1
|
Anciuc-Crauciuc M, Cucerea MC, Tripon F, Crauciuc GA, Bănescu CV. Descriptive and Functional Genomics in Neonatal Respiratory Distress Syndrome: From Lung Development to Targeted Therapies. Int J Mol Sci 2024; 25:649. [PMID: 38203821 PMCID: PMC10780183 DOI: 10.3390/ijms25010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
In this up-to-date study, we first aimed to highlight the genetic and non-genetic factors associated with respiratory distress syndrome (RDS) while also focusing on the genomic aspect of this condition. Secondly, we discuss the treatment options and the progressing therapies based on RNAs or gene therapy. To fulfill this, our study commences with lung organogenesis, a highly orchestrated procedure guided by an intricate network of conserved signaling pathways that ultimately oversee the processes of patterning, growth, and differentiation. Then, our review focuses on the molecular mechanisms contributing to both normal and abnormal lung growth and development and underscores the connections between genetic and non-genetic factors linked to neonatal RDS, with a particular emphasis on the genomic aspects of this condition and their implications for treatment choices and the advancing therapeutic approaches centered around RNAs or gene therapy.
Collapse
Affiliation(s)
- Mădălina Anciuc-Crauciuc
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
- Neonatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania;
| | - Manuela Camelia Cucerea
- Neonatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania;
| | - Florin Tripon
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
| | - George-Andrei Crauciuc
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Târgu Mureș, Romania;
| | - Claudia Violeta Bănescu
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Târgu Mureș, Romania;
| |
Collapse
|
2
|
MicroRNA: Crucial modulator in purinergic signalling involved diseases. Purinergic Signal 2023; 19:329-341. [PMID: 35106737 PMCID: PMC9984628 DOI: 10.1007/s11302-022-09840-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022] Open
Abstract
Both microRNAs (miRNAs) and purinergic signalling are widely and respectively expressed in various tissues of different organisms and play vital roles in a variety of physiological and pathological processes. Here, we reviewed the current publications contributed to the relationship of miRNAs and purinergic signalling in cardiovascular diseases, gastrointestinal diseases, neurological diseases, and ophthalmic diseases. We tried to decode the miRNAs-purinergic signalling network of purinergic signalling involved diseases. The evidence indicated that more than 30 miRNAs (miR-22, miR-30, miR-146, miR-150, miR-155, miR-187, etc.) directly or indirectly modulate P1 receptors (A1, A2A, A2B, A3), P2 receptors (P2X1, P2X3, P2X4, P2X7, P2Y2, P2Y6, P2Y12), and ecto-enzymes (CD39, CD73, ADA2); P2X7 and CD73 could be modulated by multiple miRNAs (P2X7: miR-21, miR-22, miR-30, miR-135a, miR-150, miR-186, miR-187, miR-216b; CD73: miR-141, miR-101, miR-193b, miR-340, miR-187, miR-30, miR-422a); miR-187 would be the common miRNA to modulate P2X7 and CD73.
Collapse
|
3
|
Lu L, Huang J, Xue X, Wang T, Huang Z, Li J. Berberine Regulated miR150-5p to Inhibit P2X7 Receptor, EMMPRIN and MMP-9 Expression in oxLDL Induced Macrophages. Front Pharmacol 2021; 12:639558. [PMID: 33959010 PMCID: PMC8093865 DOI: 10.3389/fphar.2021.639558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/25/2021] [Indexed: 02/05/2023] Open
Abstract
Elevated extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase-9 (MMP-9) in oxidized low density lipoprotein (oxLDL)-induced macrophages leads to the progression of vulnerable plaques by degradation of the extracellular matrix. Our previous report showed that berberine regulates the expression of both EMMPRIN and MMP-9. In addition, P2X7 receptor (P2X7R) upregulation plays a crucial role in the development of atherosclerosis. However, it is unclear whether berberine regulated P2X7R level to inhibit both EMMPRIN and MMP-9 expession in macrophages. In the present study, we investigated the impact of berberine on P2X7R expression and the regulation of P2X7R in the expression of EMMPRIN and MMP-9 in oxLDL-induced macrophages. We found that P2X7R expression was increased, miR150-5p was reduced in oxLDL-induced macrophages, relatively. And A-438079 (a P2X7R inhibitor) or miR150-5p mimic treatment greatly reversed the upregulation of EMMPRIN and MMP-9 expression. Moreover, A-438079 significantly reduced oxLDL-induced AMP-activated protein kinase-α (AMPK-α) phosphorylation and reversed the activation of mitogen-activated protein kinase (MAPK), which in turn decreased the expression of EMMPRIN and MMP-9. These findings illustrate that P2X7R suppresses EMMPRIN and MMP-9 expression by inhibiting the AMPK-α/MAPK pathway in oxLDL-induced macrophages. Accordingly, exposure to berberine markedly upregulated miR150-5p, decreased P2X7R expression and downregulated MMP-9 and EMMPRIN levels in oxLDL-induced macrophages, resulting in AMPK-α/MAPK (JNK, p38, and ERK) inactivation. Overall, these results indicate that berberine increased miR150-5p level, subsequently inhibits P2X7R-mediated EMMPRIN and MMP-9 expression by suppressing AMPK-α and MAPK signaling in oxLDL-induced macrophages.
