1
|
Ge R, Luan Z, Guo T, Xia S, Ye J, Xu J. The expression and biological role of complement C1s in esophageal squamous cell carcinoma. Open Life Sci 2024; 19:20220915. [PMID: 39071493 PMCID: PMC11282917 DOI: 10.1515/biol-2022-0915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/23/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
The present work focused on investigating the role of the altered expression of complement C1s in proliferation and apoptosis of esophageal squamous cell carcinoma (ESCC) cells and explore its biological functions in ESCC, so as to lay a theoretical foundation and provide certain clinical reference for diagnosing and treating ESCC. Complement C1s expression within ESCC was assessed, and its clinical pathological characteristics in ESCC patients were analyzed. Subsequently, in vitro experiments were performed to further explore the mechanisms by which complement C1s affected ESCC. According to the results, complement C1s expression within ESCC markedly increased relative to adjacent non-cancerous samples. High C1s expression showed positive relation to race, residual lesion, and tumor location of ESCC patients. Complement C1s affected ESCC cell proliferation and apoptosis. Notably, C1s knockdown significantly inhibited ESCC cell proliferation and enhanced their apoptosis. C1s suppressed ESCC cell proliferation via Wnt1/β-catenin pathway and promoted their apoptosis through modulating the expression of Bcl2, Bax, and cleaved-caspase3.
Collapse
Affiliation(s)
- Ruomu Ge
- Central Laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, P.R. China
- Anhui Province Key Laboratory of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhengyun Luan
- Department of Clinical Laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, P.R. China
| | - Ting Guo
- Central Laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, P.R. China
| | - Sheng Xia
- School of Medicine, Jiangsu University School, Zhenjiang, Jiangsu, 212000, P.R. China
| | - Jun Ye
- Central Laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, P.R. China
| | - Jie Xu
- Central Laboratory, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, 225300, P.R. China
| |
Collapse
|
2
|
Wang F, Wang W, Wang M, Chen D. Genetic landscape of breast cancer subtypes following radiation therapy: insights from comprehensive profiling. Front Oncol 2024; 14:1291509. [PMID: 38380359 PMCID: PMC10878167 DOI: 10.3389/fonc.2024.1291509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Background In breast cancer, in the era of precision cancer therapy, different patterns of genetic mutations dictate different treatments options. However, it is not clear whether the genetic profiling of breast cancer patients undergoing breast-conserving surgery is related to the adverse reactions caused by radiotherapy. Methods We collected formalin-fixed paraffin-embedded (FFPE) tumor tissue samples from 54 breast cancer patients treated with radiation after breast-conserving surgery and identified comprehensive molecular information in hundreds of cancer-associated genes by FoundationOne CDx (F1CDx), a next-generation sequencing (NGS)-based assay. Results Among our cohort of 54 breast cancer patients, we found high-frequency mutations in cancer-related genes such as TP53 (56%), RAD21 (39%), PIK3CA (35%), ERBB2 (24%), and MYC (22%). Strikingly, we detected that the WNT pathway appears to be a signaling pathway with specific high-frequency mutations in the HER2 subtype. We also compared the mutation frequencies of the two groups of patients with and without cutaneous radiation injury (CRI) after radiotherapy and found that the mutation frequencies of two genes, FGFR1 and KLHL6, were significantly higher in patients with CRI : No subgroup than in those with CRI : Yes. Conclusion Different breast cancer subtypes have their own type-specific mutation patterns. FGFR1 and KLHL6 mutations are protective factors for radiation-induced skin toxicity in breast cancer patients.
Collapse
Affiliation(s)
- Fang Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Weiyan Wang
- Department of Hematology, Taian Central Hospital, Taian, China
| | - Minglei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
- Department of Oncology, Shandong Cancer Hospital and Institute Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Dawei Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| |
Collapse
|
3
|
Zhang H, Liu C, Zhu D, Zhang Q, Li J. Medicinal Chemistry Strategies for the Development of Inhibitors Disrupting β-Catenin's Interactions with Its Nuclear Partners. J Med Chem 2023; 66:1-31. [PMID: 36583662 DOI: 10.1021/acs.jmedchem.2c01016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dysregulation of the Wnt/β-catenin signaling pathway is strongly associated with various aspects of cancer, including tumor initiation, proliferation, and metastasis as well as antitumor immunity, and presents a promising opportunity for cancer therapy. Wnt/β-catenin signaling activation increases nuclear dephosphorylated β-catenin levels, resulting in β-catenin binding to TCF and additional cotranscription factors, such as BCL9, CBP, and p300. Therefore, directly disrupting β-catenin's interactions with these nuclear partners holds promise for the effective and selective suppression of the aberrant activation of Wnt/β-catenin signaling. Herein, we summarize recent advances in biochemical techniques and medicinal chemistry strategies used to identify potent peptide-based and small-molecule inhibitors that directly disrupt β-catenin's interactions with its nuclear binding partners. We discuss the challenges involved in developing drug-like inhibitors that target the interactions of β-catenin and its nuclear binding partner into therapeutic agents.
