1
|
Abdul-Rahman T, Awuah WA, Mikhailova T, Kalmanovich J, Mehta A, Ng JC, Coghlan MA, Zivcevska M, Tedeschi AJ, de Oliveira EC, Kumar A, Cantu-Herrera E, Lyndin M, Sikora K, Alexiou A, Bilgrami AL, Al-Ghamdi KM, Perveen A, Papadakis M, Ashraf GM. Antioxidant, anti-inflammatory and epigenetic potential of curcumin in Alzheimer's disease. Biofactors 2024; 50:693-708. [PMID: 38226733 DOI: 10.1002/biof.2039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
Alzheimer's disease (AD) constitutes a multifactorial neurodegenerative pathology characterized by cognitive deterioration, personality alterations, and behavioral shifts. The ongoing brain impairment process poses significant challenges for therapeutic interventions due to activating multiple neurotoxic pathways. Current pharmacological interventions have shown limited efficacy and are associated with significant side effects. Approaches focusing on the early interference with disease pathways, before activation of broad neurotoxic processes, could be promising to slow down symptomatic progression of the disease. Curcumin-an integral component of traditional medicine in numerous cultures worldwide-has garnered interest as a promising AD treatment. Current research indicates that curcumin may exhibit therapeutic potential in neurodegenerative pathologies, attributed to its potent anti-inflammatory and antioxidant properties. Additionally, curcumin and its derivatives have demonstrated an ability to modulate cellular pathways via epigenetic mechanisms. This article aims to raise awareness of the neuroprotective properties of curcuminoids that could provide therapeutic benefits in AD. The paper provides a comprehensive overview of the neuroprotective efficacy of curcumin against signaling pathways that could be involved in AD and summarizes recent evidence of the biological efficiency of curcumins in vivo.
Collapse
Affiliation(s)
- Toufik Abdul-Rahman
- Sumy State University, Sumy, Ukraine
- Toufik's World Medical Association, Ukraine
| | - Wireko Andrew Awuah
- Sumy State University, Sumy, Ukraine
- Toufik's World Medical Association, Ukraine
| | | | - Jacob Kalmanovich
- Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | - Aashna Mehta
- University of Debrecen-Faculty of Medicine, Debrecen, Hungary
| | - Jyi Cheng Ng
- Faculty of Medicine and Health Sciences, University of Putra Malaysia, Serdang, Malaysia
| | - Megan Ariel Coghlan
- University of Louisville School of Medicine, Louisville, Kentucky, United States
| | - Marija Zivcevska
- Liberty University College of Osteopathic Medicine, Lynchburg, Virginia, United States
| | | | | | - Akinchita Kumar
- Lincoln Memorial University-DeBusk College of Osteopathic Medicine Harrogate, Harrogate, Tennessee, United States
| | - Emiliano Cantu-Herrera
- Department of Clinical Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza García, Nuevo León, Mexico
| | - Mykola Lyndin
- Sumy State University, Sumy, Ukraine
- Medical Faculty, Institute of Anatomy, University of Duisburg-Essen, Essen, Germany
| | | | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, New South Wales, Australia
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
- AFNP Med, Wien, Austria
| | - Anwar L Bilgrami
- Deanship of Scientific Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, Uttar Pradesh, India
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Wuppertal, Germany
| | - Ghulam Md Ashraf
- University of Sharjah, College of Health Sciences, and Research Institute for Medical and Health Sciences, Department of Medical Laboratory Sciences, Sharjah, United Arab Emirates
| |
Collapse
|
2
|
Tang Y, Zhang D, Gong X, Zheng J. Cross-seeding enables repurposing of aurein antimicrobial peptides as a promoter of human islet amyloid polypeptide (hIAPP). J Mater Chem B 2023; 11:7920-7932. [PMID: 37431688 DOI: 10.1039/d3tb01099f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Since hIAPP (human islet amyloid polypeptide) aggregation and microbial infection are recognized as significant risk factors that contribute to the pathogenesis of type II diabetes (T2D), targeting these catastrophic processes simultaneously may have a greater impact on the prevention and treatment of T2D. Different from the well-studied hIAPP inhibitors, here we propose and demonstrate a repurposing strategy for an antimicrobial peptide, aurein, which can simultaneously modulate hIAPP aggregation and inhibit microbial infection. Collective data from protein, cell, and bacteria assays revealed multiple functions of aurein including (i) promotion of hIAPP aggregation at a low molar ratio of aurein:hIAPP = 0.5 : 1-2 : 1, (ii) reduction of hIAPP-induced cytotoxicity in RIN-m5F cells, and (iii) preservation of original antimicrobial activity against E. coli., S.A., and S.E. strains in the presence of hIAPP. These functions of aurein are mainly derived from its strong binding to different hIAPP seeds through conformationally similar β-sheet association. Our study provides a promising avenue for the repurposing of antimicrobial peptides (such as aurein) as amyloid modulators for blocking at least two pathological pathways in T2D.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Xiong Gong
- School of Polymer Science and Polymer Engineering, The University of Akron, Ohio, USA
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| |
Collapse
|
3
|
Roy R, Paul S. Illustrating the Effect of Small Molecules Derived from Natural Resources on Amyloid Peptides. J Phys Chem B 2023; 127:600-615. [PMID: 36638829 DOI: 10.1021/acs.jpcb.2c07607] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The onset of amyloidogenic diseases is associated with the misfolding and aggregation of proteins. Despite extensive research, no effective therapeutics are yet available to treat these chronic degenerative diseases. Targeting the aggregation of disease-specific proteins is regarded as a promising new approach to treat these diseases. In the past few years, rapid progress in this field has been made in vitro, in vivo, and in silico to generate potential drug candidates, ranging from small molecules to polymers to nanoparticles. Small molecular probes, mostly those derived from natural sources, have been of particular interest among amyloid inhibitors. Here, we summarize some of the most important natural small molecular probes which can inhibit the aggregation of Aβ, hIAPP, and α-syn peptides and discuss how their binding efficacy and preference for the peptides vary with their structure and conformation. This provides a comprehensive idea of the crucial factors which should be incorporated into the future design of novel drug candidates useful for the treatment of amyloid diseases.
Collapse
Affiliation(s)
- Rituparna Roy
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam-781039, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati Assam-781039, India
| |
Collapse
|
4
|
Yang Y, Wang Q, Li G, Guo W, Yang Z, Liu H, Deng X. Cysteine-Derived Chiral Carbon Quantum Dots: A Fibrinolytic Activity Regulator for Plasmin to Target the Human Islet Amyloid Polypeptide for Type 2 Diabetes Mellitus. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2617-2629. [PMID: 36596222 DOI: 10.1021/acsami.2c17975] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The fibrillization and deposition of the human islet amyloid polypeptide (hIAPP) are the pathological hallmark of type 2 diabetes mellitus (T2DM), and these insoluble fibrotic depositions of hIAPP are considered to strongly affect insulin secretion by inducing toxicity toward pancreatic islet β-cells. The current strategy of preventing amyloid aggregation by nanoparticle-assisted inhibitors can only disassemble fibrotic amyloids into more toxic oligomers and/or protofibrils. Herein, for the first time, we propose a type of cysteine-derived chiral carbon quantum dot (CQD) that targets plasmin, a core natural fibrinolytic protease in humans. These CQDs can serve as fibrinolytic activity regulators for plasmin to cleave hIAPP into nontoxic polypeptides or into even smaller amino acid fragments, thus alleviating hIAPP's fibrotic amyloid-induced cytotoxicity. Our experiments indicate that chiral CQDs have opposing effects on plasmin activity. The l-CQDs promote the cleavage of hIAPP by enhancing plasmin activity at a promotion ratio of 23.2%, thus protecting β-cells from amyloid-induced toxicity. In contrast, the resultant d-CQDs significantly inhibit proteolysis, decreasing plasmin activity by 31.5% under the same reaction conditions. Second harmonic generation (SHG) microscopic imaging is initially used to dynamically characterize hIAPP before and after proteolysis. The l-CQD promotion of plasmin activity thus provides a promising avenue for the hIAPP-targeted treatment of T2DM to treat low fibrinolytic activity, while the d-CQDs, as inhibitors of plasmin activity, may improve patient survival for hyperfibrinolytic conditions, such as those existing during surgeries and traumas.
Collapse
Affiliation(s)
- Yongzhen Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Qin Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Gongjian Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Wenjing Guo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou510530, China
| | - Zuojun Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Hao Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| | - Xiaoyuan Deng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou510631, China
| |
Collapse
|
5
|
Guo H, Feng Y, Deng Y, Yan T, Liang Z, Zhou Y, Zhang W, Xu E, Liu D, Wang W. Continuous flow modulates zein nanoprecipitation solvent environment to obtain colloidal particles with high curcumin loading. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Orr AA, Kuhlmann SK, Tamamis P. Computational design of a β-wrapin's N-terminal domain with canonical and non-canonical amino acid modifications mimicking curcumin's proposed inhibitory function. Biophys Chem 2022; 286:106805. [DOI: 10.1016/j.bpc.2022.106805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
|
7
|
Marmentini C, Branco RCS, Boschero AC, Kurauti MA. Islet amyloid toxicity: From genesis to counteracting mechanisms. J Cell Physiol 2021; 237:1119-1142. [PMID: 34636428 DOI: 10.1002/jcp.30600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 09/09/2021] [Accepted: 10/01/2021] [Indexed: 11/11/2022]
Abstract
Islet amyloid polypeptide (IAPP or amylin) is a hormone co-secreted with insulin by pancreatic β-cells and is the major component of islet amyloid. Islet amyloid is found in the pancreas of patients with type 2 diabetes (T2D) and may be involved in β-cell dysfunction and death, observed in this disease. Thus, investigating the aspects related to amyloid formation is relevant to the development of strategies towards β-cell protection. In this sense, IAPP misprocessing, IAPP overproduction, and disturbances in intra- and extracellular environments seem to be decisive for IAPP to form islet amyloid. Islet amyloid toxicity in β-cells may be triggered in intra- and/or extracellular sites by membrane damage, endoplasmic reticulum stress, autophagy disruption, mitochondrial dysfunction, inflammation, and apoptosis. Importantly, different approaches have been suggested to prevent islet amyloid cytotoxicity, from inhibition of IAPP aggregation to attenuation of cell death mechanisms. Such approaches have improved β-cell function and prevented the development of hyperglycemia in animals. Therefore, counteracting islet amyloid may be a promising therapy for T2D treatment.
