1
|
Nilsson P, Ravinet M, Cui Y, Berg PR, Zhang Y, Guo R, Luo T, Song Y, Trucchi E, Hoff SNK, Lv R, Schmid BV, Easterday WR, Jakobsen KS, Stenseth NC, Yang R, Jentoft S. Polygenic plague resistance in the great gerbil uncovered by population sequencing. PNAS NEXUS 2022; 1:pgac211. [PMID: 36712379 PMCID: PMC9802093 DOI: 10.1093/pnasnexus/pgac211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 06/18/2023]
Abstract
Pathogens can elicit high selective pressure on hosts, potentially altering genetic diversity over short evolutionary timescales. Intraspecific variation in immune response is observable as variable survivability from specific infections. The great gerbil (Rhombomys opimus) is a rodent plague host with a heterogenic but highly resistant phenotype. Here, we investigate the genomic basis for plague-resistant phenotypes by exposing wild-caught great gerbils to plague (Yersinia pestis). Whole genome sequencing of 10 survivors and 10 moribund individuals revealed a subset of genomic regions showing elevated differentiation. Gene ontology analysis of candidate genes in these regions demonstrated enrichment of genes directly involved in immune functions, cellular metabolism and the regulation of apoptosis as well as pathways involved in transcription, translation, and gene regulation. Transcriptomic analysis revealed that the early activated great gerbil immune response to plague consisted of classical components of the innate immune system. Our approach combining challenge experiments with transcriptomics and population level sequencing, provides new insight into the genetic background of plague-resistance and confirms its complex nature, most likely involving multiple genes and pathways of both the immune system and regulation of basic cellular functions.
Collapse
Affiliation(s)
- Pernille Nilsson
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | | | | | - Rong Guo
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, China
| | - Tao Luo
- Xinjiang Center for Disease Control and Prevention, Urumqi 830002, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Emiliano Trucchi
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, 60131 Ancona, Italy
| | - Siv N K Hoff
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Ruichen Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Boris V Schmid
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - W Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | | | | | - Ruifu Yang
- To whom correspondence should be addressed:
| | | |
Collapse
|
2
|
Ishikura S, Yoshida K, Hashimoto S, Nakabayashi K, Tsunoda T, Shirasawa S. CENP-B promotes the centromeric localization of ZFAT to control transcription of noncoding RNA. J Biol Chem 2021; 297:101213. [PMID: 34547289 PMCID: PMC8496178 DOI: 10.1016/j.jbc.2021.101213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/28/2022] Open
Abstract
The centromere is a chromosomal locus that is essential for the accurate segregation of chromosomes during cell division. Transcription of noncoding RNA (ncRNA) at the centromere plays a crucial role in centromere function. The zinc-finger transcriptional regulator ZFAT binds to a specific 8-bp DNA sequence at the centromere, named the ZFAT box, to control ncRNA transcription. However, the precise molecular mechanisms by which ZFAT localizes to the centromere remain elusive. Here we show that the centromeric protein CENP-B is required for the centromeric localization of ZFAT to regulate ncRNA transcription. The ectopic expression of CENP-B induces the accumulation of both endogenous and ectopically expressed ZFAT protein at the centromere in human cells, suggesting that the centromeric localization of ZFAT requires the presence of CENP-B. Coimmunoprecipitation analysis reveals that ZFAT interacts with the acidic domain of CENP-B, and depletion of endogenous CENP-B reduces the centromeric levels of ZFAT protein, further supporting that CENP-B is required for the centromeric localization of ZFAT. In addition, knockdown of CENP-B significantly decreased the expression levels of ncRNA at the centromere where ZFAT regulates the transcription, suggesting that CENP-B is involved in the ZFAT-regulated centromeric ncRNA transcription. Thus, we concluded that CENP-B contributes to the establishment of the centromeric localization of ZFAT to regulate ncRNA transcription.