Collapse
Affiliation(s)
- Hao Zhang
- School of Pharmacy, Fudan University, Shanghai 201203, China.,Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Chenglong Liu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Di Zhu
- School of Pharmacy, Fudan University, Shanghai 201203, China.,Department of Pharmacology, School of Basic Medical Science, Fudan University, Shanghai 201100, China
| | - Qingwei Zhang
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Jianqi Li
- Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
4
|
Yu F, Yu C, Li F, Zuo Y, Wang Y, Yao L, Wu C, Wang C, Ye L. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct Target Ther 2021; 6:307. [PMID: 34456337 PMCID: PMC8403677 DOI: 10.1038/s41392-021-00701-5] [Citation(s) in RCA: 265] [Impact Index Per Article: 88.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/19/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Wnt/β-catenin signaling has been broadly implicated in human cancers and experimental cancer models of animals. Aberrant activation of Wnt/β-catenin signaling is tightly linked with the increment of prevalence, advancement of malignant progression, development of poor prognostics, and even ascendence of the cancer-associated mortality. Early experimental investigations have proposed the theoretical potential that efficient repression of this signaling might provide promising therapeutic choices in managing various types of cancers. Up to date, many therapies targeting Wnt/β-catenin signaling in cancers have been developed, which is assumed to endow clinicians with new opportunities of developing more satisfactory and precise remedies for cancer patients with aberrant Wnt/β-catenin signaling. However, current facts indicate that the clinical translations of Wnt/β-catenin signaling-dependent targeted therapies have faced un-neglectable crises and challenges. Therefore, in this study, we systematically reviewed the most updated knowledge of Wnt/β-catenin signaling in cancers and relatively targeted therapies to generate a clearer and more accurate awareness of both the developmental stage and underlying limitations of Wnt/β-catenin-targeted therapies in cancers. Insights of this study will help readers better understand the roles of Wnt/β-catenin signaling in cancers and provide insights to acknowledge the current opportunities and challenges of targeting this signaling in cancers.
Collapse
Affiliation(s)
- Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Changhao Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Feifei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanqin Zuo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Yitian Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Chenzhou Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
- Department of Endodontics, West China Stomatology Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Park SR, Kim SR, Lee JW, Park CH, Yu WJ, Lee SJ, Chon SJ, Lee DH, Hong IS. Development of a novel dual reproductive organ on a chip: recapitulating bidirectional endocrine crosstalk between the uterine endometrium and the ovary. Biofabrication 2020; 13. [PMID: 32998123 DOI: 10.1088/1758-5090/abbd29] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/30/2020] [Indexed: 12/28/2022]
Abstract
Conventional 2D or even 3Din vitroculture models for human reproductive organs cannot properly recapitulate the bidirectional endocrine crosstalk between the uterine endometrium and the ovary. This crosstalk is essential for maintaining the various physiological features and functions of each tissue. Moreover, mostin vitromodels for the female reproductive tract also fail to mimic its multicellular structure. We therefore developed a novel 'dual reproductive organ on a chip' that reflects the bidirectional endocrine cross-talk and the complex multicellular structures by integrating various cellular components of both the human uterine endometrium and the ovary with several biodegradable natural polymers. Indeed, the bidirectional endocrine crosstalk between these two tissues is achieved through media sharing between channels, and it can markedly improve the viability of loaded cells within each chamber of the chip platform. In addition, we also identified a reliable reproductive toxicity marker, SERPINB2, which is significantly increased in response to various toxic exposures in both endometrial and ovarian follicular cells. Based on these findings, we next established a SERPINB2 luciferase reporter system that was specifically designed for detecting and quantifying the toxicity of certain substances. By introducing this SERPINB2 luciferase reporter system into the loaded cells within the chip platform, we ultimately developed an effective 'dual reproductive organ-on-chip' that was successfully used to predict the reproductive toxicity of various hazardous materials.
Collapse
Affiliation(s)
- Se-Ra Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Soo-Rim Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Jin Woo Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| | - Chan Hum Park
- Department of Otolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Deajeon 34114, Republic of Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Deajeon 34114, Republic of Korea
| | - Seung Joo Chon
- Department of Obstetrics and Gynecology, Gachon University Gil Medical Center, College of Medicine, Gachon University, Incheon 21565, Republic of Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - In-Sun Hong
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, 7-45 Songdo-dong, Yeonsu-ku, Incheon 406-840, Republic of Korea
| |
Collapse
|
6
|
Lara-Chacón B, Guerrero-Rodríguez SL, Ramírez-Hernández KJ, Robledo-Rivera AY, Velazquez MAV, Sánchez-Olea R, Calera MR. Gpn3 Is Essential for Cell Proliferation of Breast Cancer Cells Independent of Their Malignancy Degree. Technol Cancer Res Treat 2020; 18:1533033819870823. [PMID: 31431135 PMCID: PMC6704425 DOI: 10.1177/1533033819870823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Successful therapies for patients with breast cancer often lose their initial effectiveness. Thus, identifying new molecular targets is a constant goal in the fight against breast cancer. Gpn3 is a protein required for RNA polymerase II nuclear targeting in both yeast and human cells. We investigated here the effect of suppressing Gpn3 expression on cell proliferation in a progression series of isogenic cell lines derived from the nontumorigenic MCF-10A breast cells that recapitulate different stages of breast carcinogenesis. Gpn3 protein levels were comparable in all malignant derivatives of the nontumorigenic MCF-10A cells. shRNA-mediated inhibition of Gpn3 expression markedly decreased cell proliferation in all MCF-10A sublines. A fraction of the largest RNA polymerase II subunit Rpb1 was retained in the cytoplasm, but most Rpb1 remained nuclear after suppressing Gpn3 in all cell lines studied. Long-term proliferation experiments in cells with suppressed Gpn3 expression resulted in the eventual loss of all isogenic cell lines but MCF-10CA1d.cl1. In MCF-10CA1d.cl1 cells, Gpn3 knockdown reduced the proliferation of breast cancer stem cells as evaluated by mammosphere assays. After the identification that Gpn3 plays a key role in cell proliferation in mammary epithelial cells independent of the degree of transformation, we also analyzed the importance of Gpn3 in other human breast cancer cell lines from different subtypes. Gpn3 was also required for cell proliferation and nuclear translocation of RNA polymerase II in such cellular models. Altogether, our results show that Gpn3 is essential for breast cancer cell proliferation regardless of the transformation level, indicating that Gpn3 could be considered a molecular target for the development of new antiproliferative therapies. Importantly, our analysis of public data revealed that Gpn3 overexpression was associated with a significant decrease in overall survival in patients with estrogen receptor-positive and Human epidermal growth factor receptor 2 (HER2+) breast cancer, supporting our proposal that targeting Gpn3 could potentially benefit patients with breast cancer.