Collapse
Affiliation(s)
- Carine Marmentini
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Renato C S Branco
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Antonio C Boschero
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil
| | - Mirian A Kurauti
- Laboratory of Endocrine Pancreas and Metabolism, Obesity and Comorbidities Research Center (OCRC), University of Campinas (UNICAMP), Campinas, Brazil.,Department of Physiological Sciences, Biological Sciences Center, State University of Maringa (UEM), Maringa, Brazil
| |
Collapse
|
8
|
Radbakhsh S, Barreto GE, Bland AR, Sahebkar A. Curcumin: A small molecule with big functionality against amyloid aggregation in neurodegenerative diseases and type 2 diabetes. Biofactors 2021; 47:570-586. [PMID: 33893674 DOI: 10.1002/biof.1735] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022]
Abstract
Amyloidosis is a concept that implicates disorders and complications that are due to abnormal protein accumulation in different cells and tissues. Protein aggregation-associated diseases are classified according to the type of aggregates and deposition sites, such as neurodegenerative disorders and type 2 diabetes mellitus. Polyphenolic phytochemicals such as curcumin and its derivatives have anti-amyloid effects both in vitro and in animal models; however, the underlying mechanisms are not understood. In this review, we summarized possible mechanisms by which curcumin could interfere with self-assembly processes and reduce amyloid aggregation in amyloidosis. Furthermore, we discuss clinical trials in which curcumin is used as a therapeutic agent for the treatment of diseases linking to protein aggregates.
Collapse
Affiliation(s)
- Shabnam Radbakhsh
- Department of Medical Biotechnology and Nanotechnology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Abigail R Bland
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Szunerits S, Melinte S, Barras A, Pagneux Q, Voronova A, Abderrahmani A, Boukherroub R. The impact of chemical engineering and technological advances on managing diabetes: present and future concepts. Chem Soc Rev 2021; 50:2102-2146. [PMID: 33325917 DOI: 10.1039/c9cs00886a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monitoring blood glucose levels for diabetic patients is critical to achieve tight glycaemic control. As none of the current antidiabetic treatments restore lost functional β-cell mass in diabetic patients, insulin injections and the use of insulin pumps are most widely used in the management of glycaemia. The use of advanced and intelligent chemical engineering, together with the incorporation of micro- and nanotechnological-based processes have lately revolutionized diabetic management. The start of this concept goes back to 1974 with the description of an electrode that repeatedly measures the level of blood glucose and triggers insulin release from an infusion pump to enter the blood stream from a small reservoir upon need. Next to the insulin pumps, other drug delivery routes, including nasal, transdermal and buccal, are currently investigated. These processes necessitate competences from chemists, engineers-alike and innovative views of pharmacologists and diabetologists. Engineered micro and nanostructures hold a unique potential when it comes to drug delivery applications required for the treatment of diabetic patients. As the technical aspects of chemistry, biology and informatics on medicine are expanding fast, time has come to step back and to evaluate the impact of technology-driven chemistry on diabetics and how the bridges from research laboratories to market products are established. In this review, the large variety of therapeutic approaches proposed in the last five years for diabetic patients are discussed in an applied context. A survey of the state of the art of closed-loop insulin delivery strategies in response to blood glucose level fluctuation is provided together with insights into the emerging key technologies for diagnosis and drug development. Chemical engineering strategies centered on preserving and regenerating functional pancreatic β-cell mass are evoked in addition as they represent a permanent solution for diabetic patients.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Sorin Melinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Anna Voronova
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| |
Collapse
|
10
|
Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, Ma B, Nussinov R, Najafi S, Ngo ST, Loquet A, Chiricotto M, Ganguly P, McCarty J, Li MS, Hall C, Wang Y, Miller Y, Melchionna S, Habenstein B, Timr S, Chen J, Hnath B, Strodel B, Kayed R, Lesné S, Wei G, Sterpone F, Doig AJ, Derreumaux P. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer's Disease, Parkinson's Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem Rev 2021; 121:2545-2647. [PMID: 33543942 PMCID: PMC8836097 DOI: 10.1021/acs.chemrev.0c01122] [Citation(s) in RCA: 418] [Impact Index Per Article: 139.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein misfolding and aggregation is observed in many amyloidogenic diseases affecting either the central nervous system or a variety of peripheral tissues. Structural and dynamic characterization of all species along the pathways from monomers to fibrils is challenging by experimental and computational means because they involve intrinsically disordered proteins in most diseases. Yet understanding how amyloid species become toxic is the challenge in developing a treatment for these diseases. Here we review what computer, in vitro, in vivo, and pharmacological experiments tell us about the accumulation and deposition of the oligomers of the (Aβ, tau), α-synuclein, IAPP, and superoxide dismutase 1 proteins, which have been the mainstream concept underlying Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes (T2D), and amyotrophic lateral sclerosis (ALS) research, respectively, for many years.
Collapse
Affiliation(s)
- Phuong H Nguyen
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Bikash R Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jie Zheng
- Department of Chemical & Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Peter Faller
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Laura Dominguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Nikolay V Dokholyan
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Chemistry, and Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London SW7 2AZ, U.K
- Molecular Biology, University of Naples Federico II, Naples 80138, Italy
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, United States
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Saeed Najafi
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics & Faculty of Applied Sciences, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Mara Chiricotto
- Department of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, U.K
| | - Pritam Ganguly
- Department of Chemistry and Biochemistry, and Department of Physics, University of California, Santa Barbara, California 93106, United States
| | - James McCarty
- Chemistry Department, Western Washington University, Bellingham, Washington 98225, United States
| | - Mai Suan Li
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yiming Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Yifat Miller
- Department of Chemistry and The Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | | | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Stepan Timr
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Jiaxing Chen
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Brianna Hnath
- Department of Pharmacology and Biochemistry & Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Diseases, and Departments of Neurology, Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555, United States
| | - Sylvain Lesné
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory for Computational Physical Science, Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200438, China
| | - Fabio Sterpone
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
| | - Andrew J Doig
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Philippe Derreumaux
- CNRS, UPR9080, Université de Paris, Laboratory of Theoretical Biochemistry, IBPC, Fondation Edmond de Rothschild, PSL Research University, Paris 75005, France
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, 33000 Ho Chi Minh City, Vietnam
| |
Collapse
|
11
|
Shin SA, Joo BJ, Lee JS, Ryu G, Han M, Kim WY, Park HH, Lee JH, Lee CS. Phytochemicals as Anti-Inflammatory Agents in Animal Models of Prevalent Inflammatory Diseases. Molecules 2020; 25:E5932. [PMID: 33333788 PMCID: PMC7765227 DOI: 10.3390/molecules25245932] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Phytochemicals are known to have anti-inflammatory effects in vitro and in vivo, such as in inflammatory disease model systems. Inflammation is an essential immune response to exogenous stimuli such as infection and injury. Although inflammation is a necessary host-defense mechanism, chronic inflammation is associated with the continuous local or systemic release of inflammatory mediators, non-cytokine mediators, such as ROS and NO, and inflammatory cytokines are strongly implicated in the pathogenesis of various inflammatory disorders. Phytochemicals that exhibit anti-inflammatory mechanisms that reduce sustained inflammation could be therapeutic candidates for various inflammatory diseases. These phytochemicals act by modulating several main inflammatory signaling pathways, including NF-κB, MAPKs, STAT, and Nrf-2 signaling. Here, we discuss the characteristics of phytochemicals that possess anti-inflammatory activities in various chronic inflammatory diseases and review the molecular signaling pathways altered by these anti-inflammatory phytochemicals, with a focus on transcription factor pathways. Furthermore, to evaluate the phytochemicals as drug candidates, we translate the effective doses of phytochemicals in mice or rat disease models into the human-relevant equivalent and compare the human-relevant equivalent doses of several phytochemicals with current anti-inflammatory drugs doses used in different types of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Seong Ah Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| | - Byeong Jun Joo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| | - Jun Seob Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| | - Gyoungah Ryu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| | - Minjoo Han
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| | - Woe Yeon Kim
- Division of Applied Life Science (BK21), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University, Jinju 52828, Korea;
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea;
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon 21990, Korea;
- Department of Polar Sciences, University of Science and Technology, Incheon 21990, Korea
| | - Chang Sup Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea; (S.A.S.); (B.J.J.); (J.S.L.); (G.R.); (M.H.)
| |
Collapse
|
12
|
Wu J, Yin X, Ye H, Gao Z, Li H. Structure relationship of metalloporphyrins in inhibiting the aggregation of hIAPP. Int J Biol Macromol 2020; 167:141-150. [PMID: 33253743 DOI: 10.1016/j.ijbiomac.2020.11.161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/31/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Metalloporphyrins (FeTBAP, MnTBAP, FeTMPyP and MnTMPyP) have been proposed as effective therapeutic agents in ONOO--related disease including type 2 diabetes (T2D). As these metalloporphyrins share the structural similarities of the planar aromatic conjugation with a valuable class of inhibitors against amyloids fibrillation, they might be effective inhibitors via aromatic π-π stacking interactions with amyloid peptides. Here, we found that the anionic metalloporphyrins (FeTBAP and MnTBAP) are effective inhibitors against hIAPP fibrillation, while, the cationic metalloporphyrins (FeTMPyP and MnTMPyP) only have limited inhibitory effects. Besides, the porphyrin with iron center is more effective than the one with manganese center. Our results favor the electrostatic attraction contributes the main reason to the inhibitory effect between the anionic porphyrins and hIAPP, followed by the π-π stacking interactions between aromatic ring of porphyrins and hIAPP and the stronger coordination ability of iron center to hIAPP. Additionally, by comparison with FeTBAP, which can completely inhibit cytotoxicity induced by hIAPP via stabilizing hIAPP monomers, MnTBAP fails to reverse the cytotoxicity due to that it can only delay the transition of hIAPP from α-helix to β-sheet rich oligomers. Our results provide theoretical significance for further designing or screening of metalloporphyrins as bifunctional antidiabetic drugs.