Collapse
Affiliation(s)
- Lin Lu
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, Wenzhou, China
| | - Jianjian Huang
- Department of Anesthesiology, Wenzhou Medical University, Wenzhou, China
| | - Xia Xue
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, Wenzhou, China
| | - Ting Wang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, Wenzhou, China
| | - Zhouqing Huang
- The Key Laboratory of Cardiovascular Disease of Wenzhou, Department of Cardiology, The First Affiliated Hospital of WenZhou Medical University, Wenzhou, China
| | - Jianmin Li
- Department of Pathology, The First Affiliated Hospital of WenZhou Medical University, Wenzhou, China
| |
Collapse
|
4
|
Gong Y, Xu W, Chen Y, Liu Y, Yang Y, Wang B, Lu Z, Lin HC, Zhou X, Zhou X. miR-20a-5p regulates pulmonary surfactant gene expression in alveolar type II cells. J Cell Mol Med 2019; 23:7664-7672. [PMID: 31490024 PMCID: PMC6815916 DOI: 10.1111/jcmm.14639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/28/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miRNA) critically controls gene expression in many biological processes, including lung growth and pulmonary surfactant biosynthesis. The present study was conducted to investigate whether miR‐20a‐5p had such regulatory functions on alveolar type II (AT‐II) cells. To accomplish this, miR‐20a‐5p–overexpressed and miR‐20a‐5p–inhibited adenoviral vectors were constructed and transfected into cultured AT‐II cells that were isolated from rat foetal lungs of 19 days' gestation. Transfection efficiency was confirmed by observing the fluorescence of green fluorescent protein (GFP) carried by the viral vector, whereas miR‐20a‐5p levels were verified by real‐time PCR. The CCK‐8 assay was used to compare the proliferation ability of AT‐II cells that had over‐ or underexpressed miR‐20a‐5p. The expression of surfactant‐associated proteins (SPs) and phosphatase and tensin homolog (PTEN) was measured by real‐time PCR and Western blotting. In AT‐II cells, transfection resulted in over‐ or under‐regulation of miR‐20a‐5p. While overexpression of miR‐20a‐5p promoted pulmonary surfactant gene expression, its underexpression inhibited it. Consistent with its role in negatively regulating the pulmonary surfactant gene, an opposite pattern was observed for miR‐20a‐5p regulation of PTEN. As a result, when miR‐20a‐5p was rendered overexpressed, PTEN was down‐regulated. By contrast, when miR‐20a‐5p was underexpressed, PTEN was up‐regulated. Neither overexpression nor underexpression of miR‐20a‐5p altered the cell proliferation. miR‐20a‐5p plays no role in proliferation of foetal AT‐II cells but is a critical regulator of surfactant gene expression. The latter appears to be achieved through a regulatory process that implicates expression of PTEN.
Collapse
Affiliation(s)
- Yongjian Gong
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weidong Xu
- Department of Pediatrics, The First People's Hospital of Zhangjiagang City, Zhangjiagang City, China
| | - Yang Chen
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Liu
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Yang
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Beibei Wang
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Zhitao Lu
- Department of Pediatrics, The First People's Hospital of Zhangjiagang City, Zhangjiagang City, China
| | - Hung-Chih Lin
- Department of Pediatrics, Children's Hospital, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Xiaoyu Zhou
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoguang Zhou
- Neonatal Medical Center, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Li S, Sun Z, Chen T, Pan J, Shen Y, Chen X, Zhou X, Cheng R, Yang Y. The role of miR-431-5p in regulating pulmonary surfactant expression in vitro. Cell Mol Biol Lett 2019; 24:25. [PMID: 30988675 PMCID: PMC6446292 DOI: 10.1186/s11658-019-0150-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/20/2019] [Indexed: 12/19/2022] Open
Abstract
Background Pulmonary surfactant is the complex mixture of lipid and protein that covers the alveolar surface. Pulmonary surfactant deficiency is one of the main causes of neonatal respiratory distress. Recent studies showed that miRNA plays an important role in lung development, but research into miR-431 regulation of pulmonary surfactant are sparse. In this study, we explored the regulatory role of miR-431-5p in the expression of pulmonary surfactant and identified its potential target gene, Smad4. Methods The bioinformatics tool TargetScan was used to predict the targets of miR-431. The expression of miR-431-5p was achieved via transfection of miR-431-5p mimics, an miR-431-5p inhibitor and corresponding negative control. The level of miR-431-5p was determined using quantitative real-time PCR. The CCK8 assay was conducted to confirm cell growth 12 h after transfection with miR-431-5p mimics, inhibitor or NC. Smad4 and surfactant-associated proteins in A549 were analyzed using western blot and quantitative real-time PCR. Results Smad4 was validated as a target of miR-431 in A549 cells. Overexpression of miR-431 accelerated A549 proliferation and inhibited A549 apoptosis. The mRNA and protein levels for the surfactant proteins (SP-A, SP-B, SP-C and SP-D) were found to be differentially expressed in A549 cells over- or under-expressing miR-431-5p. Conclusion Our results show that miR-431-5p is critical for pulmonary surfactant expression and that its regulation is closely related to the TGF-β/Smad4 pathway. These results will help us to study the pathophysiological mechanism of lung developmental diseases.