Collapse
Affiliation(s)
- Shuhei Ishikura
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; Center for Advanced Molecular Medicine, Fukuoka University, Fukuoka, Japan
| | - Kazumasa Yoshida
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; Center for Advanced Molecular Medicine, Fukuoka University, Fukuoka, Japan
| | - Sayuri Hashimoto
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Toshiyuki Tsunoda
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; Center for Advanced Molecular Medicine, Fukuoka University, Fukuoka, Japan
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; Center for Advanced Molecular Medicine, Fukuoka University, Fukuoka, Japan.
| |
Collapse
|
3
|
Ishikura S, Nagai M, Tsunoda T, Nishi K, Tanaka Y, Koyanagi M, Shirasawa S. The transcriptional regulator Zfat is essential for maintenance and differentiation of the adipocytes. J Cell Biochem 2021; 122:626-638. [PMID: 33522619 PMCID: PMC8248092 DOI: 10.1002/jcb.29890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023]
Abstract
Adipocytes play crucial roles in the control of whole‐body energy homeostasis. Differentiation and functions of the adipocytes are regulated by various transcription factors. Zfat (zinc‐finger protein with AT‐hook) is a transcriptional regulator that controls messenger RNA expression of specific genes through binding to their transcription start sites. Here we report important roles of Zfat in the adipocytes. We establish inducible Zfat‐knockout (Zfat iKO) mice where treatment with tamoxifen causes a marked reduction in Zfat expression in various tissues. Tamoxifen treatment of Zfat iKO mice reduces the white adipose tissues (WATs) mass, accompanied by the decreased triglyceride levels. Zfat is expressed in both the adipose‐derived stem cells (ADSCs) and mature adipocytes in the WATs. In ex vivo assays of the mature adipocytes differentiated from the Zfat iKO ADSCs, loss of Zfat in the mature adipocytes reduces the triglyceride levels, suggesting cell autonomous roles of Zfat in the maintenance of the mature adipocytes. Furthermore, we identify the Atg13, Brf1, Psmc3, and Timm22 genes as Zfat‐target genes in the mature adipocytes. In contrast, loss of Zfat in the ADSCs impairs adipocyte differentiation with the decreased expression of C/EBPα and adiponectin. Thus, we propose that Zfat plays crucial roles in maintenance and differentiation of the adipocytes.
Collapse
Affiliation(s)
- Shuhei Ishikura
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Center for Advanced Molecular Medicine, Fukuoka University, Fukuoka, Japan
| | - Masayoshi Nagai
- Center for Advanced Molecular Medicine, Fukuoka University, Fukuoka, Japan
| | - Toshiyuki Tsunoda
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Center for Advanced Molecular Medicine, Fukuoka University, Fukuoka, Japan
| | - Kensuke Nishi
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yoko Tanaka
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Midori Koyanagi
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Center for Advanced Molecular Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
4
|
Ishikura S, Nakabayashi K, Nagai M, Tsunoda T, Shirasawa S. ZFAT binds to centromeres to control noncoding RNA transcription through the KAT2B-H4K8ac-BRD4 axis. Nucleic Acids Res 2020; 48:10848-10866. [PMID: 32997115 PMCID: PMC7641738 DOI: 10.1093/nar/gkaa815] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/09/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023] Open
Abstract
Centromeres are genomic regions essential for faithful chromosome segregation. Transcription of noncoding RNA (ncRNA) at centromeres is important for their formation and functions. Here, we report the molecular mechanism by which the transcriptional regulator ZFAT controls the centromeric ncRNA transcription in human and mouse cells. Chromatin immunoprecipitation with high-throughput sequencing analysis shows that ZFAT binds to centromere regions at every chromosome. We find a specific 8-bp DNA sequence for the ZFAT-binding motif that is highly conserved and widely distributed at whole centromere regions of every chromosome. Overexpression of ZFAT increases the centromeric ncRNA levels at specific chromosomes, whereas its silencing reduces them, indicating crucial roles of ZFAT in centromeric transcription. Overexpression of ZFAT increases the centromeric levels of both the histone acetyltransferase KAT2B and the acetylation at the lysine 8 in histone H4 (H4K8ac). siRNA-mediated knockdown of KAT2B inhibits the overexpressed ZFAT-induced increase in centromeric H4K8ac levels, suggesting that ZFAT recruits KAT2B to centromeres to induce H4K8ac. Furthermore, overexpressed ZFAT recruits the bromodomain-containing protein BRD4 to centromeres through KAT2B-mediated H4K8ac, leading to RNA polymerase II-dependent ncRNA transcription. Thus, ZFAT binds to centromeres to control ncRNA transcription through the KAT2B-H4K8ac-BRD4 axis.