Collapse
Affiliation(s)
- Bárbara Lara-Chacón
- 1 Instituto de Fisica Manuel Sandoval Vallarta, Universidad Autonoma de San Luis Potos, San Luis Potosi, Mexico
| | | | - Karla J Ramírez-Hernández
- 1 Instituto de Fisica Manuel Sandoval Vallarta, Universidad Autonoma de San Luis Potos, San Luis Potosi, Mexico
| | | | - Marco Antonio Velasco Velazquez
- 2 Departamento de Farmacología y Unidad Periférica de Investigación en Biomedicina Traslacional, México city, México.,3 Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Roberto Sánchez-Olea
- 1 Instituto de Fisica Manuel Sandoval Vallarta, Universidad Autonoma de San Luis Potos, San Luis Potosi, Mexico
| | - Mónica Raquel Calera
- 1 Instituto de Fisica Manuel Sandoval Vallarta, Universidad Autonoma de San Luis Potos, San Luis Potosi, Mexico
| |
Collapse
|
7
|
Choi H, Jin S, Cho H, Won H, An HW, Jeong G, Park Y, Kim H, Park MK, Son T, Min K, Jang K, Oh Y, Lee J, Kong G. CDK12 drives breast tumor initiation and trastuzumab resistance via WNT and IRS1-ErbB-PI3K signaling. EMBO Rep 2019; 20:e48058. [PMID: 31468695 PMCID: PMC6776914 DOI: 10.15252/embr.201948058] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/06/2019] [Accepted: 08/09/2019] [Indexed: 12/17/2022] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) has emerged as an effective therapeutic target due to its ability to regulate DNA damage repair in human cancers, but little is known about the role of CDK12 in driving tumorigenesis. Here, we demonstrate that CDK12 promotes tumor initiation as a novel regulator of cancer stem cells (CSCs) and induces anti-HER2 therapy resistance in human breast cancer. High CDK12 expression caused by concurrent amplification of CDK12 and HER2 in breast cancer patients is associated with disease recurrence and poor survival. CDK12 induces self-renewal of breast CSCs and in vivo tumor-initiating ability, and also reduces susceptibility to trastuzumab. Furthermore, CDK12 kinase activity inhibition facilitates anticancer efficacy of trastuzumab in HER2+ tumors, and mice bearing trastuzumab-resistant HER2+ tumor show sensitivity to an inhibitor of CDK12. Mechanistically, the catalytic activity of CDK12 is required for the expression of genes involved in the activation of ErbB-PI3K-AKT or WNT-signaling cascades. These results suggest that CDK12 is a major oncogenic driver and an actionable target for HER2+ breast cancer to replace or augment current anti-HER2 therapies.
