for either C5aR or C5L2 led to a significantly reduced expression of tubular injury and fibrosis markers. Vice versa, stimulation of WT tubular cells with C5a significantly induced the expression of these markers, whereas the absence of either receptor abolished this induction. In conclusion, in experimental renal fibrosis C5L2 and C5aR both contribute to tubular injury, and, while C5aR acts profibrotic, C5L2 does not play a role in extracellular matrix accumulation, arguing against C5L2 functioning simply as a decoy receptor.
Collapse
Affiliation(s)
- Ina V Martin
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany
| | - Annika Bohner
- Division of Gastroenterology, Saarland University Medical Center , Homburg , Germany
| | - Peter Boor
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany.,Institute of Pathology, RWTH University of Aachen , Aachen , Germany
| | | | - Ute Raffetseder
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany
| | - Frank Lammert
- Division of Gastroenterology, Saarland University Medical Center , Homburg , Germany
| | - Jürgen Floege
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany
| | - Tammo Ostendorf
- Division of Nephrology, Rheinisch-Westfälische Technische Hochschule (RWTH) University of Aachen , Aachen , Germany
| | - Susanne N Weber
- Division of Gastroenterology, Saarland University Medical Center , Homburg , Germany
| |
Collapse
|
11
|
Massart J, Begriche K, Moreau C, Fromenty B. Role of nonalcoholic fatty liver disease as risk factor for drug-induced hepatotoxicity. J Clin Transl Res 2017; 3:212-232. [PMID: 28691103 PMCID: PMC5500243 DOI: 10.18053/jctres.03.2017s1.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity is often associated with nonalcoholic fatty liver disease (NAFLD), which refers to a large spectrum of hepatic lesions including fatty liver, nonalcoholic steatohepatitis (NASH) and cirrhosis. Different investigations showed or suggested that obesity and NAFLD are able to increase the risk of hepatotoxicity of different drugs. Some of these drugs could induce more frequently an acute hepatitis in obese individuals whereas others could worsen pre-existing NAFLD. AIM The main objective of the present review was to collect the available information regarding the role of NAFLD as risk factor for drug-induced hepatotoxicity. For this purpose, we performed a data-mining analysis using different queries including drug-induced liver injury (or DILI), drug-induced hepatotoxicity, fatty liver, nonalcoholic fatty liver disease (or NAFLD), steatosis and obesity. The main data from the collected articles are reported in this review and when available, some pathophysiological hypotheses are put forward. RELEVANCE FOR PATIENTS Drugs that could pose a potential risk in obese patients include compounds belonging to different pharmacological classes such as acetaminophen, halothane, methotrexate, rosiglitazone, stavudine and tamoxifen. For some of these drugs, experimental investigations in obese rodents confirmed the clinical observations and unveiled different pathophysiological mechanisms which could explain why these pharmaceuticals are particularly hepatotoxic in obesity and NAFLD. Other drugs such as pentoxifylline, phenobarbital and omeprazole might also pose a risk but more investigations are required to determine whether this risk is significant or not. Because obese people often take several drugs for the treatment of different obesity-related diseases such as type 2 diabetes, hyperlipidemia and coronary heart disease, it is urgent to identify the main pharmaceuticals that can cause acute hepatitis on a fatty liver background or induce NAFLD worsening.
Collapse
Affiliation(s)
- Julie Massart
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | - Caroline Moreau
- INSERM, U991, Université de Rennes 1, Rennes, France.,Service de Biochimie et Toxicologie, CHU Pontchaillou, Rennes, France
| | | |
Collapse
|
12
|
Yuan ZQ, Li KW. Role of farnesoid X receptor in cholestasis. J Dig Dis 2016; 17:501-509. [PMID: 27383832 DOI: 10.1111/1751-2980.12378] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/23/2016] [Accepted: 07/03/2016] [Indexed: 12/11/2022]
Abstract
The nuclear receptor farnesoid X receptor (FXR) plays an important role in physiological bile acid synthesis, secretion and transport. Defects of FXR regulation in these processes can cause cholestasis and subsequent pathological changes. FXR regulates the synthesis and uptake of bile acid via enzymes. It also increases bile acid solubility and elimination by promoting conjugation reactions and exports pump expression in cholestasis. The changes in bile acid transporters are involved in cholestasis, which can result from the mutations of transporter genes or acquired dysfunction of transport systems, such as inflammation-induced intrahepatic cholestasis. The modulation function of FXR in extrahepatic cholestasis is not identical to that in intrahepatic cholestasis, but the discrepancy may be reduced over time. In extrahepatic cholestasis, increasing biliary pressure can induce bile duct proliferation and bile infarcts, but the absence of FXR may ameliorate them. This review provides an update on the function of FXR in the regulation of bile acid metabolism, its role in the pathophysiological process of cholestasis and the therapeutic use of FXR agonists.