Collapse
Affiliation(s)
- Shuhei Ishikura
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.,Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Masayoshi Nagai
- Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Toshiyuki Tsunoda
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.,Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814-0180, Japan.,Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan
| |
Collapse
|
5
|
Tsunoda T, Doi K, Ishikura S, Luo H, Nishi K, Matsuzaki H, Koyanagi M, Tanaka Y, Okamura T, Shirasawa S. Zfat expression in ZsGreen reporter gene knock‑in mice: Implications for a novel function of Zfat in definitive erythropoiesis. Int J Mol Med 2018; 42:2595-2603. [PMID: 30106088 PMCID: PMC6192767 DOI: 10.3892/ijmm.2018.3806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/02/2018] [Indexed: 01/17/2023] Open
Abstract
Zinc finger and AT-hook domain containing (Zfat) is a transcriptional regulator harboring an AT-hook domain and 18 repeats of a C2H2 zinc-finger motif, which binds directly to the proximal region of transcription start sites in Zfat-target genes. It was previously reported that deletion of the Zfat gene in mice yields embryonic lethality by embryonic day 8.5 and impairs primitive hematopoiesis in yolk sac blood islands. In addition, Zfat has been reported to be involved in thymic T-cell development and peripheral T-cell homeostasis. In the present study, in order to obtain a precise understanding of the expression and function of Zfat, a knock-in mouse strain (ZfatZsG/+ mice), which expressed ZsGreen in the Zfat locus, was established. ZsGreen signals in tissues and cells of ZfatZsG/+ mice were examined by flow cytometric and histological analyses. Consistent with our previous studies, ZsGreen signals in ZfatZsG/+ mice were detected in the embryo and yolk sac blood islands, as well as in thymocytes, B and T cells. In the ZfatZsG/+ thymus, ZsGreen+ cells were identified not only in T-cell populations but also in thymic epithelial cells, suggesting the role of Zfat in antigen-presenting cells during thymic T-cell development. ZsGreen signals were observed in definitive erythroid progenitor cells in the fetal liver and adult bone marrow of ZfatZsG/+ mice. The proportion of ZsGreen+ cells in these tissues was highest at the early stage of erythroid differentiation, suggesting that Zfat serves particular roles in definitive erythropoiesis. Histological studies demonstrated that ZsGreen signals were detected in the pyramidal cells in the hippocampal CA1 region and the Purkinje cells in the cerebellum, suggesting novel functions of Zfat in nervous tissues. Taken together, these results indicated that the ZfatZsG/+ reporter mouse may be considered a useful tool for elucidating the expression and function of Zfat.
Collapse
Affiliation(s)
- Toshiyuki Tsunoda
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814‑0180, Japan
| | - Keiko Doi
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814‑0180, Japan
| | - Shuhei Ishikura
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814‑0180, Japan
| | - Hao Luo
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814‑0180, Japan
| | - Kensuke Nishi
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814‑0180, Japan
| | - Hiroshi Matsuzaki
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814‑0180, Japan
| | - Midori Koyanagi
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814‑0180, Japan
| | - Yoko Tanaka
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814‑0180, Japan
| | - Tadashi Okamura
- Department of Laboratory Animal Medicine, Research Institute, National Center for Global Health and Medicine, Tokyo 162‑8655, Japan
| | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka 814‑0180, Japan
| |
Collapse
|
6
|
Woo HJ, Reifman J. Genetic interaction effects reveal lipid-metabolic and inflammatory pathways underlying common metabolic disease risks. BMC Med Genomics 2018; 11:54. [PMID: 29925367 PMCID: PMC6011398 DOI: 10.1186/s12920-018-0373-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 06/12/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Common metabolic diseases, including type 2 diabetes, coronary artery disease, and hypertension, arise from disruptions of the body's metabolic homeostasis, with relatively strong contributions from genetic risk factors and substantial comorbidity with obesity. Although genome-wide association studies have revealed many genomic loci robustly associated with these diseases, biological interpretation of such association is challenging because of the difficulty in mapping single-nucleotide polymorphisms (SNPs) onto the underlying causal genes and pathways. Furthermore, common diseases are typically highly polygenic, and conventional single variant-based association testing does not adequately capture potentially important large-scale interaction effects between multiple genetic factors. METHODS We analyzed moderately sized case-control data sets for type 2 diabetes, coronary artery disease, and hypertension to characterize the genetic risk factors arising from non-additive, collective interaction effects, using a recently developed algorithm (discrete discriminant analysis). We tested associations of genes and pathways with the disease status while including the cumulative sum of interaction effects between all variants contained in each group. RESULTS In contrast to non-interacting SNP mapping, which produced few genome-wide significant loci, our analysis revealed extensive arrays of pathways, many of which are involved in the pathogenesis of these metabolic diseases but have not been directly identified in genetic association studies. They comprised cell stress and apoptotic pathways for insulin-producing β-cells in type 2 diabetes, processes covering different atherosclerotic stages in coronary artery disease, and elements of both type 2 diabetes and coronary artery disease risk factors (cell cycle, apoptosis, and hemostasis) associated with hypertension. CONCLUSIONS Our results support the view that non-additive interaction effects significantly enhance the level of common metabolic disease associations and modify their genetic architectures and that many of the expected genetic factors behind metabolic disease risks reside in smaller genotyping samples in the form of interacting groups of SNPs.