Collapse
Affiliation(s)
- Hee‐Joo Choi
- Institute for Bioengineering and Biopharmaceutical Research (IBBR)Hanyang UniversitySeoulKorea
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Sora Jin
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Hani Cho
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Hee‐Young Won
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Hee Woon An
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Ga‐Young Jeong
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Young‐Un Park
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Hyung‐Yong Kim
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | | | - Taekwon Son
- College of PharmacySeoul National UniversitySeoulKorea
| | - Kyueng‐Whan Min
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Ki‐Seok Jang
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Young‐Ha Oh
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| | - Jeong‐Yeon Lee
- Department of MedicineCollege of MedicineHanyang UniversitySeoulKorea
| | - Gu Kong
- Institute for Bioengineering and Biopharmaceutical Research (IBBR)Hanyang UniversitySeoulKorea
- Department of PathologyCollege of MedicineHanyang UniversitySeoulKorea
| |
Collapse
|
8
|
Zhang B, Dang J, Ba D, Wang C, Han J, Zheng F. Potential function of CTLA-4 in the tumourigenic capacity of melanoma stem cells. Oncol Lett 2018; 16:6163-6170. [PMID: 30344757 DOI: 10.3892/ol.2018.9354] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 11/10/2017] [Indexed: 12/30/2022] Open
Abstract
Extensive clinical evidence supports that cytotoxic T lymphocyte antigen-4 (CTLA-4) is expressed in a variety of human malignant tumour cells in addition to T cells. In certain types of cancer, the overexpression of CTLA-4 is associated with poor patient prognosis. However, few studies have demonstrated the effects of tumour-intrinsic CTLA-4 in cancer stem cells, including melanoma stem cells (MSCs). In the present study, it was demonstrated that melanoma cell-intrinsic CTLA-4 induced tumour cell proliferation in vitro and suppressed tumour cell apoptosis. Furthermore, CTLA-4 was expressed in aldehyde dehydrogenase (ALDH)+ MSCs. CTLA-4 inhibited MSCs proliferation in vitro by blocking antibodies and significantly downregulated ALDH1A1, ALDH1A3 and ALDH2 mRNA expression (P<0.01). Functionally, blocking CTLA-4 in melanoma cell lines suppressed the properties of stem-like cells, including ALDH activity and significantly suppressed the ability of these cells to form spheres in vitro (P<0.05). In addition, the blocking of CTLA-4 in melanoma cells suppressed the properties of stem-like cells in vivo, including the capacity for tumourigenesis. The presence of residual ALDH+ MSCs within the tumour was observed, and the blocking CTLA-4 significantly decreased the number of residual ALDH+ MSCs in vivo (P<0.01). Altogether, these results indicate the identification of a novel mechanism underlying melanoma progression in the present study and that CTLA-4-targeted therapy may benefit candidate CTLA-4-targeted therapy by improving the long-term outcome for patients with advanced stages of melanoma.
Collapse
Affiliation(s)
- Bingyu Zhang
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Jianzhong Dang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Diandian Ba
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Cencen Wang
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Juan Han
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Fang Zheng
- Department of Paediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
9
|
miR-140-5p inhibits the proliferation and enhances the efficacy of doxorubicin to breast cancer stem cells by targeting Wnt1. Cancer Gene Ther 2018; 26:74-82. [PMID: 30032164 DOI: 10.1038/s41417-018-0035-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are a group of small non-coding single-stranded RNAs molecules, the dysregulation of which plays a critical role in the initiation and biological progression of malignancies. The current study demonstrated that miR-140-5p was frequently downregulated in breast cancer stem cells (BCSCs), and miR-140-5p mimics could inhibit the proliferation of BCSCs. Moreover, Wnt1 was a direct target of miR-140-5p, as was proved by luciferase reporter assays. miR-140-5p mimics could downregulate the wnt1 mRNA and protein levels in MCF-7 and MDA-MB-231 cells. Furthermore, miR-140 mimics could enhance the sensitivity of BCSCs to doxorubicin (Dox) through the Wnt1/ABCB1 pathway both in vitro and vivo. Our findings have presented a novel miRNA-mediated regulatory network for BCSCs, which may provide a potential therapeutic target for breast cancer.
Collapse
|
10
|
Wang GN, Zhong M, Chen Y, Ji J, Gao XQ, Wang TF. Expression of WNT1 in ameloblastoma and its significance. Oncol Lett 2018; 16:1507-1512. [PMID: 30008830 PMCID: PMC6036424 DOI: 10.3892/ol.2018.8820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 04/16/2018] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to measure the expression of WNT1 in ameloblastoma (AB). Immunohistochemistry was used to observe changes in WNT1 expression in 80 AB samples, 10 keratocystic odontogenic tumor (KCOT) samples and 10 normal oral mucosa (NOM) samples. Western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to measure WNT1 protein and mRNA expression, respectively, in 30 AB samples, 5 KCOT samples, 5 NOM samples and 3 tooth germ samples. Ectopic cytoplasmic expression of WNT1 was detected in AB; 88.8% (71/80) of the samples were WNT1-positive. The western blotting results demonstrated that compared with NOM (0.57±0.05), WNT1 expression was significantly higher in AB tissue (1.74±0.36, P<0.05), whereas it was not significantly different between AB and KCOT samples (0.80±0.06, P>0.05). RT-qPCR revealed that the level of WNT1 gene expression in AB was increased 2.43-fold compared with normal mucosa, and 1.77-fold compared with tooth germ tissue. In conclusion, WNT1 protein and mRNA expression were increased in AB, and there was ectopic cytoplasmic expression. This indicates that WNT1 may serve an important role in AB occurrence and development.
Collapse
Affiliation(s)
- Guan-Nan Wang
- Department of Pathology, Stomatological Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China.,Basic Medicine College, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Ming Zhong
- Department of Pathology, Stomatological Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Yv Chen
- Department of Pathology, Stomatological Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Jia Ji
- Department of Pathology, Stomatological Hospital of China Medical University, Shenyang, Liaoning 110002, P.R. China
| | - Xiu-Qiu Gao
- Department of Oral Medicine, Second Affiliated Hospital, Jinzhou Medical University, Jinzhou, Liaoning 121000, P.R. China
| | - Tian-Fu Wang
- Liaoning Railway Vocational and Technical College, Jinzhou, Liaoning 121000, P.R. China
| |
Collapse
|
11
|
Kaplani K, Koutsi S, Armenis V, Skondra FG, Karantzelis N, Champeris Tsaniras S, Taraviras S. Wound healing related agents: Ongoing research and perspectives. Adv Drug Deliv Rev 2018; 129:242-253. [PMID: 29501699 DOI: 10.1016/j.addr.2018.02.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/28/2018] [Accepted: 02/26/2018] [Indexed: 02/07/2023]
Abstract
Wound healing response plays a central part in chronic inflammation, affecting millions of people worldwide. It is a dynamic process that can lead to fibrosis, if tissue damage is irreversible and wound resolution is not attained. It is clear that there is a tight interconnection among wound healing, fibrosis and a variety of chronic disease conditions, demonstrating the heterogeneity of this pathology. Based on our further understanding of the cellular and molecular mechanisms underpinning tissue repair, new therapeutic approaches have recently been developed that target different aspects of the wound healing process and fibrosis. Nevertheless, several issues still need to be taken into consideration when designing modern wound healing drug delivery formulations. In this review, we highlight novel pharmacological agents that hold promise for targeting wound repair and fibrosis. We also focus on drug-delivery systems that may enhance current and future therapies.