Collapse
Affiliation(s)
- Shujun Li
- 1Department of Pediatrics, Children's Hospital of Anhui Medical University, Hefei, China
| | - Zhongyi Sun
- 2Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Chen
- 3Department of Cardiothoracic Surgery, The First Affliated Hospital of Anhui Medical University, Hefei, China
| | - Jingjing Pan
- 2Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yanqing Shen
- 4Department of Neonates, Children's Hospital of Nanjing Medical University, No 72, Guangzhou Road, Nanjing, 210008 China
| | - Xiaoqing Chen
- 2Department of Pediatrics, The First Affliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyu Zhou
- 4Department of Neonates, Children's Hospital of Nanjing Medical University, No 72, Guangzhou Road, Nanjing, 210008 China
| | - Rui Cheng
- 4Department of Neonates, Children's Hospital of Nanjing Medical University, No 72, Guangzhou Road, Nanjing, 210008 China
| | - Yang Yang
- 4Department of Neonates, Children's Hospital of Nanjing Medical University, No 72, Guangzhou Road, Nanjing, 210008 China
| |
Collapse
|
6
|
Shifts in ovine cardiopulmonary microRNA expression in late gestation and the perinatal period. PLoS One 2018; 13:e0204038. [PMID: 30231073 PMCID: PMC6145571 DOI: 10.1371/journal.pone.0204038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/01/2018] [Indexed: 12/23/2022] Open
Abstract
Background MicroRNAs (miRNAs) have been identified as important contributors to the regulation of early fetal cardiopulmonary development. However, miRNA expression profiles during late gestation and the early neonatal period are not fully elaborated in large mammals such as sheep (ovis aries). The aim of this study was to sequence miRNA from cardiopulmonary tissues in late gestation and neonate sheep to identify changes in miRNA expression. Methods Illumina HiSeq next-generation deep sequencing (NGS) was performed on ovine tissues from the left (LV) and right ventricles (RV), lungs and pulmonary artery (PA) of preterm fetuses (128 days), near-term fetuses (140 days) (term = 148 days) and neonatal lambs (5 days). NGS reads were mapped to the sheep genome (OviAri) and published miRNA sequences. Results Of 1345 cardiopulmonary miRNAs that were sequenced, relatively few major shifts in miRNA expression were detected with increased age from near term to neonates, and were confirmed by quantitative real-time PCR: bta-miR-146a (lung), bta-miR-22-3p (lung, LV), hsa-miR-335* (lung, PA), and miR-210 (lung, PA, LV). Conclusions Sequencing of miRNA led to identification of four predominant miRNA in ovine cardiopulmonary tissues which alter expression during late gestation and the early neonatal period, concurrent with important functional changes in heart and lungs.
Collapse
|
7
|
Zhang FY, Yang N, Rao YF, Du WH, Hao HS, Zhao XM, Zhu HB, Liu Y. Profiling of miRNAs in neonatal cloned bovines with collapsed lungs and respiratory distress. Reprod Domest Anim 2018; 53:550-555. [DOI: 10.1111/rda.13144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/28/2017] [Indexed: 01/05/2023]
Affiliation(s)
- FY Zhang
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
- College of Biological Sciences; China Agricultural University; Beijing China
| | - N Yang
- Laboratory of Zoonosis of Liaoning Province; College of Animal Science & Veterinary Medicine; Shenyang Agricultural University; Shenyang Liaoning China
| | - YF Rao
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - WH Du
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - HS Hao
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - XM Zhao
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - HB Zhu
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| | - Y Liu
- Institute of Animal Sciences; Chinese Academy of Agricultural Sciences; Beijing China
| |
Collapse
|
8
|
Zhang YH, Wu LZ, Liang HL, Yang Y, Qiu J, Kan Q, Zhu W, Ma CL, Zhou XY. Pulmonary surfactant synthesis in miRNA-26a-1/miRNA-26a-2 double knockout mice generated using the CRISPR/Cas9 system. Am J Transl Res 2017; 9:355-365. [PMID: 28337265 PMCID: PMC5340672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 01/26/2017] [Indexed: 06/06/2023]
Abstract
Pulmonary surfactant (PS), which is synthesized by type II alveolar epithelial cells (AECIIs), maintains alveolar integrity by reducing surface tension. Many premature neonates who lack adequate PS are predisposed to developing respiratory distress syndrome (RDS), one of the leading causes of neonatal morbidity and mortality. PS synthesis is influenced and regulated by various factors, including microRNAs. Previous in vitro studies have shown that PS synthesis is regulated by miR-26a in fetal rat AECIIs. This study aimed to investigate the role of miR-26a in PS synthesis in vivo. To obtain a miR-26a-1/miR-26a-2 double knockout mouse model, we used the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9) system, an important genome editing technology. Real-time PCR was performed to determine the miR-26a levels in various organs, as well as the mRNA levels of surfactant-associated proteins. Moreover, AECIIs and surfactant-associated proteins in lung tissues were analyzed by hematoxylin-eosin staining and immunohistochemistry. Homozygous offspring of miR-26a-1/miR-26a-2 double knockout mice generated using the CRISPR/Cas9 system were successfully obtained, and PS synthesis and the number of AECIIs were significantly increased in the miR-26a knockout mice. These results indicate that miR-26a plays an important role in PS synthesis in AECIIs.