Collapse
Affiliation(s)
- Jinming Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China; Department of Biology and Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Xiaoying Yin
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China
| | - Huixian Ye
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China; School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, PR China
| | - Zhonghong Gao
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| | - Hailing Li
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan 430074, PR China.
| |
Collapse
|
13
|
Tang Y, Zhang D, Zhang Y, Liu Y, Gong X, Chang Y, Ren B, Zheng J. Introduction and Fundamentals of Human Islet Amyloid Polypeptide Inhibitors. ACS APPLIED BIO MATERIALS 2020; 3:8286-8308. [DOI: 10.1021/acsabm.0c01234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Xiong Gong
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325-0301, United States
| | - Yung Chang
- Department of Chemical Engineering, R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Baiping Ren
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325-3906, United States
| |
Collapse
|
14
|
Zhang P, Zeng L, Gao W, Li H, Gao Z. Peroxynitrite scavenger FeTPPS effectively inhibits hIAPP aggregation and protects against amyloid induced cytotoxicity. Int J Biol Macromol 2020; 161:336-344. [DOI: 10.1016/j.ijbiomac.2020.06.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022]
|
15
|
Maity D, Kumar S, AlHussein R, Gremer L, Howarth M, Karpauskaite L, Hoyer W, Magzoub M, Hamilton AD. Sub-stoichiometric inhibition of IAPP aggregation: a peptidomimetic approach to anti-amyloid agents. RSC Chem Biol 2020; 1:225-232. [PMID: 34458762 PMCID: PMC8341728 DOI: 10.1039/d0cb00086h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/03/2020] [Indexed: 11/21/2022] Open
Abstract
Membrane-catalysed misfolding of islet amyloid polypeptide is associated with the death of β-cells in type II diabetes (T2D). Most active compounds so far reported require high doses for inhibition of membrane bound IAPP fibrillation. Here, we describe a naphthalimide-appended oligopyridylamide-based α-helical mimetic, DM 1, for targeting membrane bound IAPP. DM 1 completely inhibits the aggregation of IAPP at doses of 0.2 equivalents. DM 1 is also effective at similarly low doses for inhibition of seed-catalyzed secondary nucleation. An NMR based study demonstrates that DM 1 modulates IAPP self-assembly by stabilizing and/or perturbing the N-terminus helix conformation. DM 1 at substoichiometric doses rescues rat insulinoma cells from IAPP-mediated cytotoxicity. Most importantly, 0.2 equivalents of DM 1 disaggregate preformed oligomers and fibrils and can reverse cytotoxicity by modulating toxic preformed oligomers and fibrils of IAPP into non-toxic conformations.
Collapse
Affiliation(s)
- Debabrata Maity
- Department of Chemistry, New York University New York New York 10003 USA
| | - Sunil Kumar
- Department of Chemistry, New York University New York New York 10003 USA
| | - Ruyof AlHussein
- Department of Chemistry, New York University New York New York 10003 USA
| | - Lothar Gremer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Germany.,Institute of Complex Systems, Structural Biochemistry (ICS-6) Forschungszentrum Jülich 52425 Jülich Germany
| | - Madeline Howarth
- Biology Program, New York University Abu Dhabi P.O. Box 129188, Saadiyat Island Campus Abu Dhabi United Arab Emirates
| | - Laura Karpauskaite
- Biology Program, New York University Abu Dhabi P.O. Box 129188, Saadiyat Island Campus Abu Dhabi United Arab Emirates
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf 40225 Düsseldorf Germany.,Institute of Complex Systems, Structural Biochemistry (ICS-6) Forschungszentrum Jülich 52425 Jülich Germany
| | - Mazin Magzoub
- Biology Program, New York University Abu Dhabi P.O. Box 129188, Saadiyat Island Campus Abu Dhabi United Arab Emirates
| | - Andrew D Hamilton
- Department of Chemistry, New York University New York New York 10003 USA
| |
Collapse
|
16
|
Raimundo AF, Ferreira S, Martins IC, Menezes R. Islet Amyloid Polypeptide: A Partner in Crime With Aβ in the Pathology of Alzheimer's Disease. Front Mol Neurosci 2020; 13:35. [PMID: 32265649 PMCID: PMC7103646 DOI: 10.3389/fnmol.2020.00035] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Diabetes affects hundreds of millions of patients worldwide. Despite the advances in understanding the disease and therapeutic options, it remains a leading cause of death and of comorbidities globally. Islet amyloid polypeptide (IAPP), or amylin, is a hormone produced by pancreatic β-cells. It contributes to the maintenance of glucose physiological levels namely by inhibiting insulin and glucagon secretion as well as controlling adiposity and satiation. IAPP is a highly amyloidogenic polypeptide forming intracellular aggregates and amyloid structures that are associated with β-cell death. Data also suggest the relevance of unprocessed IAPP forms as seeding for amyloid buildup. Besides the known consequences of hyperamylinemia in the pancreas, evidence has also pointed out that IAPP has a pathological role in cognitive function. More specifically, IAPP was shown to impair the blood–brain barrier; it was also seen to interact and co-deposit with amyloid beta peptide (Aß), and possibly with Tau, within the brain of Alzheimer's disease (AD) patients, thereby contributing to diabetes-associated dementia. In fact, it has been suggested that AD results from a metabolic dysfunction in the brain, leading to its proposed designation as type 3 diabetes. Here, we have first provided a brief perspective on the IAPP amyloidogenic process and its role in diabetes and AD. We have then discussed the potential interventions for modulating IAPP proteotoxicity that can be explored for therapeutics. Finally, we have proposed the concept of a “diabetes brain phenotype” hypothesis in AD, which may help design future IAPP-centered drug developmentstrategies against AD.
Collapse
Affiliation(s)
- Ana F Raimundo
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia Ferreira
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Regina Menezes
- iBET - Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.,CEDOC - Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal.,ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
17
|
Sinézia C, Lima LMTR. Heterotropic Modulation of Amylin Fibrillation by Small Molecules: Implications for Formulative Designs. Protein J 2019; 39:10-20. [DOI: 10.1007/s10930-019-09877-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Kumar AP, Lee S, Lukman S. Computational and Experimental Approaches to Design Inhibitors of Amylin Aggregation. Curr Drug Targets 2019; 20:1680-1694. [DOI: 10.2174/1389450120666190719164316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 01/21/2023]
Abstract
Amylin is a neuroendocrine peptide hormone secreted by pancreatic ß-cells; however,
amylin is toxic to ß-cells when it is aggregated in type 2 diabetes mellitus (T2DM). It is important to
understand amylin’s structures and aggregation mechanism for the discovery and design of effective
drugs to inhibit amylin aggregation. In this review, we investigated experimental and computational
studies on amylin structures and inhibitors. Our review provides some novel insights into amylin, particularly
for the design of its aggregation inhibitors to treat T2DM. We detailed the potential inhibitors
that have been studied hitherto and highlighted the neglected need to consider different amylin attributes
that depend on the presence/absence of physiologically relevant conditions, such as membranes.
These conditions and the experimental methods can greatly influence the results of studies on amylininhibitor
complexes. Text-mining over 3,000 amylin-related PubMed abstracts suggests the combined
therapeutic potential of amylin with leptin and glucagon-like peptide-1, which are two key hormones
in obesity. The results also suggest that targeting amylin aggregation can contribute to therapeutic efforts
for Alzheimer’s disease (AD). Therefore, we have also reviewed the role of amylin in other conditions
including obesity and AD. Finally, we provided insights for designing inhibitors of different
types (small molecules, proteins, peptides/mimetics, metal ions) to inhibit amylin aggregation.