Collapse
Affiliation(s)
- Konstantina Kaplani
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece; Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece
| | - Stamatina Koutsi
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece; Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece
| | - Vasileios Armenis
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece
| | - Foteini G Skondra
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece
| | - Nickolas Karantzelis
- Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece
| | | | - Stavros Taraviras
- Division of Stem Cells and Regenerative Medicine, Biomedical Postgraduate Programme, School of Medicine, University of Patras, Patras 26504, Greece; Department of Physiology, School of Medicine, University of Patras, Patras 26504, Greece.
| |
Collapse
|
12
|
Sultan M, Vidovic D, Paine AS, Huynh TT, Coyle KM, Thomas ML, Cruickshank BM, Dean CA, Clements DR, Kim Y, Lee K, Gujar SA, Weaver IC, Marcato P. Epigenetic Silencing of TAP1 in Aldefluor+Breast Cancer Stem Cells Contributes to Their Enhanced Immune Evasion. Stem Cells 2018; 36:641-654. [DOI: 10.1002/stem.2780] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/20/2017] [Accepted: 01/10/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Mohammad Sultan
- Departments of Pathology, Dalhousie University; Halifax Nova Scotia Canada
| | - Dejan Vidovic
- Departments of Pathology, Dalhousie University; Halifax Nova Scotia Canada
| | - Arianne S. Paine
- Departments of Pathology, Dalhousie University; Halifax Nova Scotia Canada
| | - Thomas T. Huynh
- Departments of Pathology, Dalhousie University; Halifax Nova Scotia Canada
| | - Krysta M. Coyle
- Departments of Pathology, Dalhousie University; Halifax Nova Scotia Canada
| | - Margaret L. Thomas
- Departments of Pathology, Dalhousie University; Halifax Nova Scotia Canada
| | | | - Cheryl A. Dean
- Departments of Pathology, Dalhousie University; Halifax Nova Scotia Canada
| | - Derek R. Clements
- Departments of Pathology, Dalhousie University; Halifax Nova Scotia Canada
| | - Youra Kim
- Departments of Pathology, Dalhousie University; Halifax Nova Scotia Canada
| | - Kristen Lee
- Psychology and Neuroscience, Dalhousie University; Halifax Nova Scotia Canada
| | - Shashi A. Gujar
- Departments of Pathology, Dalhousie University; Halifax Nova Scotia Canada
- Microbiology and Immunology, Dalhousie University; Halifax Nova Scotia Canada
| | - Ian C.G. Weaver
- Psychology and Neuroscience, Dalhousie University; Halifax Nova Scotia Canada
- Psychiatry and Brain Repair Centre; Dalhousie University; Halifax Nova Scotia Canada
| | - Paola Marcato
- Departments of Pathology, Dalhousie University; Halifax Nova Scotia Canada
- Microbiology and Immunology, Dalhousie University; Halifax Nova Scotia Canada
| |
Collapse
|
13
|
Kim JY, Lee HY, Park KK, Choi YK, Nam JS, Hong IS. CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: a novel therapeutic approach for liver cancer treatment. Oncotarget 2018; 7:20395-409. [PMID: 26967248 PMCID: PMC4991463 DOI: 10.18632/oncotarget.7954] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/16/2016] [Indexed: 02/07/2023] Open
Abstract
Liver cancer stem cells (CSCs) are resistant to conventional chemotherapy and radiation, which may destroy tumor masses, but not all liver CSCs contribute to tumor initiation, metastasis, and relapse. In the present study, we showed that liver CSCs with elevated Wnt/β-catenin signaling possess much greater self-renewal and clonogenic potential. We further documented that the increased clonogenic potential of liver CSCs is highly associated with changes in Wnt/β-catenin signaling and that Wnt/β-catenin signaling activity is positively correlated with CD133 expression and aldehyde dehydrogenase (ALDH) enzymatic activity. Notably, the small molecule inhibitor CWP232228, which antagonizes the binding of β-catenin to TCF in the nucleus, inhibits Wnt/β-catenin signaling and depletes CD133+/ALDH+ liver CSCs, thus ultimately diminishing the self-renewal capacity of CSCs and decreasing tumorigenicity in vitro and in vivo. Taken together, our findings suggest that CWP232228 acts as a candidate therapeutic agent for liver cancer by preferentially targeting liver CSCs.