Collapse
Affiliation(s)
- Ying-Hui Zhang
- Department of Neonatology, Children's Hospital of Nanjing Medical University Nanjing 210008, Jiangsu, China
| | - Li-Zhi Wu
- Department of Neonatology, Children's Hospital of Nanjing Medical University Nanjing 210008, Jiangsu, China
| | - Hong-Lu Liang
- Department of Neonatology, Children's Hospital of Nanjing Medical University Nanjing 210008, Jiangsu, China
| | - Yang Yang
- Department of Neonatology, Children's Hospital of Nanjing Medical University Nanjing 210008, Jiangsu, China
| | - Jie Qiu
- Department of Neonatology, Children's Hospital of Nanjing Medical University Nanjing 210008, Jiangsu, China
| | - Qing Kan
- Department of Neonatology, Children's Hospital of Nanjing Medical University Nanjing 210008, Jiangsu, China
| | - Wen Zhu
- Department of Neonatology, Children's Hospital of Nanjing Medical University Nanjing 210008, Jiangsu, China
| | - Cheng-Ling Ma
- Department of Neonatology, Children's Hospital of Nanjing Medical University Nanjing 210008, Jiangsu, China
| | - Xiao-Yu Zhou
- Department of Neonatology, Children's Hospital of Nanjing Medical University Nanjing 210008, Jiangsu, China
| |
Collapse
|
9
|
Abstract
The P2X7 receptor is a trimeric ion channel gated by extracellular adenosine 5'-triphosphate. The receptor is present on an increasing number of different cells types including stem, blood, glial, neural, ocular, bone, dental, exocrine, endothelial, muscle, renal and skin cells. The P2X7 receptor induces various downstream events in a cell-specific manner, including inflammatory molecule release, cell proliferation and death, metabolic events, and phagocytosis. As such this receptor plays important roles in heath and disease. Increasing knowledge about the P2X7 receptor has been gained from studies of, but not limited to, protein chemistry including cloning, site-directed mutagenesis, crystal structures and atomic modeling, as well as from studies of primary tissues and transgenic mice. This chapter focuses on the P2X7 receptor itself. This includes the P2RX7 gene and its products including splice and polymorphic variants. This chapter also reviews modulators of P2X7 receptor activation and inhibition, as well as the transcriptional regulation of the P2RX7 gene via its promoter and enhancer regions, and by microRNA and long-coding RNA. Furthermore, this chapter discusses the post-translational modification of the P2X7 receptor by N-linked glycosylation, adenosine 5'-diphosphate ribosylation and palmitoylation. Finally, this chapter reviews interaction partners of the P2X7 receptor, and its cellular localisation and trafficking within cells.