Collapse
Affiliation(s)
- Ammu Prasanna Kumar
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Sungmun Lee
- Department of Biomedical Engineering and Healthcare Engineering Innovation Center, College of Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Suryani Lukman
- Department of Chemistry, College of Arts and Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
19
|
Zheng Q, Kebede MT, Kemeh MM, Islam S, Lee B, Bleck SD, Wurfl LA, Lazo ND. Inhibition of the Self-Assembly of Aβ and of Tau by Polyphenols: Mechanistic Studies. Molecules 2019; 24:E2316. [PMID: 31234523 PMCID: PMC6630797 DOI: 10.3390/molecules24122316] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022] Open
Abstract
The amyloid-β (Aβ) peptide and tau protein are thought to play key neuropathogenic roles in Alzheimer's disease (AD). Both Aβ and tau self-assemble to form the two major pathological hallmarks of AD: amyloid plaques and neurofibrillary tangles, respectively. In this review, we show that naturally occurring polyphenols abundant in fruits, vegetables, red wine, and tea possess the ability to target pathways associated with the formation of assemblies of Aβ and tau. Polyphenols modulate the enzymatic processing of the amyloid-β precursor protein and inhibit toxic Aβ oligomerization by enhancing the clearance of Aβ42 monomer, modulating monomer-monomer interactions and remodeling oligomers to non-toxic forms. Additionally, polyphenols modulate tau hyperphosphorylation and inhibit tau β-sheet formation. The anti-Aβ-self-assembly and anti-tau-self-assembly effects of polyphenols increase their potential as preventive or therapeutic agents against AD, a complex disease that involves many pathological mechanisms.
Collapse
Affiliation(s)
- Qiuchen Zheng
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
| | - Micheal T Kebede
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
| | - Merc M Kemeh
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
| | - Saadman Islam
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
| | - Bethany Lee
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
| | - Stuart D Bleck
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
| | - Liliana A Wurfl
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
| | - Noel D Lazo
- Carlson School of Chemistry and Biochemistry, Clark University, 950 Main Street, Worcester, MA 01610, USA.
| |
Collapse
|
20
|
Azadirachtin inhibits amyloid formation, disaggregates pre-formed fibrils and protects pancreatic β-cells from human islet amyloid polypeptide/amylin-induced cytotoxicity. Biochem J 2019; 476:889-907. [DOI: 10.1042/bcj20180820] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/18/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022]
Abstract
Abstract
The human islet amyloid polypeptide (hIAPP) or amylin is the major constituent of amyloidogenic aggregates found in pancreatic islets of type 2 diabetic patients that have been associated with β-cell dysfunction and/or death associated with type 2 diabetes mellitus (T2DM). Therefore, developing and/or identifying inhibitors of hIAPP aggregation pathway and/or compound that can mediate disaggregation of preformed aggregates holds promise as a medical intervention for T2DM management. In the current study, the anti-amyloidogenic potential of Azadirachtin (AZD)—a secondary metabolite isolated from traditional medicinal plant Neem (Azadirachta indica)—was investigated by using a combination of biophysical and cellular assays. Our results indicate that AZD supplementation not only inhibits hIAPP aggregation but also disaggregates pre-existing hIAPP fibrils by forming amorphous aggregates that are non-toxic to pancreatic β-cells. Furthermore, AZD supplementation in pancreatic β-cells (INS-1E) resulted in inhibition of oxidative stress; along with restoration of the DNA damage, lipid peroxidation and the associated membrane damage, endoplasmic reticulum stress and mitochondrial membrane potential. AZD treatment also restored glucose-stimulated insulin secretion from pancreatic islets exposed to hIAPP. All-atom molecular dynamics simulation studies on full-length hIAPP pentamer with AZD suggested that AZD interacted with four possible binding sites in the amyloidogenic region of hIAPP. In summary, our results suggest AZD to be a promising candidate for combating T2DM and related amyloidogenic disorders.
Collapse
|
21
|
Khatun S, Singh A, Mandal D, Chandra A, Gupta AN. Quantification of protein aggregation rates and quenching effects of amylin–inhibitor complexes. Phys Chem Chem Phys 2019; 21:20083-20094. [DOI: 10.1039/c9cp03238j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Comparative inhibition capabilities of graphene quantum dots, resveratrol, and curcumin decipher the dose-dependent competitive role of protein aggregation rate and quenching effect in amylin fibrillation.
Collapse
Affiliation(s)
- Suparna Khatun
- Department of Physics
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Anurag Singh
- Department of Physics
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Debabrata Mandal
- School of Nanoscience and Technology
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| | - Amreesh Chandra
- Department of Physics
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
- School of Nanoscience and Technology
| | - Amar Nath Gupta
- Department of Physics
- Indian Institute of Technology Kharagpur
- Kharagpur-721302
- India
| |
Collapse
|
22
|
Dhouafli Z, Cuanalo-Contreras K, Hayouni EA, Mays CE, Soto C, Moreno-Gonzalez I. Inhibition of protein misfolding and aggregation by natural phenolic compounds. Cell Mol Life Sci 2018; 75:3521-3538. [PMID: 30030591 PMCID: PMC11105286 DOI: 10.1007/s00018-018-2872-2] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/12/2018] [Accepted: 07/09/2018] [Indexed: 12/17/2022]
Abstract
Protein misfolding and aggregation into fibrillar deposits is a common feature of a large group of degenerative diseases affecting the central nervous system or peripheral organs, termed protein misfolding disorders (PMDs). Despite their established toxic nature, clinical trials aiming to reduce misfolded aggregates have been unsuccessful in treating or curing PMDs. An interesting possibility for disease intervention is the regular intake of natural food or herbal extracts, which contain active molecules that inhibit aggregation or induce the disassembly of misfolded aggregates. Among natural compounds, phenolic molecules are of particular interest, since most have dual activity as amyloid aggregation inhibitors and antioxidants. In this article, we review many phenolic natural compounds which have been reported in diverse model systems to have the potential to delay or prevent the development of various PMDs, including Alzheimer's and Parkinson's diseases, prion diseases, amyotrophic lateral sclerosis, systemic amyloidosis, and type 2 diabetes. The lower toxicity of natural compounds compared to synthetic chemical molecules suggest that they could serve as a good starting point to discover protein misfolding inhibitors that might be useful for the treatment of various incurable diseases.
Collapse
Affiliation(s)
- Zohra Dhouafli
- Université de Tunis El Manar, Faculté des Sciences de Tunis, 2092, Tunis, Tunisia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Karina Cuanalo-Contreras
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - El Akrem Hayouni
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cédria, BP 901, 2050, Hammam-Lif, Tunisia
| | - Charles E Mays
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Claudio Soto
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Ines Moreno-Gonzalez
- The Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
- Department of Cell Biology, Networking Research Center on Neurodegenerative Diseases (CIBERNED), Facultad Ciencias, Universidad de Malaga, Málaga, Spain.
| |
Collapse
|
23
|
Kim Y, Clifton P. Curcumin, Cardiometabolic Health and Dementia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15102093. [PMID: 30250013 PMCID: PMC6210685 DOI: 10.3390/ijerph15102093] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/15/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
Abstract
Current research indicates curcumin [diferuloylmethane; a polyphenolic compound isolated from the rhizomes of the dietary spice turmeric (Curcuma longa)] exerts a beneficial effect on health which may be partly attributable to its anti-oxidative and anti-inflammatory properties. The aim of this review is to examine potential mechanisms of the actions of curcumin in both animal and human studies. Curcumin modulates relevant molecular target pathways to improve glucose and lipid metabolism, suppress inflammation, stimulate antioxidant enzymes, facilitate insulin signalling and reduce gut permeability. Curcumin also inhibits Aβ and tau accumulation in animal models and enhances mitochondria and synaptic function. In conclusion, in high-dose animal studies and in vitro, curcumin exerts a potential beneficial effect on cardiometabolic disease. However, human studies are relatively unconvincing. More intervention studies should be conducted with the new curcumin formulation with improved oral bioavailability.
Collapse
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition/Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea.
| | - Peter Clifton
- School of Pharmacy and Medical Sciences, University of South Australia, General Post Office Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
24
|
IAPP in type II diabetes: Basic research on structure, molecular interactions, and disease mechanisms suggests potential intervention strategies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [DOI: 10.1016/j.bbamem.2018.02.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Zheng Q, Lazo ND. Mechanistic Studies of the Inhibition of Insulin Fibril Formation by Rosmarinic Acid. J Phys Chem B 2018; 122:2323-2331. [PMID: 29401384 DOI: 10.1021/acs.jpcb.8b00689] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The self-assembly of insulin to form amyloid fibrils has been widely studied because it is a significant problem in the medical management of diabetes and is an important model system for the investigation of amyloid formation and its inhibition. A few inhibitors of insulin fibrillation have been identified with potencies that could be higher. Knowledge of how these work at the molecular level is not known but important for the development of more potent inhibitors. Here we show that rosmarinic acid completely inhibits amyloid formation by dimeric insulin at pH 2 and 60 °C. In contrast to other polyphenols, rosmarinic acid is soluble in water and does not degrade at elevated temperatures, and thus we were able to decipher the mechanism of inhibition by a combination of solution-state 1H NMR spectroscopy and molecular docking. On the basis of 1H chemical shift perturbations, intermolecular nuclear Overhauser effect enhancements between rosmarinic acid and specific residues of insulin, and slowed dynamics of rosmarinic acid in the presence of insulin, we show that rosmarinic acid binds to a pocket found on the surface of each insulin monomer. This results in the formation of a mixed tetramolecular aromatic network on the surface of insulin dimer, resulting in increased resistance of the amyloidogenic protein to thermal unfolding. This finding opens new avenues for the design of potent inhibitors of amyloid formation and provides strong experimental evidence for the role of surface aromatic clusters in increasing the thermal stability of proteins.