Collapse
Affiliation(s)
- Hyung Jun Woo
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA
| | - Jaques Reifman
- Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD, USA.
| |
Collapse
|
7
|
Molecular mechanisms of transcriptional regulation by the nuclear zinc-finger protein Zfat in T cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1398-1410. [PMID: 27591365 DOI: 10.1016/j.bbagrm.2016.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/18/2016] [Accepted: 08/29/2016] [Indexed: 11/22/2022]
Abstract
Zfat is a nuclear protein with AT-hook and zinc-finger domains. We previously reported that Zfat plays crucial roles in T-cell survival and development in mice. However, the molecular mechanisms whereby Zfat regulates gene expression in T cells remain unexplored. In this study, we analyzed the genome-wide occupancy of Zfat by chromatin immunoprecipitation with sequencing (ChIP-seq), which showed that Zfat bound predominantly to a region around a transcription start site (TSS), and that an 8-bp nucleotide sequence GAA(T/A)(C/G)TGC was identified as a consensus sequence for Zfat-binding sites. Furthermore, about half of the Zfat-binding sites were characterized by histone H3 acetylations at lysine 9 and lysine 27 (H3K9ac/K27ac). Notably, Zfat gene deletion decreased the H3K9ac/K27ac levels at the Zfat-binding sites, suggesting that Zfat may be related to the regulation of H3K9ac/K27ac. Integrated analysis of ChIP-seq and transcriptional profiling in thymocytes identified Zfat-target genes with transcription to be regulated directly by Zfat. We then focused on the chromatin regulator Brpf1, a Zfat-target gene, revealing that Zfat bound directly to a 9-bp nucleotide sequence, CGAANGTGC, which is conserved among mammalian Brpf1 promoters. Furthermore, retrovirus-mediated re-expression of Zfat in Zfat-deficient peripheral T cells restored Brpf1 expression to normal levels, and shRNA-mediated Brpf1 knockdown in peripheral T cells increased the proportion of apoptotic cells, suggesting that Zfat-regulated Brpf1 expression was important for T-cell survival. Our findings demonstrated that Zfat regulates the transcription of target genes by binding directly to the TSS proximal region, and that Zfat-target genes play important roles in T-cell homeostasis.
Collapse
|
8
|
Ishikura S, Iwaihara Y, Tanaka Y, Luo H, Nishi K, Doi K, Koyanagi M, Okamura T, Tsunoda T, Shirasawa S. The Nuclear Zinc Finger Protein Zfat Maintains FoxO1 Protein Levels in Peripheral T Cells by Regulating the Activities of Autophagy and the Akt Signaling Pathway. J Biol Chem 2016; 291:15282-91. [PMID: 27226588 DOI: 10.1074/jbc.m116.723734] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 01/14/2023] Open
Abstract
Forkhead box O1 (FoxO1) is a key molecule for the development and functions of peripheral T cells. However, the precise mechanisms regulating FoxO1 expression in peripheral T cells remain elusive. We previously reported that Zfat(f/f)-CD4Cre mice showed a marked decline in FoxO1 protein levels in peripheral T cells, partially through proteasomal degradation. Here we have identified the precise mechanisms, apart from proteasome-mediated degradation, of the decreased FoxO1 levels in Zfat-deficient T cells. First, we confirmed that tamoxifen-inducible deletion of Zfat in Zfat(f/f)-CreERT2 mice coincidently decreases FoxO1 protein levels in peripheral T cells, indicating that Zfat is essential for maintaining FoxO1 levels in these cells. Although the proteasome-specific inhibitors lactacystin and epoxomicin only moderately increase FoxO1 protein levels, the inhibitors of lysosomal proteolysis bafilomycin A1 and chloroquine restore the decreased FoxO1 levels in Zfat-deficient T cells to levels comparable with those in control cells. Furthermore, Zfat-deficient T cells show increased numbers of autophagosomes and decreased levels of p62 protein, together indicating that Zfat deficiency promotes lysosomal FoxO1 degradation through autophagy. In addition, Zfat deficiency increases the phosphorylation levels of Thr-308 and Ser-473 of Akt and the relative amounts of cytoplasmic to nuclear FoxO1 protein levels, indicating that Zfat deficiency causes Akt activation, leading to nuclear exclusion of FoxO1. Our findings have demonstrated a novel role of Zfat in maintaining FoxO1 protein levels in peripheral T cells by regulating the activities of autophagy and the Akt signaling pathway.