Collapse
Affiliation(s)
- Ji-Young Kim
- Center of Animal Care and Use, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.,Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hwa-Yong Lee
- The Faculty of Liberal Arts, Jungwon University, Chungbuk, Republic of Korea
| | - Kwan-Kyu Park
- Department of Pathology, College of Medicine, Catholic University of Daegu, Daegu, Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jeong-Seok Nam
- School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - In-Sun Hong
- Laboratory of Stem Cell Research, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, Republic of Korea.,Department of Molecular Medicine, School of Medicine, Gachon University, Incheon, Republic of Korea
| |
Collapse
|
14
|
PD-L1 Promotes Self-Renewal and Tumorigenicity of Malignant Melanoma Initiating Cells. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1293201. [PMID: 29250533 PMCID: PMC5700500 DOI: 10.1155/2017/1293201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 09/10/2017] [Indexed: 01/12/2023]
Abstract
Recent studies have indicated that therapeutic antibodies targeting PD-L1 show remarkable efficacy in clinical trials in multiple tumors and that a melanoma cell-intrinsic PD-1: PD-L1 axis promotes tumor growth. However, few studies have shown tumor-intrinsic PD-L1 effects in malignant melanoma initiating cells (MMICs). Here, we aim to determine the possible regulatory effects of PD-L1 on MMICs. The ALDEFLUOR kit was used to identify ALDH+ MMICs. Flow cytometry was used to examine the expression of PD-L1 on ALDH+ MMICs. To determine the role of PD-L1 in MMICs self-renewal, we cultured melanoma cells with anti-PD-L1 and measured tumorsphere formation and apoptosis. In addition, the effects of anti-PD-L1 on tumorigenicity and residual ALDH+ MMICs in tumors were evaluated in vivo. We demonstrated that melanoma cell-intrinsic PD-L1 was expressed in ALDH+ MMICs. Blocking PD-L1 in melanoma cell lines impaired tumorsphere formation and induced the apoptosis of sphere cells. In addition, blocking PD-L1 inhibited tumor growth in vivo. We observed residual ALDH+ MMICs within the tumor. The results showed that blocking PD-L1 also significantly decreased the residual ALDH+ MMICs in the tumors. In conclusion, these results suggest a new mechanism underlying melanoma progression and PD-L1-targeted therapy, which is distinct from the immunomodulatory actions of PD-L1.
Collapse
|
15
|
Tang J, Zhou H, Liu J, Liu J, Li W, Wang Y, Hu F, Huo Q, Li J, Liu Y, Chen C. Dual-Mode Imaging-Guided Synergistic Chemo- and Magnetohyperthermia Therapy in a Versatile Nanoplatform To Eliminate Cancer Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:23497-23507. [PMID: 28661121 DOI: 10.1021/acsami.7b06393] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cancer stem cells (CSCs) have been identified as a new target for therapy in diverse cancers. Traditional therapies usually kill the bulk of cancer cells, but are often unable to effectively eliminate CSCs, which may lead to drug resistance and cancer relapse. Herein, we propose a novel strategy: fabricating multifunctional magnetic Fe3O4@PPr@HA hybrid nanoparticles and loading it with the Notch signaling pathway inhibitor N-[N-(3,5-difluorophenacetyl-l-alanyl)]-S-phenylglycinet-butylester (DAPT) to eliminate CSCs. Hyaluronic acid ligands greatly enhance the accumulation of the hybrid nanoparticles in the tumor site and in the CSCs. Both hyaluronase in the tumor microenvironment and the magnetic hyperthermia effect of the inner magnetic core can accelerate the release of DAPT. This controlled release of DAPT in the tumor site further enhances the ability of the combination of chemo- and magnetohyperthermia therapy to eliminate cancer stem cells. With the help of polypyrrole-mediated photoacoustic and Fe3O4-mediated magnetic resonance imaging, the drug release can be precisely monitored in vivo. This versatile nanoplatform enables effective elimination of the cancer stem cells and monitoring of the drugs.
Collapse
Affiliation(s)
- Jinglong Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Huige Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jiaming Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wanqi Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China , Beijing 100190, China
| | - Yuqing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China , Beijing 100190, China
| | - Fan Hu
- Department of Biomedical, College of Biochemical Engineering, Beijing Union University , Beijing 100023, China
| | - Qing Huo
- Department of Biomedical, College of Biochemical Engineering, Beijing Union University , Beijing 100023, China
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China , Beijing 100190, China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China , Beijing 100190, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
16
|
Zhou H, Neelakantan D, Ford HL. Clonal cooperativity in heterogenous cancers. Semin Cell Dev Biol 2017; 64:79-89. [PMID: 27582427 PMCID: PMC5330947 DOI: 10.1016/j.semcdb.2016.08.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022]
Abstract
Tumor heterogeneity is a major obstacle to the development of effective therapies and is thus an important focus of cancer research. Genetic and epigenetic alterations, as well as altered tumor microenvironments, result in tumors made up of diverse subclones with different genetic and phenotypic characteristics. Intratumor heterogeneity enables competition, but also supports clonal cooperation via cell-cell contact or secretion of factors, resulting in enhanced tumor progression. Here, we summarize recent findings related to interclonal interactions within a tumor and the therapeutic implications of such interactions, with an emphasis on how different subclones collaborate with each other to promote proliferation, metastasis and therapy-resistance. Furthermore, we propose that disruption of clonal cooperation by targeting key factors (such as Wnt and Hedgehog, amongst others) can be an alternative approach to improving clinical outcomes.
