1
|
Tobias IS, Galpin AJ. Moving human muscle physiology research forward: an evaluation of fiber type-specific protein research methodologies. Am J Physiol Cell Physiol 2020; 319:C858-C876. [DOI: 10.1152/ajpcell.00107.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human skeletal muscle is a heterogeneous tissue composed of multiple fiber types that express unique contractile and metabolic properties. While analysis of mixed fiber samples predominates and holds value, increasing attention has been directed toward studying proteins segregated by fiber type, a methodological distinction termed “fiber type-specific.” Fiber type-specific protein studies have the advantage of uncovering key molecular effects that are often missed in mixed fiber homogenate studies but also require greater time and resource-intensive methods, particularly when applied to human muscle. This review summarizes and compares current methods used for fiber type-specific protein analysis, highlighting their advantages and disadvantages for human muscle studies, in addition to recent advances in these techniques. These methods can be grouped into three categories based on the initial processing of the tissue: 1) muscle-specific fiber homogenates, 2) cross sections of fiber bundles, and 3) isolated single fibers, with various subtechniques for performing fiber type identification and protein quantification. The relative implementation for each unique methodological approach is analyzed from 83 fiber type-specific studies of proteins in live human muscle found in the literature to date. These studies have investigated several proteins involved in a wide range of cellular functions that are important to muscle tissue. The second half of this review summarizes key findings from this ensemble of fiber type-specific human protein studies. We highlight examples of where this analytical approach has helped to improve understanding of important physiological topics such as insulin sensitivity, muscle hypertrophy, muscle fatigue, and adaptation to different exercise programs.
Collapse
Affiliation(s)
- Irene S. Tobias
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| | - Andrew J. Galpin
- Biochemistry and Molecular Exercise Physiology Laboratory, Center for Sport Performance, California State University, Fullerton, California
| |
Collapse
|
2
|
Mathes S, Vanmunster M, Bloch W, Suhr F. Evidence for skeletal muscle fiber type-specific expressions of mechanosensors. Cell Mol Life Sci 2019; 76:2987-3004. [PMID: 30701284 PMCID: PMC11105595 DOI: 10.1007/s00018-019-03026-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 01/30/2023]
Abstract
Mechanosensors govern muscle tissue integrity and constitute a subcellular structure known as costameres. Costameres physically link the muscle extracellular matrix to contractile and signaling 'hubs' inside muscle fibers mainly via integrins and are localized beneath sarcolemmas of muscle fibers. Costameres are the main mechanosensors converting mechanical cues into biological events. However, the fiber type-specific costamere architecture in muscles is unexplored. We hypothesized that fiber types differ in the expression of genes coding for costamere components. By coupling laser microdissection to a multiplex tandem qPCR approach, we demonstrate that type 1 and type 2 fibers indeed show substantial differences in their mechanosensor complexes. We confirmed these data by fiber type population-specific protein analysis and confocal microscopy-based localization studies. We further show that knockdown of the costamere gene integrin-linked kinase (Ilk) in muscle precursor cells results in significantly increased slow-myosin-coding Myh7 gene, while the fast-myosin-coding genes Myh1, Myh2, and Myh4 are downregulated. In parallel, protein synthesis-enhancing signaling molecules (p-mTORSer2448, p < 0.05; p-P70S6KThr389, tendency with p < 0.1) were reduced upon Ilk knockdown. However, overexpression of slow type-inducing NFATc1 in muscle precursor cells did not change Ilk or other costamere gene expressions. In addition, we demonstrate fiber type-specific costamere gene regulation upon mechanical loading and unloading conditions. Our data imply that costamere genes, such as Ilk, are involved in the control of muscle fiber characteristics. Further, they identify costameres as muscle fiber type-specific loading management 'hubs' and may explain adaptation differences of muscle fiber types to mechanical (un)loading.
Collapse
Affiliation(s)
- Sebastian Mathes
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Mathias Vanmunster
- Exercise Physiology Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Tervuursevest 101, Bus 1500, 3001, Leuven, Belgium
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Frank Suhr
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany.
- Exercise Physiology Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Tervuursevest 101, Bus 1500, 3001, Leuven, Belgium.
| |
Collapse
|
3
|
Li L, Huang Q, Barbero M, Liu L, Nguyen T, Xu A, Ji L. Proteins and Signaling Pathways Response to Dry Needling Combined with Static Stretching Treatment for Chronic Myofascial Pain in a RAT Model: An Explorative Proteomic Study. Int J Mol Sci 2019; 20:ijms20030564. [PMID: 30699921 PMCID: PMC6387358 DOI: 10.3390/ijms20030564] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/09/2023] Open
Abstract
A quantitative proteomic analysis of the response to dry needling combined with static stretching treatment was performed in a rat model of active myofascial trigger points (MTrPs). 36 rats were divided into a model group (MG), a stretching group (SG) and a dry needling combined with stretching group (SDG). We performed three biological replicates to compare large-scale differential protein expression between groups by tandem mass tag (TMT) labeling technology based on nanoscale liquid chromatography mass spectrometry analysis (LC–MS/MS). Hierarchical clustering, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment and protein-protein interaction network analyses were performed for the general characterization of overall enriched proteins. For validation of the results of TMT, the candidate proteins were verified by parallel reaction monitoring (PRM) analysis. 285 differentially expressed proteins between groups were identified and quantified. Tight junction pathway played a dominant role in dry needling combined with static stretching treatment for the rat model of active MTrPs. Three candidate proteins, namely actinin alpha 3, calsequestrin-1 and parvalbumin alpha, were further validated, consistent with the results of LC–MS/MS. This is the first proteomics-based study to report the therapeutic mechanism underlying dry needling and static stretching treatment for MTrPs. Further functional verification of the potential signaling pathways and the enriched proteins is warranted.