Collapse
Affiliation(s)
- Zhi Qing Yuan
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ke Wei Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
13
|
Gonadotropin-releasing hormone stimulates biliary proliferation by paracrine/autocrine mechanisms. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:1061-72. [PMID: 25794706 PMCID: PMC4380841 DOI: 10.1016/j.ajpath.2014.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/16/2014] [Accepted: 12/30/2014] [Indexed: 11/22/2022]
Abstract
During cholestatic liver disease, there is dysregulation in the balance between biliary growth and loss in bile duct-ligated (BDL) rats modulated by neuroendocrine peptides via autocrine/paracrine pathways. Gonadotropin-releasing hormone (GnRH) is a trophic peptide hormone that modulates reproductive function and proliferation in many cell types. We evaluated the autocrine role of GnRH in the regulation of cholangiocyte proliferation. The expression of GnRH receptors was assessed in a normal mouse cholangiocyte cell line (NMC), sham, and BDL rats. The effect of GnRH administration was evaluated in normal rats and in NMC. GnRH-induced biliary proliferation was evaluated by changes in intrahepatic bile duct mass and the expression of proliferation and function markers. The expression and secretion of GnRH in NMC and isolated cholangiocytes was assessed. GnRH receptor subtypes GnRHR1 and GnRHR2 were expressed in cholangiocytes. Treatment with GnRH increased intrahepatic bile duct mass as well as proliferation and function markers in cholangiocytes. Transient knockdown and pharmacologic inhibition of GnRHR1 in NMC decreased proliferation. BDL cholangiocytes had increased expression of GnRH compared with normal rats, accompanied by increased GnRH secretion. In vivo and in vitro knockdown of GnRH decreased intrahepatic bile duct mass/cholangiocyte proliferation and fibrosis. GnRH secreted by cholangiocytes promotes biliary proliferation via an autocrine pathway. Disruption of GnRH/GnRHR signaling may be important for the management of cholestatic liver diseases.
Collapse
|
14
|
Zuo S, Li W, Li Q, Zhao H, Tang J, Chen Q, Liu X, Zhang JH, Chen Y, Feng H. Protective effects of Ephedra sinica extract on blood-brain barrier integrity and neurological function correlate with complement C3 reduction after subarachnoid hemorrhage in rats. Neurosci Lett 2015; 609:216-22. [PMID: 26518242 DOI: 10.1016/j.neulet.2015.10.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 02/05/2023]
Abstract
Early brain injury, which is associated with brain cell death, blood-brain barrier disruption, brain edema, and other pathophysiological events, is thought to be the main target in the prevention of poor outcomes after subarachnoid hemorrhage (SAH). Emerging evidences indicates that complement system, especially complement C3 is detrimental to neurological outcomes of SAH patients. Recently, Ephedra sinica extract was extracted and purified, which exhibits ability to block the activity of the classical and alternative pathways of complement, and improve neurological outcomes after spinal cord injury and ischemic brain injury. However, it is still unclear whether Ephedra sinica extract could attenuate early brain injury after SAH. In the present study, a standard endovascular perforation model was used to produce the experimental SAH in Sprague-Dawley rats. Ephedra sinica extract (15mg/kg) was orally administrated daily and evaluated for effects on modified Garcia score, brain water content, Evans blue extravasation and fluorescence, cortex cell death by TUNEL staining, and the expressions of complement C3/C3b, activated C3, sonic hedgehog, osteopontin and matrix metalloproteinase-9 by western bolt and immunofluorescence staining. We founded that the Ephedra sinica extract alleviated the blood-brain barrier disruption and brain edema, eventually improved neurological functions after SAH in rats. These neuroprotective effects was associated with the inhibition of complement C3, possibly via upregulating sonic hedgehog and osteopontin signal, and reducing the expressions of matrix metalloproteinase-9. Taking together, these observations suggested complement C3 inhibition by the Ephedra sinica extract may be a protective factor against early brain injury after SAH.
Collapse
Affiliation(s)
- Shilun Zuo
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Wenyan Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Li
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Hengli Zhao
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jun Tang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qianwei Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xin Liu
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - John H Zhang
- Department of Anesthesiology, Neurosurgery and Physiology, Loma Linda University, Loma Linda, CA, United States
| | - Yujie Chen
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China.