Collapse
Affiliation(s)
- Hengbo Zhou
- Program in Cancer Biology, University of Colorado School of Medicine, 12800 East 19th Avenue, Aurora, CO 80045, United States
| | - Deepika Neelakantan
- Program in Molecular Biology, University of Colorado School of Medicine, 12800 East 19th Avenue, Aurora, CO 80045, United States
| | - Heide L Ford
- Program in Cancer Biology, University of Colorado School of Medicine, 12800 East 19th Avenue, Aurora, CO 80045, United States; Program in Molecular Biology, University of Colorado School of Medicine, 12800 East 19th Avenue, Aurora, CO 80045, United States; Department of Pharmacology, University of Colorado School of Medicine, 12800 East 19th Avenue, Aurora, CO 80045, United States.
| |
Collapse
|
17
|
Jin B, Wang W, Meng XX, Du G, Li J, Zhang SZ, Zhou BH, Fu ZH. Let-7 inhibits self-renewal of hepatocellular cancer stem-like cells through regulating the epithelial-mesenchymal transition and the Wnt signaling pathway. BMC Cancer 2016; 16:863. [PMID: 27821157 PMCID: PMC5100284 DOI: 10.1186/s12885-016-2904-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/27/2016] [Indexed: 12/16/2022] Open
Abstract
Background Tumor suppressive let-7 miRNAs are universally down-regulated in human hepatocellular carcinoma (HCC) versus normal tissues; however, the roles and related molecular mechanisms of let-7 in HCC stem cells are poorly understood. Methods We examined the inhibitory effect of let-7 miRNAs on the proliferation of MHCC97-H and HCCLM3 hepatic cancer cells by using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, which was further confirmed by apoptosis and cell cycle studies. The sphere-forming assay was used to study the effects of let-7a on stem like cells. Through western blot, immunofluorescence and the luciferase-reporter assay, we explored the activity of epithelial-mesenchymal transition (EMT) signaling factors in HCC cells. qRT-PCR was applied to detect miRNA expression levels in clinical tissues. Results Let-7a effectively repressed cell proliferation and viability, and in stem-like cells, also let-7a decreased the efficiency of sphere formation.in stem-like cells. The suppression of EMT signaling factors in HCC cells contributed to let-7’s induced tumor viability repression and Wnt activation repression. Besides, Wnt1 is critical and essential for let-7a functions, and the rescue with recombinant Wnt1 agent abolished the suppressive roles of let-7a on hepatospheres. In clinical HCC and normal tissues, let-7a expression was inversely correlated with Wnt1 expression. Conclusions Let-7 miRNAs, especially let-7a, will be a promising therapeutic strategy in the treatment of HCC through eliminating HCC stem cells, which could be achieved by their inhibitory effect on the Wnt signaling pathway.
Collapse
Affiliation(s)
- Bin Jin
- Department of General Surgery, Qilu Hospital of Shandong University, 107 Wenhua West Road, Lixia District, Jinan, Shandong Province, 250012, China.
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong Province, 250012, China
| | - Xiang-Xin Meng
- Department of General Surgery, The People's Hospital of LingCheng, Dezhou, 253500, China
| | - Gang Du
- Department of General Surgery, Qilu Hospital of Shandong University, 107 Wenhua West Road, Lixia District, Jinan, Shandong Province, 250012, China
| | - Jia Li
- Department of General Surgery, Qilu Hospital of Shandong University, 107 Wenhua West Road, Lixia District, Jinan, Shandong Province, 250012, China
| | - Shi-Zhe Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107 Wenhua West Road, Lixia District, Jinan, Shandong Province, 250012, China
| | - Bing-Hai Zhou
- Department of General Surgery, Qilu Hospital of Shandong University, 107 Wenhua West Road, Lixia District, Jinan, Shandong Province, 250012, China
| | - Zhi-Hao Fu
- Department of General Surgery, Qilu Hospital of Shandong University, 107 Wenhua West Road, Lixia District, Jinan, Shandong Province, 250012, China
| |
Collapse
|
18
|
Sun H, Ding C, Zhang H, Gao J. Let‑7 miRNAs sensitize breast cancer stem cells to radiation‑induced repression through inhibition of the cyclin D1/Akt1/Wnt1 signaling pathway. Mol Med Rep 2016; 14:3285-92. [PMID: 27574028 DOI: 10.3892/mmr.2016.5656] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/12/2016] [Indexed: 11/06/2022] Open
Abstract
The tumor-suppressive let-7 family of microRNAs (miRNAs) has been previously identified to induce cell apoptosis, proliferation‑inhibition and suppression of the self‑renewal capacities of cancer stem cells (CSCs). However, let‑7‑mediated sensitization of tumors to radiation treatment remains to be investigated fully in triple negative breast cancer (TNBC), of which the clinical treatment is challenging. The inhibitory effect of let‑7 miRNAs on the self‑renewal ability of CSCs from TNBC was investigated. It was identified that radiation inhibited the self‑renewal ability of TNBC stem cells by inhibiting cyclin D1 and protein kinase B (Akt1) phosphorylation. Let‑7d stimulates radiation‑induced tumor repression, exerting synergistic effects with radiotherapy on stem cell renewal. Through western blotting, immunofluorescence and a luciferase assay, it was identified that reduced cyclin D1/Akt1/wingless type MMTV integration site family member 1 (Wnt1) signaling activity accounts for the let‑7‑induced radiation sensitization. Let‑7 directly inhibits cyclin D1 expression, resulting in low phosphorylation of Akt1, which is critical for the let‑7‑induced inhibition of mammosphere numbers. The let‑7d‑induced Akt1 inhibition contributed to tumor repression, with similar results to those obtained with Akt inhibitors. Furthermore, it was identified that the inhibition of Wnt1 is critical for the functioning of let‑7d, and that addition of recombinant Wnt1 abolished the effects of let‑7d on sensitization to radiotherapy. Let‑7d is suggested to be a promising therapeutic agent in the treatment of TNBC by targeting CSCs and sensitizing tumors to radiotherapy via inhibition of cyclin D1/Akt1/Wnt1 signaling.