Collapse
Affiliation(s)
- Ronald Sluyter
- School of Biological Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Centre for Medical and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia. .,Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| |
Collapse
|
10
|
Bouhaddioui W, Provost PR, Tremblay Y. Expression profile of androgen-modulated microRNAs in the fetal murine lung. Biol Sex Differ 2016; 7:20. [PMID: 27042289 PMCID: PMC4818395 DOI: 10.1186/s13293-016-0072-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 03/21/2016] [Indexed: 11/14/2022] Open
Abstract
Background Androgens are known to delay lung development. As a consequence, the incidence and morbidity of respiratory distress syndrome of the neonate are higher for male than for female premature infants. We previously reported that many genes were expressed with a sex difference in the mouse developing lung and that several genes were under the control of androgens in the male fetal lung. microRNAs are small non-coding RNAs known to negatively regulate the expression of specific genes. In this study, we examined whether murine miRNAs are under the control of androgens in the male developing lung. Methods Expression profiling of microRNAs was performed by microarrays using RNA extracted from male fetal lungs isolated on gestational day (GD) 17.0 and GD 18.0 after daily injection of pregnant mice from GD 10.0 with the antiandrogen flutamide or vehicle only. To identify putative miRNA target genes, the data obtained here were combined with gene profiling data reported previously using the same RNA preparations. qPCR was used to confirm microarray data with fetal lungs from other litters than those used in microarrays. Results Flutamide induced downregulation and upregulation of several miRNAs on GD 17.0 and GD 18.0. Of the 43 mature miRNAs modulated by flutamide on GD 17.0, 60 % were downregulated, whereas this proportion was only of 34 % for the 35 mature miRNAs modulated on GD 18.0. For 29 and 26 flutamide-responsive miRNAs, we found a corresponding target inversely regulated by androgens on GD 17.0 and 18.0, respectively. The androgen-regulated target genes were involved in several biological processes (lipid metabolism, cell proliferation, and lung development) and molecular functions, mainly transcription factor binding. Conclusions Regulation of male lung development involves several miRNAs that are under androgen modulation in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13293-016-0072-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wafae Bouhaddioui
- Reproduction, Mother and Youth Health, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Rm T-3-67, Québec City, Québec Canada ; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec City, Québec Canada
| | - Pierre R Provost
- Reproduction, Mother and Youth Health, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Rm T-3-67, Québec City, Québec Canada ; Department of Obstetrics/Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec Canada ; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec City, Québec Canada
| | - Yves Tremblay
- Reproduction, Mother and Youth Health, Centre de Recherche du CHU de Québec, 2705 Laurier Boulevard, Rm T-3-67, Québec City, Québec Canada ; Department of Obstetrics/Gynecology and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec Canada ; Centre de Recherche en Biologie de la Reproduction (CRBR), Faculté de Médecine, Université Laval, Québec City, Québec Canada
| |
Collapse
|
11
|
Yu HR, Li SC, Tseng WN, Tain YL, Chen CC, Sheen JM, Tiao MM, Kuo HC, Huang CC, Hsieh KS, Huang LT. Early and late effects of prenatal corticosteroid treatment on the microRNA profiles of lung tissue in rats. Exp Ther Med 2016; 11:753-762. [PMID: 26997989 PMCID: PMC4774352 DOI: 10.3892/etm.2016.2992] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 11/25/2015] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids have been administered to mothers at risk of premature delivery to induce maturation of preterm fetal lungs and prevent the development of respiratory distress syndrome. Micro (mi)RNAs serve various crucial functions in cell proliferation, differentiation and organ development; however, few studies have demonstrated an association between miRNAs and lung development. The aim of the present study was to investigate alterations in the miRNA profiles of rat lung tissue following prenatal glucocorticoid therapy for fetal lung development. The differences in miRNA expression profiles were compared between postnatal days 7 (D7) and 120 (D120) rat lung tissues, followed by validation using reverse transcription-quantitative polymerase chain reaction. The miRNA profiles of rat lung tissues following prenatal dexamethasone (DEX) therapy were also investigated. miRNAs with 2-fold changes were selected for further analysis. At D120, 6 upregulated and 6 downregulated miRNAs were detected, compared with D7. Among these differentially expressed miRNAs, miR-101-3p and miR-99b-5p were associated with the lowest and highest expressions of miRNA at D7, respectively. A limited impact on the miRNA profiles of rat lung tissues was observed following prenatal DEX treatment, which may help to further clarify the mechanisms underlying normal lung development. However, the results of the present study cannot entirely elucidate the effects of prenatal DEX treatment on the lung development of premature infants, and further studies investigating the impact of prenatal corticosteroids on fetal lung miRNA profiles are required.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan, R.O.C
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan, R.O.C
| | - Wan-Ning Tseng
- Department of Pediatrics, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan, R.O.C
| | - You-Lin Tain
- Department of Pediatrics, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan, R.O.C
| | - Chih-Cheng Chen
- Department of Pediatrics, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan, R.O.C
| | - Jiunn-Ming Sheen
- Department of Pediatrics, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan, R.O.C
| | - Mao-Meng Tiao
- Department of Pediatrics, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan, R.O.C
| | - Ho-Chang Kuo
- Department of Pediatrics, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan, R.O.C
| | - Chao-Cheng Huang
- Department of Pathology and Medical Research, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan, R.O.C
| | - Kai-Sheng Hsieh
- Department of Pediatrics, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan, R.O.C
| | - Li-Tung Huang
- Department of Pediatrics, Chang Gung Memorial Hospital, Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan, R.O.C
| |
Collapse
|
12
|
Tang Y, Wang Y, Park KM, Hu Q, Teoh JP, Broskova Z, Ranganathan P, Jayakumar C, Li J, Su H, Tang Y, Ramesh G, Kim IM. MicroRNA-150 protects the mouse heart from ischaemic injury by regulating cell death. Cardiovasc Res 2015; 106:387-97. [PMID: 25824147 DOI: 10.1093/cvr/cvv121] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/14/2015] [Indexed: 12/14/2022] Open
Abstract
AIMS Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs). For example, miR-150 is down-regulated in patients with acute myocardial infarction, atrial fibrillation, dilated and ischaemic cardiomyopathy as well as in various mouse heart failure (HF) models. Circulating miR-150 has been recently proposed as a better biomarker of HF than traditional clinical markers such as brain natriuretic peptide. We recently showed using the β-arrestin-biased β-blocker, carvedilol that β-arrestin1-biased β1-adrenergic receptor cardioprotective signalling stimulates the processing of miR-150 in the heart. However, the potential role of miR-150 in ischaemic injury and HF is unknown. METHODS AND RESULTS Here, we show that genetic deletion of miR-150 in mice causes abnormalities in cardiac structural and functional remodelling after MI. The cardioprotective roles of miR-150 during ischaemic injury were in part attributed to direct repression of the pro-apoptotic genes egr2 (zinc-binding transcription factor induced by ischaemia) and p2x7r (pro-inflammatory ATP receptor) in cardiomyocytes. CONCLUSION These findings reveal a pivotal role for miR-150 as a regulator of cardiomyocyte survival during cardiac injury.