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
15
|
Woolbright BL, Jaeschke H. Therapeutic targets for cholestatic liver injury. Expert Opin Ther Targets 2015; 20:463-75. [PMID: 26479335 DOI: 10.1517/14728222.2016.1103735] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Cholestasis is a reduction in bile flow that occurs during numerous pathologies. Blockage of the biliary tracts results in hepatic accumulation of bile acids or their conjugate bile salts. The molecular mechanisms behind liver injury associated with cholestasis are extensively studied, but not well understood. Multiple models of obstructive cholestasis result in a significant inflammatory infiltrate at the sites of necrosis that characterize the injury. AREAS COVERED This review will focus on direct bile acid toxicity during cholestasis, bile acid signaling processes and on the development and continuation of inflammation during cholestasis, with a focus on novel proposed molecular mediators of neutrophil recruitment. While significant progress has been made on these molecular mechanisms, a continued focus on how cholestasis and the innate immune system interact is necessary to discover targetable therapeutics that might protect the liver while leaving global immunity intact. EXPERT OPINION While bile acid toxicity likely occurs in humans and other mammals when toxic bile acids accumulate, persistent inflammation is likely responsible for continued liver injury during obstructive cholestasis. Targeting molecular mediators of inflammation may help prevent liver injury during acute cholestasis both in murine models and human patients.
Collapse
Affiliation(s)
- Benjamin L Woolbright
- a Department of Pharmacology , Toxicology & Therapeutics, University of Kansas Medical Center , 3901 Rainbow Blvd, MS 1018, Kansas City , KS , 66160 USA
| | - Hartmut Jaeschke
- a Department of Pharmacology , Toxicology & Therapeutics, University of Kansas Medical Center , 3901 Rainbow Blvd, MS 1018, Kansas City , KS , 66160 USA
| |
Collapse
|
16
|
Wu D, Yang XJ, Cheng P, Deng TG, Jiang X, Liu P, Liu CK, Meng FW, Hu KJ. The lateral pterygoid muscle affects reconstruction of the condyle in the sagittal fracture healing process: a histological study. Int J Oral Maxillofac Surg 2015; 44:1010-5. [DOI: 10.1016/j.ijom.2015.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/16/2014] [Accepted: 02/03/2015] [Indexed: 11/28/2022]
|
17
|
NIE FACHUAN, SU DONG, SHI YING, CHEN JINMEI, WANG HAIHUI, QIN WANXIANG, CHEN YAOHUA, WANG SUXIA, LI LEI. A preliminary study on the role of the complement regulatory protein, cluster of differentiation 55, in mice with diabetic neuropathic pain. Mol Med Rep 2014; 11:2076-82. [DOI: 10.3892/mmr.2014.2896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 10/03/2014] [Indexed: 11/05/2022] Open
|
18
|
Han Y, Onori P, Meng F, DeMorrow S, Venter J, Francis H, Franchitto A, Ray D, Kennedy L, Greene J, Renzi A, Mancinelli R, Gaudio E, Glaser S, Alpini G. Prolonged exposure of cholestatic rats to complete dark inhibits biliary hyperplasia and liver fibrosis. Am J Physiol Gastrointest Liver Physiol 2014; 307:G894-904. [PMID: 25214401 PMCID: PMC4216989 DOI: 10.1152/ajpgi.00288.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biliary hyperplasia and liver fibrosis are common features in cholestatic liver disease. Melatonin is synthesized by the pineal gland as well as the liver. Melatonin inhibits biliary hyperplasia of bile duct-ligated (BDL) rats. Since melatonin synthesis (by the enzyme serotonin N-acetyltransferase, AANAT) from the pineal gland increases after dark exposure, we hypothesized that biliary hyperplasia and liver fibrosis are diminished by continuous darkness via increased melatonin synthesis from the pineal gland. Normal or BDL rats (immediately after surgery) were housed with light-dark cycles or complete dark for 1 wk before evaluation of 1) the expression of AANAT in the pineal gland and melatonin levels in pineal gland tissue supernatants and serum; 2) biliary proliferation and intrahepatic bile duct mass, liver histology, and serum chemistry; 3) secretin-stimulated ductal secretion (functional index of biliary growth); 4) collagen deposition, liver fibrosis markers in liver sections, total liver, and cholangiocytes; and 5) expression of clock genes in cholangiocytes. In BDL rats exposed to dark there was 1) enhanced AANAT expression/melatonin secretion in pineal gland and melatonin serum levels; 2) improved liver morphology, serum chemistry and decreased biliary proliferation and secretin-stimulated choleresis; and 4) decreased fibrosis and expression of fibrosis markers in liver sections, total liver and cholangiocytes and reduced biliary expression of the clock genes PER1, BMAL1, CLOCK, and Cry1. Thus prolonged dark exposure may be a beneficial noninvasive therapeutic approach for the management of biliary disorders.