Collapse
Affiliation(s)
- Qiuchen Zheng
- Carlson School of Chemistry and Biochemistry, Clark University , 950 Main Street, Worcester, Massachusetts 01610, United States
| | - Noel D Lazo
- Carlson School of Chemistry and Biochemistry, Clark University , 950 Main Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
26
|
Kumar S, Vogel MC, Hamilton AD. Teaching an old scaffold new recognition tricks: oligopyrrolamide antagonists of IAPP aggregation. Org Biomol Chem 2018; 16:733-741. [DOI: 10.1039/c7ob02910a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An oligopyrrolamide was identified as a potent antagonist of the aggregation of IAPP, a process associated with type 2 diabetes.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry
- New York University
- New York
- USA
| | - Maria C. Vogel
- Division of Science
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| | | |
Collapse
|
27
|
Mao Y, Yu L, Mao M, Ma C, Qu L. Design and study of lipopeptide inhibitors on preventing aggregation of human islet amyloid polypeptide residues 11-20. J Pept Sci 2017; 24. [DOI: 10.1002/psc.3058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/17/2017] [Accepted: 10/23/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Yexuan Mao
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 China
| | - Lanlan Yu
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 China
| | - Mengfan Mao
- College of Chemistry; Chongqing Normal University; Chongqing 400047 China
| | - Chuanguo Ma
- National Engineering Laboratory for Wheat & Corn Further Processing; Henan University of Technology; Zhengzhou 450001 China
| | - Lingbo Qu
- College of Chemistry and Molecular Engineering; Zhengzhou University; Zhengzhou 450001 China
| |
Collapse
|
28
|
Iannuzzi C, Borriello M, Irace G, Cammarota M, Di Maro A, Sirangelo I. Vanillin Affects Amyloid Aggregation and Non-Enzymatic Glycation in Human Insulin. Sci Rep 2017; 7:15086. [PMID: 29118444 PMCID: PMC5678370 DOI: 10.1038/s41598-017-15503-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/27/2017] [Indexed: 01/04/2023] Open
Abstract
Curcumin is known for its anti-inflammatory, antioxidant and anticancer activity, as well as for its ability to interfere with amyloid aggregation and non-enzymatic glycation reaction, that makes it an attractive potential drug. However, curcumin therapeutic use is limited because of its low systemic bioavailability and chemical stability as it undergoes rapid hydrolysis in physiological conditions. Recently, much attention has been paid to the biological properties of curcumin degradation products as potential bioactive molecules. Between them, vanillin, a natural vanilla extract, is a stable degradation product of curcumin that could be responsible for mediating its beneficial effects. We have analyzed the effect of vanillin, in comparison with curcumin, in the amyloid aggregation process of insulin as well as its ability to prevent the formation of the advanced glycation end products (AGEs). Employing biophysical, biochemical and cell based assays, we show that vanillin and curcumin similarly affect insulin amyloid aggregation promoting the formation of harmless fibrils. Moreover, vanillin restrains AGE formation and protects from AGE-induced cytotoxicity. Our novel findings not only suggest that the main health benefits observed for curcumin can be ascribed to its degradation product vanillin, but also open new avenues for developing therapeutic applications of curcumin degradation products.
Collapse
Affiliation(s)
- Clara Iannuzzi
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Margherita Borriello
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Gaetano Irace
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Marcella Cammarota
- Department of Experimental Medicine, Università degli Studi della Campania "Luigi Vanvitelli", Naples, 80138, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, 81100, Italy
| | - Ivana Sirangelo
- Department of Biochemistry, Biophysics and General Pathology, Università degli Studi della Campania "Luigi Vanvitelli", Naples, 80138, Italy.
| |
Collapse
|
29
|
Ke PC, Sani MA, Ding F, Kakinen A, Javed I, Separovic F, Davis TP, Mezzenga R. Implications of peptide assemblies in amyloid diseases. Chem Soc Rev 2017; 46:6492-6531. [PMID: 28702523 PMCID: PMC5902192 DOI: 10.1039/c7cs00372b] [Citation(s) in RCA: 247] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Neurodegenerative disorders and type 2 diabetes are global epidemics compromising the quality of life of millions worldwide, with profound social and economic implications. Despite the significant differences in pathology - much of which are poorly understood - these diseases are commonly characterized by the presence of cross-β amyloid fibrils as well as the loss of neuronal or pancreatic β-cells. In this review, we document research progress on the molecular and mesoscopic self-assembly of amyloid-beta, alpha synuclein, human islet amyloid polypeptide and prions, the peptides and proteins associated with Alzheimer's, Parkinson's, type 2 diabetes and prion diseases. In addition, we discuss the toxicities of these amyloid proteins based on their self-assembly as well as their interactions with membranes, metal ions, small molecules and engineered nanoparticles. Through this presentation we show the remarkable similarities and differences in the structural transitions of the amyloid proteins through primary and secondary nucleation, the common evolution from disordered monomers to alpha-helices and then to β-sheets when the proteins encounter the cell membrane, and, the consensus (with a few exceptions) that off-pathway oligomers, rather than amyloid fibrils, are the toxic species regardless of the pathogenic protein sequence or physicochemical properties. In addition, we highlight the crucial role of molecular self-assembly in eliciting the biological and pathological consequences of the amyloid proteins within the context of their cellular environments and their spreading between cells and organs. Exploiting such structure-function-toxicity relationship may prove pivotal for the detection and mitigation of amyloid diseases.
Collapse
Affiliation(s)
- Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Marc-Antonie Sani
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Ibrahim Javed
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC 3010, Australia
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Science & Technology, Schmelzbergstrasse 9, LFO, E23, 8092 Zurich, Switzerland
| |
Collapse
|
30
|
Pithadia AS, Bhunia A, Sribalan R, Padmini V, Fierke CA, Ramamoorthy A. Influence of a curcumin derivative on hIAPP aggregation in the absence and presence of lipid membranes. Chem Commun (Camb) 2016; 52:942-5. [PMID: 26587568 DOI: 10.1039/c5cc07792c] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The deposition of aggregates of human islet amyloid polypeptide (hIAPP) has been correlated with the death of β-cells in type II diabetes mellitus. The actual molecular mechanism of cell death remains largely unknown; however, it has been postulated that the process of aggregation from monomeric hIAPP is closely involved. A possible cause of cellular toxicity may be through the disruption of structural integrity of the cell membrane by IAPP. Herein, a water-soluble curcumin derivative, CurDAc, is used to investigate the mitigation of hIAPP aggregation in the absence and presence of lipid membrane.
Collapse
Affiliation(s)
- Amit S Pithadia
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Anirban Bhunia
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. and Department of Biophysics, Bose Institute, Kolkata 700 054, India
| | - Rajendran Sribalan
- Department of Organic Chemistry, School of Chemistry, Madurai Kamraj University, Madurai 21, India
| | - Vediappen Padmini
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. and Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carol A Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. and Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. and Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
31
|
Ankarcrona M, Winblad B, Monteiro C, Fearns C, Powers ET, Johansson J, Westermark GT, Presto J, Ericzon BG, Kelly JW. Current and future treatment of amyloid diseases. J Intern Med 2016; 280:177-202. [PMID: 27165517 PMCID: PMC4956553 DOI: 10.1111/joim.12506] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There are more than 30 human proteins whose aggregation appears to cause degenerative maladies referred to as amyloid diseases or amyloidoses. These disorders are named after the characteristic cross-β-sheet amyloid fibrils that accumulate systemically or are localized to specific organs. In most cases, current treatment is limited to symptomatic approaches and thus disease-modifying therapies are needed. Alzheimer's disease is a neurodegenerative disorder with extracellular amyloid β-peptide (Aβ) fibrils and intracellular tau neurofibrillary tangles as pathological hallmarks. Numerous clinical trials have been conducted with passive and active immunotherapy, and small molecules to inhibit Aβ formation and aggregation or to enhance Aβ clearance; so far such clinical trials have been unsuccessful. Novel strategies are therefore required and here we will discuss the possibility of utilizing the chaperone BRICHOS to prevent Aβ aggregation and toxicity. Type 2 diabetes mellitus is symptomatically treated with insulin. However, the underlying pathology is linked to the aggregation and progressive accumulation of islet amyloid polypeptide as fibrils and oligomers, which are cytotoxic. Several compounds have been shown to inhibit islet amyloid aggregation and cytotoxicity in vitro. Future animal studies and clinical trials have to be conducted to determine their efficacy in vivo. The transthyretin (TTR) amyloidoses are a group of systemic degenerative diseases compromising multiple organ systems, caused by TTR aggregation. Liver transplantation decreases the generation of misfolded TTR and improves the quality of life for a subgroup of this patient population. Compounds that stabilize the natively folded, nonamyloidogenic, tetrameric conformation of TTR have been developed and the drug tafamidis is available as a promising treatment.
Collapse
Affiliation(s)
- M Ankarcrona
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - B Winblad
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - C Monteiro
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - C Fearns
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - E T Powers
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA
| | - J Johansson
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - G T Westermark
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - J Presto
- Department of Neurobiology Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Huddinge, Sweden
| | - B-G Ericzon
- Division of Transplantation Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - J W Kelly
- Department of Chemistry, The Skaggs Institute for Chemical Biology, La Jolla, CA, USA.,Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
32
|
Understanding curcumin-induced modulation of protein aggregation. Int J Biol Macromol 2016; 100:89-96. [PMID: 27327907 DOI: 10.1016/j.ijbiomac.2016.06.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 06/15/2016] [Accepted: 06/16/2016] [Indexed: 11/22/2022]
Abstract
Curcumin, a diarylheptanoid compound, found in spice turmeric is known to alter the aggregation of proteins and reduce the toxicity of the aggregates. This review looks at the molecular basis of modulating protein aggregation and toxicity of the aggregates. Foremost, we identify the interaction of curcumin and its derivatives with proteins/peptides and the effect of their interaction on the conformational stability and unfolding/folding pathway(s). The unfolding/folding processes generate partially folded/unfolded intermediate, which serve as aggregation precursor state. Secondly, we discuss the effect of curcumin binding on the kinetics parameters of the aggregation process, which give information about the mechanism of the aggregation inhibition. We describe, in addition, that curcumin can accelerate/promote fibril formation by binding to oligomeric intermediate(s) accumulated in the aggregation pathway. Finally, we discuss the correlation of curcumin-induced monomeric and/or oligomeric precursor states with aggregate structure and toxicity. On the basis of these discussions, we propose a model describing curcumin-induced inhibition/promotion of formation of amyloid-like fibrils.