Collapse
Affiliation(s)
- Shuhei Ishikura
- From the Department of Cell Biology, Faculty of Medicine and Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan and
| | - Yuri Iwaihara
- From the Department of Cell Biology, Faculty of Medicine and Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan and
| | - Yoko Tanaka
- From the Department of Cell Biology, Faculty of Medicine and Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan and
| | - Hao Luo
- From the Department of Cell Biology, Faculty of Medicine and
| | - Kensuke Nishi
- From the Department of Cell Biology, Faculty of Medicine and
| | - Keiko Doi
- From the Department of Cell Biology, Faculty of Medicine and Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan and
| | - Midori Koyanagi
- From the Department of Cell Biology, Faculty of Medicine and Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan and
| | - Tadashi Okamura
- the Department of Laboratory Animal Medicine and Section of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Toshiyuki Tsunoda
- From the Department of Cell Biology, Faculty of Medicine and Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan and
| | - Senji Shirasawa
- From the Department of Cell Biology, Faculty of Medicine and Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka 814-0180, Japan and
| |
Collapse
|
9
|
Ishikura S, Ogawa M, Doi K, Matsuzaki H, Iwaihara Y, Tanaka Y, Tsunoda T, Hideshima H, Okamura T, Shirasawa S. Zfat-deficient CD4⁺ CD8⁺ double-positive thymocytes are susceptible to apoptosis with deregulated activation of p38 and JNK. J Cell Biochem 2016; 116:149-57. [PMID: 25169027 DOI: 10.1002/jcb.24954] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 08/22/2014] [Indexed: 11/08/2022]
Abstract
Zfat, which is a nuclear protein harboring an AT-hook domain and 18-repeats of C2H2 zinc-finger motif, is highly expressed in immune-related tissues, including the thymus and spleen. T cell specific deletion of the Zfat gene by crossing Zfat(f/f) mice with LckCre mice yields a significant reduction in the number of CD4(+) CD8(+) double-positive (DP) thymocytes. However, physiological role for Zfat in T cell development in the thymus remains unknown. Here, we found that Zfat-deficient DP thymocytes in Zfat(f/f)-LckCre mice were susceptible to apoptosis both at an unstimulated state and in response to T cell receptor (TCR)-stimulation. The phosphorylation levels of p38 and JNK were elevated in Zfat-deficient thymocytes at an unstimulated state with an enhanced phosphorylation of ATF2 and with an over-expression of Gadd45α⋅ On the other hand, the activation of JNK in the Zfat-deficient thymocytes, but not p38, was strengthened and prolonged in response to TCR-stimulation. All these results demonstrate that Zfat critically participates in the development of DP thymocytes through regulating the activities of p38 and JNK.
Collapse
Affiliation(s)
- Shuhei Ishikura
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan; Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hogquist KA, Xing Y, Hsu FC, Shapiro VS. T Cell Adolescence: Maturation Events Beyond Positive Selection. THE JOURNAL OF IMMUNOLOGY 2015; 195:1351-7. [PMID: 26254267 DOI: 10.4049/jimmunol.1501050] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Single-positive thymocytes that successfully complete positive and negative selection must still undergo one final step, generally termed T cell maturation, before they gain functional competency and enter the long-lived T cell pool. Maturation initiates after positive selection in single-positive thymocytes and continues in the periphery in recent thymic emigrants, before these newly produced T cells gain functional competency and are ready to participate in the immune response as peripheral naive T cells. Recent work using genetically altered mice demonstrates that T cell maturation is not a single process, but a series of steps that occur independently and sequentially after positive selection. This review focuses on the changes that occur during T cell maturation, as well as the molecules and pathways that are critical at each step.