Collapse
Affiliation(s)
- Yaoping Tang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Yongchao Wang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Kyoung-Mi Park
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Qiuping Hu
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Jian-Peng Teoh
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Zuzana Broskova
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Punithavathi Ranganathan
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Calpurnia Jayakumar
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Jie Li
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Huabo Su
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Ganesan Ramesh
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | - Il-Man Kim
- Vascular Biology Center, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University CB-3717, 1459 Laney Walker Blvd, Augusta, GA, USA
| |
Collapse
|
13
|
Bienertova-Vasku J, Novak J, Vasku A. MicroRNAs in pulmonary arterial hypertension: pathogenesis, diagnosis and treatment. ACTA ACUST UNITED AC 2014; 9:221-34. [PMID: 25660363 DOI: 10.1016/j.jash.2014.12.011] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/12/2014] [Accepted: 12/16/2014] [Indexed: 12/16/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a severe and increasingly prevalent disease, manifested by the maladaptation of pulmonary vasculature, which consequently leads to right heart failure and possibly even death. The development of PAH is characterized by specific functional as well as structural changes, primarily associated with the aberrant function of the pulmonary artery endothelial cells, smooth muscle cells, and vascular fibroblasts. MicroRNAs constitute a class of small ≈22-nucleotides-long non-coding RNAs that post-transcriptionally regulate gene expression and that may lead to significant cell proteome changes. While the involvement of miRNAs in the development of various diseases--especially cancer--has been reported, numerous miRNAs have also been associated with PAH onset, progression, or treatment responsiveness. This review focuses on the role of microRNAs in the development of PAH as well as on their potential use as biomarkers and therapeutic tools in both experimental PAH models and in humans. Special attention is given to the roles of miR-21, miR-27a, the miR-17-92 cluster, miR-124, miR-138, the miR-143/145 cluster, miR-150, miR-190, miR-204, miR-206, miR-210, miR-328, and the miR-424/503 cluster, specifically with the objective of providing greater insight into the pervasive roles of miRNAs in the pathogenesis of this deadly condition.
Collapse
Affiliation(s)
- Julie Bienertova-Vasku
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Jan Novak
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Anna Vasku
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
14
|
Xiao X, Huang C, Zhao C, Gou X, Senavirathna LK, Hinsdale M, Lloyd P, Liu L. Regulation of myofibroblast differentiation by miR-424 during epithelial-to-mesenchymal transition. Arch Biochem Biophys 2014; 566:49-57. [PMID: 25524739 DOI: 10.1016/j.abb.2014.12.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/21/2014] [Accepted: 12/08/2014] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is one of the most common and severe interstitial lung diseases. Epithelial-to-mesenchymal transition (EMT) is a process whereby epithelial cells undergo transition to a mesenchymal phenotype. This process has been shown to contribute to IPF. MicroRNAs (miRNAs) are small non-coding RNAs of 18-24 nucleotides in length which regulate gene expression. Several studies have implicated miRNAs in EMT; however, specific miRNAs that regulate EMT in IPF have not yet been identified. In this study, we identified 6 up-regulated and 3 down-regulated miRNAs in a human lung epithelial cell EMT model using miRNA microarray and real-time PCR. Overexpression of one of these up-regulated miRNAs, miR-424, increased the expression of α-smooth muscle actin, an indicator of myofibroblast differentiation, but had no effects on the epithelial or mesenchymal cell markers. miR-424 enhanced the activity of the TGF-β signaling pathway, as demonstrated by a luciferase reporter assay. Further experiments showed that miR-424 decreased the protein expression of Smurf2, a negative regulator of TGF-β signaling, indicating that miR-424 exerts a forward regulatory loop in the TGF-β signaling pathway. Our results suggest that miR-424 regulates the myofibroblast differentiation during EMT by potentiating the TGF-β signaling pathway, likely through Smurf2.