Collapse
|
33
|
Gurzov EN, Wang B, Pilkington EH, Chen P, Kakinen A, Stanley WJ, Litwak SA, Hanssen EG, Davis TP, Ding F, Ke PC. Inhibition of hIAPP Amyloid Aggregation and Pancreatic β-Cell Toxicity by OH-Terminated PAMAM Dendrimer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1615-1626. [PMID: 26808649 DOI: 10.1002/smll.201502317] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/17/2015] [Indexed: 06/05/2023]
Abstract
Human islet amyloid polypeptide (hIAPP, or amylin) forms amyloid deposits in the islets of Langerhans, a phenomenon that is associated with type-2 diabetes impacting millions of people worldwide. Accordingly, strategies against hIAPP aggregation are essential for the prevention and eventual treatment of the disease. Here, it is shown that generation-3 OH-terminated poly(amidoamine) dendrimer, a polymeric nanoparticle, can effectively halt the aggregation of hIAPP and shut down hIAPP toxicity in pancreatic MIN6 and NIT-1 cells as well as in mouse islets. This finding is supported by high-throughput dynamic light scattering experiment and thioflavin T assay, where the rapid evolution of hIAPP nucleation and elongation processes is halted by the addition of the dendrimer up to 8 h. Discrete molecular dynamics simulations further reveal that hIAPP residues bound strongly with the dendrimer near the c-terminal portion of the peptide, where the amyloidogenic sequence (residues 22-29) locates. Furthermore, simulations of hIAPP dimerization reveal that binding with the dendrimer significantly reduces formation of interpeptide contacts and hydrogen bonds, thereby prohibiting peptide self-association and amyloidosis. This study points to a promising nanomedicinal strategy for combating type-2 diabetes and may have broader implications for targeting neurological disorders whose distinct hallmark is also amyloid fibrillation.
Collapse
Affiliation(s)
- Esteban N Gurzov
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Bo Wang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Pengyu Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 28109, USA
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - William J Stanley
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia
| | - Sara A Litwak
- St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, VIC, 3065, Australia
| | - Eric G Hanssen
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, VIC, 3010, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, UK
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia
| |
Collapse
|
34
|
Nedumpully-Govindan P, Kakinen A, Pilkington EH, Davis TP, Chun Ke P, Ding F. Stabilizing Off-pathway Oligomers by Polyphenol Nanoassemblies for IAPP Aggregation Inhibition. Sci Rep 2016; 6:19463. [PMID: 26763863 PMCID: PMC4725907 DOI: 10.1038/srep19463] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 12/14/2015] [Indexed: 01/09/2023] Open
Abstract
Experimental studies have shown that many naturally occurring polyphenols have inhibitory effect on the aggregation of several proteins. Here, we use discrete molecular dynamics (DMD) simulations and high-throughput dynamic light scattering (DLS) experiments to study the anti-aggregation effects of two polyphenols, curcumin and resveratrol, on the aggregation of islet amyloid polypeptide (IAPP or amylin). Our DMD simulations suggest that the aggregation inhibition is caused by stabilization of small molecular weight IAPP off-pathway oligomers by the polyphenols. Our analysis indicates that IAPP-polyphenol hydrogen bonds and π-π stacking combined with hydrophobic interactions are responsible for the stabilization of oligomers. The presence of small oligomers is confirmed with DLS measurements in which nanometer-sized oligomers are found to be stable for up to 7.5 hours, the time frame within which IAPP aggregates in the absence of polyphenols. Our study offers a general anti-aggregation mechanism for polyphenols, and further provides a computational framework for the future design of anti-amyloid aggregation therapeutics.
Collapse
Affiliation(s)
| | - Aleksandr Kakinen
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Emily H Pilkington
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia.,Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Pu Chun Ke
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
35
|
Nedumpully-Govindan P, Gurzov EN, Chen P, Pilkington EH, Stanley WJ, Litwak SA, Davis TP, Ke PC, Ding F. Graphene oxide inhibits hIAPP amyloid fibrillation and toxicity in insulin-producing NIT-1 cells. Phys Chem Chem Phys 2016; 18:94-100. [PMID: 26625841 PMCID: PMC4684718 DOI: 10.1039/c5cp05924k] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human islet amyloid polypeptide (hIAPP or amylin) aggregation is directly associated with pancreatic β-cell death and subsequent insulin deficiency in type 2 diabetes (T2D). Since no cure is currently available for T2D, it is of great benefit to devise new anti-aggregation molecules, which protect β-cells against hIAPP aggregation-induced toxicity. Engineered nanoparticles have been recently exploited as anti-aggregation nanomedicines. In this work, we studied graphene oxide (GO) nanosheets for their potential for hIAPP aggregation inhibition by combining computational modeling, biophysical characterization and cell toxicity measurements. Using discrete molecular dynamics (DMD) simulations and in vitro studies, we showed that GO exhibited an inhibitory effect on hIAPP aggregation. DMD simulations indicated that the strong binding of hIAPP to GO nanosheets was driven by hydrogen bonding and aromatic stacking and that the strong peptide-GO binding efficiently inhibited hIAPP self-association and aggregation on the nanosheet surface. Secondary structural changes of hIAPP upon GO binding derived from DMD simulations were consistent with circular dichroism (CD) spectroscopy measurements. Transmission electron microscopy (TEM) images confirmed the reduction of hIAPP aggregation in the presence of GO. Furthermore, we carried out a cell toxicity assay and found that these nanosheets protected insulin-secreting NIT-1 pancreatic β-cells against hIAPP-induced toxicity. Our multidisciplinary study suggests that GO nanosheets have the potential to be utilized as an anti-aggregation nanomedicine itself in addition to a biosensor or delivery vehicle for the mitigation of T2D progression.
Collapse
Affiliation(s)
| | - Esteban N. Gurzov
- St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, VIC 3065, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Melbourne, Australia
| | - Pengyu Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 28109, USA
| | - Emily H. Pilkington
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - William J. Stanley
- St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, VIC 3065, Australia
- Department of Medicine, St. Vincent’s Hospital, The University of Melbourne, Melbourne, Australia
| | - Sara A. Litwak
- St Vincent’s Institute of Medical Research, 9 Princes Street, Fitzroy, VIC 3065, Australia
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
36
|
Pithadia A, Brender JR, Fierke CA, Ramamoorthy A. Inhibition of IAPP Aggregation and Toxicity by Natural Products and Derivatives. J Diabetes Res 2016; 2016:2046327. [PMID: 26649317 PMCID: PMC4662995 DOI: 10.1155/2016/2046327] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 04/15/2015] [Indexed: 01/10/2023] Open
Abstract
Fibrillar aggregates of human islet amyloid polypeptide, hIAPP, a pathological feature seen in some diabetes patients, are a likely causative agent for pancreatic beta-cell toxicity, leading to a transition from a state of insulin resistance to type II diabetes through the loss of insulin producing beta-cells by hIAPP induced toxicity. Because of the probable link between hIAPP and the development of type II diabetes, there has been strong interest in developing reagents to study the aggregation of hIAPP and possible therapeutics to block its toxic effects. Natural products are a class of compounds with interesting pharmacological properties against amyloids which have made them interesting targets to study hIAPP. Specifically, the ability of polyphenolic natural products, EGCG, curcumin, and resveratrol, to modulate the aggregation of hIAPP is discussed. Furthermore, we have outlined possible mechanistic discoveries of the interaction of these small molecules with the peptide and how they may mitigate toxicity associated with peptide aggregation. These abundantly found agents have been long used to combat diseases for many years and may serve as useful templates toward developing therapeutics against hIAPP aggregation and toxicity.
Collapse
Affiliation(s)
- Amit Pithadia
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Jeffrey R. Brender
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Carol A. Fierke
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
- *Ayyalusamy Ramamoorthy:
| |
Collapse
|
37
|
Chen CH, Yao T, Zhang Q, He YM, Xu LH, Zheng M, Zhou GR, Zhang Y, Yang HJ, Zhou P. Influence of trehalose on human islet amyloid polypeptide fibrillation and aggregation. RSC Adv 2016. [DOI: 10.1039/c5ra27689f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A lower dose of trehalose inhibits or delays, while higher dose of trehalose promotes the hIAPP fibrillation and aggregation.
Collapse
|
38
|
Qiao Q, Qi R, Wei G, Huang X. Dynamics of the conformational transitions during the dimerization of an intrinsically disordered peptide: a case study on the human islet amyloid polypeptide fragment. Phys Chem Chem Phys 2016; 18:29892-29904. [DOI: 10.1039/c6cp05590g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dimerization pathways of the human islet amyloid polypeptide fragment are elucidated from extensive molecular dynamics simulations.