Collapse
Affiliation(s)
- Lihui Li
- Department of Sport Medicine and Rehabilitation Center, Shanghai University of Sport, Shanghai 200438, China.
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, 6928 Manno, Switzerland.
| | - Qiangmin Huang
- Department of Sport Medicine and Rehabilitation Center, Shanghai University of Sport, Shanghai 200438, China.
| | - Marco Barbero
- Rehabilitation Research Laboratory 2rLab, Department of Business Economics Health and Social Care, University of Applied Sciences and Arts of Southern Switzerland, 6928 Manno, Switzerland.
| | - Lin Liu
- Sport and Health Science Department, Nanjing Sport Institute, Nanjing 210014, China.
| | - Thitham Nguyen
- Faculty of Sport Science, Ton Duc Thang University, Ho Chi Minh City 71000, Viet Nam.
| | - Anle Xu
- Department of Sport Medicine and Rehabilitation Center, Shanghai University of Sport, Shanghai 200438, China.
| | - Lijuan Ji
- Department of Sport Medicine and Rehabilitation Center, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
4
|
Wei ZJ, Zhou XH, Fan BY, Lin W, Ren YM, Feng SQ. Proteomic and bioinformatic analyses of spinal cord injury‑induced skeletal muscle atrophy in rats. Mol Med Rep 2016; 14:165-74. [PMID: 27177391 PMCID: PMC4918545 DOI: 10.3892/mmr.2016.5272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 05/03/2016] [Indexed: 11/06/2022] Open
Abstract
Spinal cord injury (SCI) may result in skeletal muscle atrophy. Identifying diagnostic biomarkers and effective targets for treatment is an important challenge in clinical work. The aim of the present study is to elucidate potential biomarkers and therapeutic targets for SCI‑induced muscle atrophy (SIMA) using proteomic and bioinformatic analyses. The protein samples from rat soleus muscle were collected at different time points following SCI injury and separated by two‑dimensional gel electrophoresis and compared with the sham group. The identities of these protein spots were analyzed by mass spectrometry (MS). MS demonstrated that 20 proteins associated with muscle atrophy were differentially expressed. Bioinformatic analyses indicated that SIMA changed the expression of proteins associated with cellular, developmental, immune system and metabolic processes, biological adhesion and localization. The results of the present study may be beneficial in understanding the molecular mechanisms of SIMA and elucidating potential biomarkers and targets for the treatment of muscle atrophy.
Collapse
Affiliation(s)
- Zhi-Jian Wei
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Xian-Hu Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Bao-You Fan
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Wei Lin
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yi-Ming Ren
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shi-Qing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
5
|
Bishop-Bailey D. Mechanisms governing the health and performance benefits of exercise. Br J Pharmacol 2014; 170:1153-66. [PMID: 24033098 DOI: 10.1111/bph.12399] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/18/2013] [Accepted: 07/23/2013] [Indexed: 12/18/2022] Open
Abstract
Humans are considered among the greatest if not the greatest endurance land animals. Over the last 50 years, as the population has become more sedentary, rates of cardiovascular disease and its associated risk factors such as obesity, type 2 diabetes and hypertension have all increased. Aerobic fitness is considered protective for all-cause mortality, cardiovascular disease, a variety of cancers, joint disease and depression. Here, I will review the emerging mechanisms that underlie the response to exercise, focusing on the major target organ the skeletal muscle system. Understanding the mechanisms of action of exercise will allow us to develop new therapies that mimic the protective actions of exercise.
Collapse
Affiliation(s)
- D Bishop-Bailey
- Comparative Biomedical Sciences, The Royal Veterinary College, London, UK
| |
Collapse
|
6
|
Holland A, Ohlendieck K. Proteomic profiling of the contractile apparatus from skeletal muscle. Expert Rev Proteomics 2014; 10:239-57. [DOI: 10.1586/epr.13.20] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Characterisation of nuclear architectural alterations during in vitro differentiation of human stem cells of myogenic origin. PLoS One 2013; 8:e73231. [PMID: 24019912 PMCID: PMC3760906 DOI: 10.1371/journal.pone.0073231] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/18/2013] [Indexed: 01/06/2023] Open
Abstract
Cell differentiation is based on a synchronised orchestra of complex pathways of intrinsic and extrinsic signals that manifest in the induced expression of specific transcription factors and pivotal genes within the nucleus. One cannot ignore the epigenetic status of differentiating cells, comprising not only histones and DNA modifications but also the spatial and temporal intranuclear chromatin organisation, which is an important regulator of nuclear processes. In the present study, we investigated the nuclear architecture of human primary myoblasts and myocytes in an in vitro culture, with reference to global changes in genomic expression. Repositioning of the chromosomal centromeres, along with alterations in the nuclear shape and volume, was observed as a consequence of myotube formation. Moreover, the microarray data showed that during in vitro myogenesis cells tend to silence rather than induce gene expression. The creation of a chromosome map marked with gene expression changes that were at least 2-fold confirmed the observation. Additionally, almost all of the chromosomal centromeres in the differentiated cells preferentially localised near the nuclear periphery when compared to the undifferentiated cells. The exceptions were chromosomes 7 and 11, in which we were unable to confirm the centromere repositioning. In our opinion, this is the first reported observation of the movement of chromosomal centromeres along differentiating myogenic cells. Based on these data we can conclude that the myogenic differentiation with global gene expression changes is accompanied by the spatial repositioning of chromosomes and chromatin remodelling, which are important processes that regulate cell differentiation.
Collapse
|