Collapse
Affiliation(s)
- Xiao Xiao
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Chaoqun Huang
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Chunling Zhao
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA; Department of Physiology, Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Xuxu Gou
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lakmini K Senavirathna
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Myron Hinsdale
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Pamela Lloyd
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Lin Liu
- Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
15
|
Zhang H, Guo Y, Mishra A, Gou D, Chintagari NR, Liu L. MicroRNA-206 regulates surfactant secretion by targeting VAMP-2. FEBS Lett 2014; 589:172-6. [PMID: 25481410 DOI: 10.1016/j.febslet.2014.11.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/13/2014] [Accepted: 11/24/2014] [Indexed: 12/12/2022]
Abstract
Lung surfactant secretion is a highly regulated process. Our previous studies have shown that VAMP-2 is essential for surfactant secretion. In the present study we investigated the role of miR-206 in surfactant secretion through VAMP-2. VAMP-2 was confirmed to be a target of miR-206 by 3'-untranslational region (3'-UTR) luciferase assay. Mutations in the predicated miR-206 binding sites reduced the binding of miR-206 to the 3'-UTR of VAMP-2. miR-206 decreased the expression of VAMP-2 protein and decreased the lung surfactant secretion in alveolar type II cells. In conclusion, miR-206 regulates lung surfactant secretion by limiting the availability of VAMP-2 protein.
Collapse
Affiliation(s)
- Honghao Zhang
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 73034, United States
| | - Yujie Guo
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 73034, United States; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 73034, United States
| | - Amarjit Mishra
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 73034, United States
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Narendranath Reddy Chintagari
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 73034, United States
| | - Lin Liu
- Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, Stillwater, OK 73034, United States; Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, OK 73034, United States.
| |
Collapse
|
16
|
Zhang XQ, Zhang P, Yang Y, Qiu J, Kan Q, Liang HL, Zhou XY, Zhou XG. Regulation of pulmonary surfactant synthesis in fetal rat type II alveolar epithelial cells by microRNA-26a. Pediatr Pulmonol 2014; 49:863-72. [PMID: 24395810 DOI: 10.1002/ppul.22975] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 08/23/2013] [Indexed: 11/06/2022]
Abstract
Pulmonary surfactant, a unique developmentally regulated, phospholipid-rich lipoprotein, is synthesized by the type II epithelial cells (AECII) of the pulmonary alveolus, where it is stored in organelles termed lamellar bodies. The synthesis of pulmonary surfactant is under multifactorial control and is regulated by a number of hormones and factors, including glucocorticoids, prolactin, insulin, growth factors, estrogens, androgens, thyroid hormones, and catecholamines acting through beta-adrenergic receptors, and cAMP. While there is increasing evidence that microRNAs (miRNAs) are involved in the regulation of almost every cellular and physiological process, the potential role of miRNAs in the regulation of pulmonary surfactant synthesis remains unknown. miRNA-26a (miR-26a) has been predicted to target SMAD1, one of the bone morphogenetic protein (BMP) receptor downstream signaling proteins that plays a key role in differentiation of lung epithelial cells during lung development. In this study, we explored the regulation role of miR-26a in the synthesis of pulmonary surfactant. An adenoviral miR-26a overexpression vector was constructed and introduced into primary cultured fetal AECII. GFP fluorescence was observed to determinate the transfection efficiency and miR-26a levels were measured by RT-PCR. MTT was performed to analyze AECII viability. qRT-PCR and Western blotting were used to determine the mRNA and protein level of SMAD1 and surfactant-associated proteins. The results showed that miR-26a in fetal AECII was overexpressed after the transfection, and that the overexpression of miR-26a inhibited pulmonary surfactant synthesis in AECII. There was no significant change in cell proliferation. Our results further showed that overexpression of miR-26a reduced the SMAD1 expression both in mRNA and protein level in fetal AECII. These findings indicate that miR-26a regulates surfactant synthesis in fetal AECII through SMAD1.