Collapse
Affiliation(s)
- Qin Qiao
- Hefei National Laboratory for Physical Sciences at the Microscale and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM)
- University of Science and Technology of China
- Hefei
- China
| | - Ruxi Qi
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (MOE)
- and Department of Physics
- Fudan University
- Shanghai
| | - Guanghong Wei
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Sciences (MOE)
- and Department of Physics
- Fudan University
- Shanghai
| | - Xuhui Huang
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- Hong Kong
- Division of Biomedical Engineering
| |
Collapse
|
39
|
Sun Q, Zhao J, Zhang Y, Yang H, Zhou P. A natural hyperbranched proteoglycan inhibits IAPP amyloid fibrillation and attenuates β-cell apoptosis. RSC Adv 2016. [DOI: 10.1039/c6ra23429a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A natural amphiphilic hyperbranched proteoglycan efficiently inhibits IAPP fibrillation and attenuates β-cell apoptosis for type 2 diabetes treatment.
Collapse
Affiliation(s)
- Qing Sun
- Department of Macromolecular Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
- China
| | - Juan Zhao
- Department of Macromolecular Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
- China
| | - Yuan Zhang
- Department of Medicine
- St Vincent's Hospital
- The University of Melbourne
- Fitzroy
- Australia
| | - Hongjie Yang
- Yueyang Hospital of Integrated Chinese and Western Medicine
- Shanghai University of Traditional Chinese Medicine
- Shanghai
- China
| | - Ping Zhou
- Department of Macromolecular Science
- State Key Laboratory of Molecular Engineering of Polymers
- Fudan University
- Shanghai
- China
| |
Collapse
|
40
|
Saunders JC, Young LM, Mahood RA, Jackson MP, Revill CH, Foster RJ, Smith DA, Ashcroft AE, Brockwell DJ, Radford SE. An in vivo platform for identifying inhibitors of protein aggregation. Nat Chem Biol 2015; 12:94-101. [PMID: 26656088 PMCID: PMC4720988 DOI: 10.1038/nchembio.1988] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 10/30/2015] [Indexed: 02/07/2023]
Abstract
Protein aggregation underlies an array of human diseases, yet only one small-molecule therapeutic targeting this process has been successfully developed to date. Here, we introduce an in vivo system, based on a β-lactamase tripartite fusion construct, that is capable of identifying aggregation-prone sequences in the periplasm of Escherichia coli and inhibitors that prevent their aberrant self-assembly. We demonstrate the power of the system using a range of proteins, from small unstructured peptides (islet amyloid polypeptide and amyloid β) to larger, folded immunoglobulin domains. Configured in a 48-well format, the split β-lactamase sensor readily differentiates between aggregation-prone and soluble sequences. Performing the assay in the presence of 109 compounds enabled a rank ordering of inhibition and revealed a new inhibitor of islet amyloid polypeptide aggregation. This platform can be applied to both amyloidogenic and other aggregation-prone systems, independent of sequence or size, and can identify small molecules or other factors able to ameliorate or inhibit protein aggregation.
Collapse
Affiliation(s)
- Janet C Saunders
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Lydia M Young
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Rachel A Mahood
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Matthew P Jackson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Charlotte H Revill
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Chemistry, University of Leeds, LS2 9JT, UK
| | - Richard J Foster
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Chemistry, University of Leeds, LS2 9JT, UK
| | | | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK.,School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
41
|
Braga RR, Almeida L, Guerreiro LH, Tinoco P, Miranda KR, Braga CA, Gadelha AP, Garcia S, Lima LMTR. Molecular confinement of human amylin in lipidic nanoparticles. J Liposome Res 2015; 26:188-98. [PMID: 26340033 DOI: 10.3109/08982104.2015.1076462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Amylin is a pancreatic hormone involved in the regulation of glucose metabolism and homeostasis. Restoration of the post-prandial and basal levels of human amylin in diabetic individuals is a key in controlling glycemia, controlling glucagon, reducing the insulin dose and increasing satiety, among other physiologic functions. Human amylin has a high propensity to aggregate. We have addressed this issue by designing a liposomal human amylin formulation. Nanoparticles of multilamellar liposomes comprising human amylin were obtained with 53% encapsulation efficiency. The in vitro kinetic release assay shows a biphasic profile. The stabilization of the lipidic nanoparticle against freeze-drying was achieved by using mannitol as a cryoprotectant, as evidenced by morphological characterization. The effectiveness of the human amylin entrapped in lipidic nanoparticles was tested by the measurement of its pharmacological effect in vivo after subcutaneous administration in mice. Collectively these results demonstrate the compatibility of human amylin with the lipidic interface as an effective pharmaceutical delivery system.
Collapse
Affiliation(s)
- Raquel Rennó Braga
- a Federal University of Rio de Janeiro - UFRJ , Rio de Janeiro , RJ , Brazil .,b Federal Institute of Science and Technology of Rio de Janeiro - IFRJ , Rio de Janeiro , RJ , Brazil
| | - Luciana Almeida
- b Federal Institute of Science and Technology of Rio de Janeiro - IFRJ , Rio de Janeiro , RJ , Brazil
| | - Luiz Henrique Guerreiro
- c Department of Chemistry , Institute of Exact Sciences, Rural Federal University of Rio de Janeiro - UFRRJ , Seropédica , RJ , Brazil
| | - Priscilla Tinoco
- c Department of Chemistry , Institute of Exact Sciences, Rural Federal University of Rio de Janeiro - UFRRJ , Seropédica , RJ , Brazil
| | - Kildare R Miranda
- a Federal University of Rio de Janeiro - UFRJ , Rio de Janeiro , RJ , Brazil .,d Laboratory for Macromolecules (LAMAC-DIMAV) , Brazilian National Institute of Metrology, Quality and Technology - INMETRO , Rio de Janeiro , RJ , Brazil , and
| | - Carolina A Braga
- a Federal University of Rio de Janeiro - UFRJ , Rio de Janeiro , RJ , Brazil
| | - Ana Paula Gadelha
- d Laboratory for Macromolecules (LAMAC-DIMAV) , Brazilian National Institute of Metrology, Quality and Technology - INMETRO , Rio de Janeiro , RJ , Brazil , and
| | - Sheila Garcia
- a Federal University of Rio de Janeiro - UFRJ , Rio de Janeiro , RJ , Brazil
| | - Luis Mauricio T R Lima
- a Federal University of Rio de Janeiro - UFRJ , Rio de Janeiro , RJ , Brazil .,d Laboratory for Macromolecules (LAMAC-DIMAV) , Brazilian National Institute of Metrology, Quality and Technology - INMETRO , Rio de Janeiro , RJ , Brazil , and.,e National Institute of Science and Technology for Structural Biology and Bioimaging (INBEB-INCT), Federal University of Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| |
Collapse
|
42
|
Lopes DHJ, Attar A, Nair G, Hayden EY, Du Z, McDaniel K, Dutt S, Bandmann H, Bravo-Rodriguez K, Mittal S, Klärner FG, Wang C, Sanchez-Garcia E, Schrader T, Bitan G. Molecular tweezers inhibit islet amyloid polypeptide assembly and toxicity by a new mechanism. ACS Chem Biol 2015; 10:1555-69. [PMID: 25844890 DOI: 10.1021/acschembio.5b00146] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In type-2 diabetes (T2D), islet amyloid polypeptide (IAPP) self-associates into toxic assemblies causing islet β-cell death. Therefore, preventing IAPP toxicity is a promising therapeutic strategy for T2D. The molecular tweezer CLR01 is a supramolecular tool for selective complexation of K residues in (poly)peptides. Surprisingly, it inhibits IAPP aggregation at substoichiometric concentrations even though IAPP has only one K residue at position 1, whereas efficient inhibition of IAPP toxicity requires excess CLR01. The basis for this peculiar behavior is not clear. Here, a combination of biochemical, biophysical, spectroscopic, and computational methods reveals a detailed mechanistic picture of the unique dual inhibition mechanism for CLR01. At low concentrations, CLR01 binds to K1, presumably nucleating nonamyloidogenic, yet toxic, structures, whereas excess CLR01 binds also to R11, leading to nontoxic structures. Encouragingly, the CLR01 concentrations needed for inhibition of IAPP toxicity are safe in vivo, supporting its development toward disease-modifying therapy for T2D.
Collapse
Affiliation(s)
| | | | | | | | - Zhenming Du
- Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | - Som Dutt
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Heinz Bandmann
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | | | - Sumit Mittal
- Max-Planck-Institut für Kohlenforschung, 45470 Mülheim an der Ruhr, Germany
| | - Frank-Gerrit Klärner
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | - Chunyu Wang
- Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | - Thomas Schrader
- Institute of Organic Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| | | |
Collapse
|
43
|
Ngoungoure VLN, Schluesener J, Moundipa PF, Schluesener H. Natural polyphenols binding to amyloid: A broad class of compounds to treat different human amyloid diseases. Mol Nutr Food Res 2014; 59:8-20. [DOI: 10.1002/mnfr.201400290] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/24/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Viviane L. Ndam Ngoungoure
- Laboratory of Pharmacology and Toxicology; University of Yaoundé I; Yaoundé Cameroon
- Division of Immunopathology of the Nervous System; Department of Neuropathology; Institute of Pathology; University of Tuebingen; Tuebingen Germany
| | - Jan Schluesener
- Division of Immunopathology of the Nervous System; Department of Neuropathology; Institute of Pathology; University of Tuebingen; Tuebingen Germany
| | - Paul F. Moundipa
- Laboratory of Pharmacology and Toxicology; University of Yaoundé I; Yaoundé Cameroon
| | - Hermann Schluesener
- Division of Immunopathology of the Nervous System; Department of Neuropathology; Institute of Pathology; University of Tuebingen; Tuebingen Germany
| |
Collapse
|
44
|
Qi R, Luo Y, Ma B, Nussinov R, Wei G. Conformational distribution and α-helix to β-sheet transition of human amylin fragment dimer. Biomacromolecules 2014; 15:122-31. [PMID: 24313776 PMCID: PMC6429924 DOI: 10.1021/bm401406e] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experiments suggested that the fibrillation of the 11-25 fragment (hIAPP(11-25)) of human islet amyloid polypeptide (hIAPP or amylin) involves the formation of transient α-helical intermediates, followed by conversion to β-sheet-rich structure. However, atomic details of α-helical intermediates and the transition mechanism are mostly unknown. We investigated the structural properties of the monomer and dimer in atomistic detail by replica exchange molecular dynamics (REMD) simulations. Transient α-helical monomers and dimers were both observed in the REMD trajectories. Our calculated H(α) chemical shifts based on the monomer REMD run are in agreement with the solution-state NMR experimental observations. Multiple 300 ns MD simulations at 310 K show that α-helix-to-β-sheet transition follows two mechanisms: the first involved direct transition of the random coil part of the helical conformation into antiparallel β-sheet, and in the second, the α-helical conformation unfolded and converted into antiparallel β-sheet. In both mechanisms, the α-helix-to-β-sheet transition occurred via random coil, and the transition was accompanied by an increase of interpeptide contacts. In addition, our REMD simulations revealed different temperature dependencies of helical and β-structures. Comparison with experimental data suggests that the propensity for hIAPP(11-25) to form α-helices and amyloid structures is concentration- and temperature-dependent.