Collapse
Affiliation(s)
- Yuyan Han
- 4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Paolo Onori
- 7Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Fanyin Meng
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,3Operational Funds, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Sharon DeMorrow
- 2Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Julie Venter
- 4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Heather Francis
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,3Operational Funds, Baylor Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Antonio Franchitto
- 5Eleonora Lorillard Spencer Cenci Foundation, Rome, Italy; ,7Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Debolina Ray
- 4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Lindsey Kennedy
- 1Research, Central Texas Veterans Health Care System, Temple, Texas;
| | - John Greene
- 6Pathology, Baylor Scott & White, Temple, Texas; and
| | - Anastasia Renzi
- 7Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Romina Mancinelli
- 7Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Eugenio Gaudio
- 7Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, La Sapienza, Rome, Italy
| | - Shannon Glaser
- 1Research, Central Texas Veterans Health Care System, Temple, Texas; ,2Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; ,4Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| | - Gianfranco Alpini
- Research, Central Texas Veterans Health Care System, Temple, Texas; Baylor Scott & White Digestive Disease Research Center, Scott & White, Temple, Texas; Department of Medicine, Division Gastroenterology, Texas A&M University Health Science Center, Temple, Texas;
| |
Collapse
|
19
|
Permenter MG, Dennis WE, Sutto TE, Jackson DA, Lewis JA, Stallings JD. Exposure to cobalt causes transcriptomic and proteomic changes in two rat liver derived cell lines. PLoS One 2013; 8:e83751. [PMID: 24386269 PMCID: PMC3875483 DOI: 10.1371/journal.pone.0083751] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/07/2013] [Indexed: 12/23/2022] Open
Abstract
Cobalt is a transition group metal present in trace amounts in the human diet, but in larger doses it can be acutely toxic or cause adverse health effects in chronic exposures. Its use in many industrial processes and alloys worldwide presents opportunities for occupational exposures, including military personnel. While the toxic effects of cobalt have been widely studied, the exact mechanisms of toxicity remain unclear. In order to further elucidate these mechanisms and identify potential biomarkers of exposure or effect, we exposed two rat liver-derived cell lines, H4-II-E-C3 and MH1C1, to two concentrations of cobalt chloride. We examined changes in gene expression using DNA microarrays in both cell lines and examined changes in cytoplasmic protein abundance in MH1C1 cells using mass spectrometry. We chose to closely examine differentially expressed genes and proteins changing in abundance in both cell lines in order to remove cell line specific effects. We identified enriched pathways, networks, and biological functions using commercial bioinformatic tools and manual annotation. Many of the genes, proteins, and pathways modulated by exposure to cobalt appear to be due to an induction of a hypoxic-like response and oxidative stress. Genes that may be differentially expressed due to a hypoxic-like response are involved in Hif-1α signaling, glycolysis, gluconeogenesis, and other energy metabolism related processes. Gene expression changes linked to oxidative stress are also known to be involved in the NRF2-mediated response, protein degradation, and glutathione production. Using microarray and mass spectrometry analysis, we were able to identify modulated genes and proteins, further elucidate the mechanisms of toxicity of cobalt, and identify biomarkers of exposure and effect in vitro, thus providing targets for focused in vivo studies.
Collapse
Affiliation(s)
| | - William E. Dennis
- US Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Thomas E. Sutto
- Naval Research Laboratory, Washington, District of Columbia, United States of America
| | - David A. Jackson
- US Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - John A. Lewis
- US Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Jonathan D. Stallings
- US Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
- * E-mail:
| |
Collapse
|
20
|
Cazander G, Jukema GN, Nibbering PH. Complement activation and inhibition in wound healing. Clin Dev Immunol 2012; 2012:534291. [PMID: 23346185 PMCID: PMC3546472 DOI: 10.1155/2012/534291] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/05/2012] [Accepted: 12/07/2012] [Indexed: 11/17/2022]
Abstract
Complement activation is needed to restore tissue injury; however, inappropriate activation of complement, as seen in chronic wounds can cause cell death and enhance inflammation, thus contributing to further injury and impaired wound healing. Therefore, attenuation of complement activation by specific inhibitors is considered as an innovative wound care strategy. Currently, the effects of several complement inhibitors, for example, the C3 inhibitor compstatin and several C1 and C5 inhibitors, are under investigation in patients with complement-mediated diseases. Although (pre)clinical research into the effects of these complement inhibitors on wound healing is limited, available data indicate that reduction of complement activation can improve wound healing. Moreover, medicine may take advantage of safe and effective agents that are produced by various microorganisms, symbionts, for example, medicinal maggots, and plants to attenuate complement activation. To conclude, for the development of new wound care strategies, (pre)clinical studies into the roles of complement and the effects of application of complement inhibitors in wound healing are required.
Collapse
Affiliation(s)
- Gwendolyn Cazander
- Department of Surgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | | | | |
Collapse
|