Collapse
Affiliation(s)
- Xiao-Qun Zhang
- Department of Neonatology, Nanjing Children's Hospital of Nanjing Medical University, Nanjing, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zheng L, Zhang X, Yang F, Zhu J, Zhou P, Yu F, Hou L, Xiao L, He Q, Wang B. Regulation of the P2X7R by microRNA-216b in human breast cancer. Biochem Biophys Res Commun 2014; 452:197-204. [PMID: 25078617 DOI: 10.1016/j.bbrc.2014.07.101] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/21/2022]
Abstract
Breast cancer is the most common cancer in women around the world. However, the molecular mechanisms underlying breast cancer pathogenesis are only partially understood. Here, in this study, we found that P2X7R was up-regulated and miR-216b was down-regulated in breast cancer cell lines and tissues. Using bioinformatic analysis and 3'UTR luciferase reporter assay, we determined P2X7R can be directly targeted by miR-216b, which can down-regulate endogenous P2X7R mRNA and protein levels. Ectopic expression of miR-216b mimics leads to inhibited cell growth and apoptosis, while blocking expression of the miR-216b results in increased cell proliferation. Furthermore, our findings demonstrate that knockdown of P2X7R promotes apoptosis in breast cancer cells through down-regulating Bcl-2 and increasing the cleavage caspase-3 protein level. Finally, we confirmed that down-regulation of miR-216b in breast cancer is inversely associated with P2X7R expression level. Together, these findings establish miR-216b as a novel regulator of P2X7R and a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Luming Zheng
- Department of Breast and Thyroid, Jinan Military General Hospital, Jinan 250031, Shandong Province, China
| | - Xukui Zhang
- Department of General Surgery, Jinan Military General Hospital, Jinan 250031, Shandong Province, China
| | - Feng Yang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai 200011, China
| | - Jian Zhu
- Department of Breast and Thyroid, Jinan Military General Hospital, Jinan 250031, Shandong Province, China
| | - Peng Zhou
- Department of Breast and Thyroid, Jinan Military General Hospital, Jinan 250031, Shandong Province, China
| | - Fang Yu
- Department of Breast and Thyroid, Jinan Military General Hospital, Jinan 250031, Shandong Province, China
| | - Lei Hou
- Department of Breast and Thyroid, Jinan Military General Hospital, Jinan 250031, Shandong Province, China
| | - Lei Xiao
- Department of Breast and Thyroid, Jinan Military General Hospital, Jinan 250031, Shandong Province, China
| | - Qingqing He
- Department of Breast and Thyroid, Jinan Military General Hospital, Jinan 250031, Shandong Province, China
| | - Baocheng Wang
- Department of Oncology, Jinan Military General Hospital, Jinan 250031, Shandong Province, China.
| |
Collapse
|
18
|
Larsson M, Larsson K. Periodic minimal surface organizations of the lipid bilayer at the lung surface and in cubic cytomembrane assemblies. Adv Colloid Interface Sci 2014; 205:68-73. [PMID: 23910375 DOI: 10.1016/j.cis.2013.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/29/2013] [Accepted: 07/11/2013] [Indexed: 11/24/2022]
Abstract
The existence of infinite periodic lipid bilayer structures in biological systems was first demonstrated in cell membrane assemblies. Such periodicity is only possible in symmetric bilayers, and their occurrence is discussed here in relation to the asymmetry of cell membranes in vivo. A periodic membrane conformation in the prolamellar body of plants corresponds to a dormant state without photosynthesis. A similar reversible formation of a dormant state has also been observed in the mitochondria of the amoeba Chaos. In these cases the energy production has become insufficient to maintain the membrane asymmetry. Formation of membranes that are symmetric over the bilayer is proposed to be a principal mechanism behind formation of cubic membrane systems. Another type of bicontinuous minimal surface structure is considered to form the alveolar lining of mammals at normal breathing conditions. The CLP surface corresponds to such a tetragonal surface phase. It is also a symmetric bilayer and in a state of zero energy expenditure. Structural alternatives of the bilayer conformation in this latter system are also discussed here.
Collapse
|
19
|
Huang S, Chen Y, Wu W, Ouyang N, Chen J, Li H, Liu X, Su F, Lin L, Yao Y. miR-150 promotes human breast cancer growth and malignant behavior by targeting the pro-apoptotic purinergic P2X7 receptor. PLoS One 2013; 8:e80707. [PMID: 24312495 PMCID: PMC3846619 DOI: 10.1371/journal.pone.0080707] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/06/2013] [Indexed: 11/18/2022] Open
Abstract
The P2X7 receptor regulates cell growth through mediation of apoptosis. Low level expression of P2X7 has been linked to cancer development because tumor cells harboring a defective P2X7 mechanism can escape P2X7 pro-apoptotic control. microRNAs (miRNAs) function as negative regulators of post-transcriptional gene expression, playing major roles in cellular differentiation, proliferation, and metastasis. In this study, we found that miR-150 was over-expressed in breast cancer cell lines and tissues. In these breast cancer cell lines, blocking the action of miR-150 with inhibitors leads to cell death, while ectopic expression of the miR-150 results in increased cell proliferation. We deploy a microRNA sponge strategy to inhibit miR-150 in vitro, and the result demonstrates that the 3′-untranslated region (3′UTR) of P2X7 receptor contains a highly conserved miR-150-binding motif and its direct interaction with miR-150 down-regulates endogenous P2X7 protein levels. Furthermore, our findings demonstrate that miR-150 over-expression promotes growth, clonogenicity and reduces apoptosis in breast cancer cells. Meanwhile, these findings can be decapitated in nude mice with breast cancer xenografts. Finally, these observations strengthen our working hypothesis that up-regulation of miR-150 in breast cancer is inversely associated with P2X7 receptor expression level. Together, these findings establish miR-150 as a novel regulator of P2X7 and a potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Songyin Huang
- Department of Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yongsong Chen
- Department of Endocrinology, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Wei Wu
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Nengyong Ouyang
- Department of Gynaecology and Obstetrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianing Chen
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hongyu Li
- Department of Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaoqiang Liu
- Department of Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fengxi Su
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Ling Lin
- Department of Rheumatology, The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
- * E-mail: (LL); (YDY)
| | - Yandan Yao
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- * E-mail: (LL); (YDY)
| |
Collapse
|