Collapse
Affiliation(s)
- Ruxi Qi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University , Shanghai, China
| | | | | | | | | |
Collapse
|
45
|
Yao T, Jiang T, Pan D, Xu ZX, Zhou P. Effect of Al(iii) and curcumin on silk fibroin conformation and aggregation morphology. RSC Adv 2014. [DOI: 10.1039/c4ra04712e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Al(iii) can accelerate the conformation transition of silk fibroin from random coils into β-sheets, and curcumin can reverse the transition.
Collapse
Affiliation(s)
- Ting Yao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433, China
| | - Teng Jiang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433, China
| | - Deng Pan
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433, China
| | - Zhi-Xue Xu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433, China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433, China
| |
Collapse
|
46
|
Curcumin and diabetes: a systematic review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:636053. [PMID: 24348712 PMCID: PMC3857752 DOI: 10.1155/2013/636053] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/30/2013] [Accepted: 09/12/2013] [Indexed: 12/20/2022]
Abstract
Turmeric (Curcuma longa), a rhizomatous herbaceous perennial plant of the ginger family, has been used for the treatment of diabetes in Ayurvedic and traditional Chinese medicine. The active component of turmeric, curcumin, has caught attention as a potential treatment for diabetes and its complications primarily because it is a relatively safe and inexpensive drug that reduces glycemia and hyperlipidemia in rodent models of diabetes. Here, we review the recent literature on the applications of curcumin for glycemia and diabetes-related liver disorders, adipocyte dysfunction, neuropathy, nephropathy, vascular diseases, pancreatic disorders, and other complications, and we also discuss its antioxidant and anti-inflammatory properties. The applications of additional curcuminoid compounds for diabetes prevention and treatment are also included in this paper. Finally, we mention the approaches that are currently being sought to generate a "super curcumin" through improvement of the bioavailability to bring this promising natural product to the forefront of diabetes therapeutics.
Collapse
|
47
|
Götz J, Lim YA, Eckert A. Lessons from two prevalent amyloidoses-what amylin and Aβ have in common. Front Aging Neurosci 2013; 5:38. [PMID: 23964237 PMCID: PMC3737661 DOI: 10.3389/fnagi.2013.00038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/16/2013] [Indexed: 11/23/2022] Open
Abstract
The amyloidogenic peptide Aβ plays a key role in Alzheimer's disease (AD) forming insoluble aggregates in the brain. The peptide shares its amyloidogenic properties with amylin that forms aggregates in the pancreas of patients with Type 2 Diabetes mellitus (T2DM). While epidemiological studies establish a link between these two diseases, it is becoming increasingly clear that they also share biochemical features suggesting common pathogenic mechanisms. We discuss commonalities as to how Aβ and amylin deregulate the cellular proteome, how they impair mitochondrial functions, to which receptors they bind, aspects of their clearance and how therapeutic strategies exploit the commonalities between Aβ and amylin. We conclude that research into these two molecules is mutually beneficial for the treatment of AD and T2DM.
Collapse
Affiliation(s)
- Jürgen Götz
- Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland Brisbane, QLD, Australia ; Sydney Medical School, Brain and Mind Research Institute, University of Sydney Sydney, Australia
| | | | | |
Collapse
|
48
|
Inhibiting toxic aggregation of amyloidogenic proteins: a therapeutic strategy for protein misfolding diseases. Biochim Biophys Acta Gen Subj 2013; 1830:4860-71. [PMID: 23820032 DOI: 10.1016/j.bbagen.2013.06.029] [Citation(s) in RCA: 165] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/19/2013] [Accepted: 06/20/2013] [Indexed: 12/23/2022]
Abstract
BACKGROUND The deposition of self-assembled amyloidogenic proteins is associated with multiple diseases, including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. The toxic misfolding and self-assembling of amyloidogenic proteins are believed to underlie protein misfolding diseases. Novel drug candidates targeting self-assembled amyloidogenic proteins represent a potential therapeutic approach for protein misfolding diseases. SCOPE OF REVIEW In this perspective review, we provide an overview of the recent progress in identifying inhibitors that block the aggregation of amyloidogenic proteins and the clinical applications thereof. MAJOR CONCLUSIONS Compounds such as polyphenols, certain short peptides, and monomer- or oligomer-specific antibodies, can interfere with the self-assembly of amyloidogenic proteins, prevent the formation of oligomers, amyloid fibrils and the consequent cytotoxicity. GENERAL SIGNIFICANCE Some inhibitors have been tested in clinical trials for treating protein misfolding diseases. Inhibitors that target the aggregation of amyloidogenic proteins bring new hope to therapy for protein misfolding diseases.
Collapse
|
49
|
Stefani M, Rigacci S. Protein folding and aggregation into amyloid: the interference by natural phenolic compounds. Int J Mol Sci 2013; 14:12411-57. [PMID: 23765219 PMCID: PMC3709793 DOI: 10.3390/ijms140612411] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 01/17/2023] Open
Abstract
Amyloid aggregation is a hallmark of several degenerative diseases affecting the brain or peripheral tissues, whose intermediates (oligomers, protofibrils) and final mature fibrils display different toxicity. Consequently, compounds counteracting amyloid aggregation have been investigated for their ability (i) to stabilize toxic amyloid precursors; (ii) to prevent the growth of toxic oligomers or speed that of fibrils; (iii) to inhibit fibril growth and deposition; (iv) to disassemble preformed fibrils; and (v) to favor amyloid clearance. Natural phenols, a wide panel of plant molecules, are one of the most actively investigated categories of potential amyloid inhibitors. They are considered responsible for the beneficial effects of several traditional diets being present in green tea, extra virgin olive oil, red wine, spices, berries and aromatic herbs. Accordingly, it has been proposed that some natural phenols could be exploited to prevent and to treat amyloid diseases, and recent studies have provided significant information on their ability to inhibit peptide/protein aggregation in various ways and to stimulate cell defenses, leading to identify shared or specific mechanisms. In the first part of this review, we will overview the significance and mechanisms of amyloid aggregation and aggregate toxicity; then, we will summarize the recent achievements on protection against amyloid diseases by many natural phenols.
Collapse
Affiliation(s)
- Massimo Stefani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, Florence 50134, Italy; E-Mail:
- Research Centre on the Molecular Basis of Neurodegeneration, Viale Morgagni 50, Florence 50134, Italy
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-55-275-8307; Fax: +39-55-275-8905
| | - Stefania Rigacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, Florence 50134, Italy; E-Mail:
| |
Collapse
|
50
|
Liu G, Gaines JC, Robbins KJ, Lazo ND. Kinetic profile of amyloid formation in the presence of an aromatic inhibitor by nuclear magnetic resonance. ACS Med Chem Lett 2012; 3:856-9. [PMID: 24900390 DOI: 10.1021/ml300147m] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 08/28/2012] [Indexed: 11/29/2022] Open
Abstract
The self-assembly of amyloid proteins into β-sheet rich assemblies is associated with human amyloidoses including Alzheimer's disease, Parkinson's disease, and type 2 diabetes. An attractive therapeutic strategy therefore is to develop small molecules that would inhibit protein self-assembly. Natural polyphenols are potential inhibitors of β-sheet formation. How these compounds affect the kinetics of self-assembly studied by thioflavin T (ThT) fluorescence is not understood primarily because their presence interferes with ThT fluorescence. Here, we show that by plotting peak intensities from nuclear magnetic resonance (NMR) against incubation time, kinetic profiles in the presence of the polyphenol can be obtained from which kinetic parameters of self-assembly can be easily determined. In applying this technique to the self-assembly of the islet amyloid polypeptide in the presence of curcumin, a biphenolic compound found in turmeric, we show that the kinetic profile is atypical in that it shows a prenucleation period during which there is no observable decrease in NMR peak intensities.
Collapse
Affiliation(s)
- Gai Liu
- Carlson School of Chemistry
and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts
01610, United States
| | - Jennifer C. Gaines
- Carlson School of Chemistry
and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts
01610, United States
| | - Kevin J. Robbins
- Carlson School of Chemistry
and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts
01610, United States
| | - Noel D. Lazo
- Carlson School of Chemistry
and Biochemistry, Clark University, 950
Main Street, Worcester, Massachusetts
01610, United States
| |
Collapse
|