Collapse
Affiliation(s)
- Kristin A Hogquist
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Yan Xing
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455; and
| | - Fan-Chi Hsu
- Department of Immunology, Mayo Clinic, Rochester, MN 55905
| | | |
Collapse
|
11
|
Kobayashi H, Higashiura Y, Koike N, Akasaka J, Uekuri C, Iwai K, Niiro E, Morioka S, Yamada Y. Genes Downregulated in Endometriosis Are Located Near the Known Imprinting Genes. Reprod Sci 2014; 21:966-972. [PMID: 24615936 DOI: 10.1177/1933719114526473] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
There is now accumulating evidence that endometriosis is a disease associated with an epigenetic disorder. Genomic imprinting is an epigenetic phenomenon known to regulate DNA methylation of either maternal or paternal alleles. We hypothesize that hypermethylated endometriosis-associated genes may be enriched at imprinted gene loci. We sought to determine whether downregulated genes associated with endometriosis susceptibility are associated with chromosomal location of the known paternally and maternally expressed imprinting genes. Gene information has been gathered from National Center for Biotechnology Information database geneimprint.com. Several researchers have identified specific loci with strong DNA methylation in eutopic endometrium and ectopic lesion with endometriosis. Of the 29 hypermethylated genes in endometriosis, 19 genes were located near 45 known imprinted foci. There may be an association of the genomic location between genes specifically downregulated in endometriosis and epigenetically imprinted genes.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Yumi Higashiura
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Natsuki Koike
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Juria Akasaka
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Chiharu Uekuri
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Kana Iwai
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Emiko Niiro
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Sachiko Morioka
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| | - Yuki Yamada
- Department of Obstetrics and Gynecology, Nara Medical University, Nara, Japan
| |
Collapse
|
12
|
Ogawa M, Okamura T, Ishikura S, Doi K, Matsuzaki H, Tanaka Y, Ota T, Hayakawa K, Suzuki H, Tsunoda T, Sasazuki T, Shirasawa S. Zfat-deficiency results in a loss of CD3ζ phosphorylation with dysregulation of ERK and Egr activities leading to impaired positive selection. PLoS One 2013; 8:e76254. [PMID: 24098453 PMCID: PMC3789737 DOI: 10.1371/journal.pone.0076254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/22/2013] [Indexed: 11/19/2022] Open
Abstract
The human ZFAT gene was originally identified as a susceptibility gene for autoimmune thyroid disease. Mouse Zfat is a critical transcriptional regulator for primitive hematopoiesis and required for peripheral T cell homeostasis. However, its physiological roles in T cell development remain poorly understood. Here, we generated Zfatf/f-LckCre mice and demonstrated that T cell-specific Zfat-deletion in Zfatf/f-LckCre mice resulted in a reduction in the number of CD4+CD8+double-positive (DP) cells, CD4+single positive cells and CD8+single positive cells. Indeed, in Zfatf/f-LckCre DP cells, positive selection was severely impaired. Defects of positive selection in Zfat-deficient thymocytes were not restored in the presence of the exogenous TCR by using TCR-transgenic mice. Furthermore, Zfat-deficient DP cells showed a loss of CD3ζ phosphorylation in response to T cell antigen receptor (TCR)-stimulation concomitant with dysregulation of extracellular signal-related kinase (ERK) and early growth response protein (Egr) activities. These results demonstrate that Zfat is required for proper regulation of the TCR-proximal signalings, and is a crucial molecule for positive selection through ERK and Egr activities, thus suggesting that a full understanding of the precise molecular mechanisms of Zfat will provide deeper insight into T cell development and immune regulation.
Collapse
Affiliation(s)
- Masahiro Ogawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Jonan-ku, Fukuoka, Japan
- Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Jonan-ku, Fukuoka, Japan
| | - Tadashi Okamura
- Division of Animal Models, Department of Infectious Diseases, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Shuhei Ishikura
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Jonan-ku, Fukuoka, Japan
- Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Jonan-ku, Fukuoka, Japan
| | - Keiko Doi
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Jonan-ku, Fukuoka, Japan
- Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Jonan-ku, Fukuoka, Japan
| | - Hiroshi Matsuzaki
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Jonan-ku, Fukuoka, Japan
| | - Yoko Tanaka
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Jonan-ku, Fukuoka, Japan
| | - Takeharu Ota
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Jonan-ku, Fukuoka, Japan
- Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Jonan-ku, Fukuoka, Japan
| | - Kunihiro Hayakawa
- Department of Immunology and Pathology, National Institute for Global Health and Medicine, Chiba, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, National Institute for Global Health and Medicine, Chiba, Japan
| | - Toshiyuki Tsunoda
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Jonan-ku, Fukuoka, Japan
- Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Jonan-ku, Fukuoka, Japan
| | | | - Senji Shirasawa
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, Jonan-ku, Fukuoka, Japan
- Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Jonan-ku, Fukuoka, Japan
- * E-mail:
| |
Collapse
|