Collapse
Affiliation(s)
- Huifang Sun
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Changmao Ding
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Huiyu Zhang
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
19
|
Abstract
Metastasis is the underlying cause of death for the majority of breast cancer patients. Despite significant advances in recent years in basic research and clinical development, therapies that specifically target metastatic breast cancer remain inadequate, and represents the single greatest obstacle to reducing mortality of late-stage breast cancer. Recent efforts have leveraged genomic analysis of breast cancer and molecular dissection of tumor-stromal cross-talk to uncover a number of promising candidates for targeted treatment of metastatic breast cancer. Rational combinations of therapeutic agents targeting tumor-intrinsic properties and microenvironmental components provide a promising strategy to develop precision treatments with higher specificity and less toxicity. In this review, we discuss the emerging therapeutic targets in breast cancer metastasis, from tumor-intrinsic pathways to those that involve the host tissue components, including the immune system.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, United States.
| |
Collapse
|
20
|
Functional characteristics of mesenchymal stem cells derived from the adipose tissue of a patient with achondroplasia. In Vitro Cell Dev Biol Anim 2016; 52:545-54. [PMID: 27059327 DOI: 10.1007/s11626-016-0008-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/08/2016] [Indexed: 10/22/2022]
Abstract
Mesenchymal stem cells (MSCs) can be isolated from various tissues including bone marrow, adipose tissue, skin dermis, and umbilical Wharton's jelly as well as injured tissues. MSCs possess the capacity for self-renewal and the potential for differentiation into adipogenic, osteogenic, and chondrogenic lineages. However, the characteristics of MSCs in injured tissues, such as achondroplasia (ACH), are not well known. In this study, we isolated MSCs from human subcutaneous adipose (ACH-SAMSCs) tissue and circumjacent human adipose tissue of the cartilage (ACH-CAMSCs) from a patient with ACH. We then analyzed the characterization of ACH-SAMSCs and ACH-CAMSCs, compared with normal human dermis-derived MSCs (hDMSCs). In flow cytometry analysis, the isolated ACH-MSCs expressed low levels of CD73, CD90, and CD105, compared with hDMSCs. Moreover, both ACH- SAMSCs and ACH-CAMSCs had constitutionally overactive fibroblast growth factor receptor 3 (FGFR3) and exhibited significantly reduced osteogenic differentiation, compared to enhanced adipogenic differentiation. The activity of extracellular signal-regulated kinases 1/2 (ERK1/2) and p38 mitogen-activated protein kinases (p38 MAPK) was increased in ACH-MSCs. In addition, the efficacy of osteogenic differentiation was slightly restored in osteogenic differentiation medium with MAPKs inhibitors. These results suggest that they play essential roles in MSC differentiation toward adipogenesis in ACH pathology. In conclusion, the identification of the characteristics of ACH-MSCs and the favoring of adipogenic differentiation via the FGFR3/MAPK axis might help to elucidate the pathogenic mechanisms relevant to other skeletal diseases and could provide targets for therapeutic interventions.
Collapse
|
21
|
Park YH, Kim SU, Kwon TH, Kim JM, Song IS, Shin HJ, Lee BK, Bang DH, Lee SJ, Lee DS, Chang KT, Kim BY, Yu DY. Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway. Oncogene 2015; 35:3503-13. [PMID: 26500057 DOI: 10.1038/onc.2015.411] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/09/2015] [Accepted: 09/18/2015] [Indexed: 12/14/2022]
Abstract
The current study was carried out to define the involvement of Peroxiredoxin (Prx) II in progression of hepatocellular carcinoma (HCC) and the underlying molecular mechanism(s). Expression and function of Prx II in HCC was determined using H-ras(G12V)-transformed HCC cells (H-ras(G12V)-HCC cells) and the tumor livers from H-ras(G12V)-transgenic (Tg) mice and HCC patients. Prx II was upregulated in H-ras(G12V)-HCC cells and H-ras(G12V)-Tg mouse tumor livers, the expression pattern of which highly similar to that of forkhead Box M1 (FoxM1). Moreover, either knockdown of FoxM1 or site-directed mutagenesis of FoxM1-binding site of Prx II promoter significantly reduced Prx II levels in H-ras(G12V)-HCC cells, indicating FoxM1 as a direct transcription factor of Prx II in HCC. Interestingly, the null mutation of Prx II markedly decreased the number and size of tumors in H-ras(G12V)-Tg livers. Consistent with this, knockdown of Prx II in H-ras(G12V)-HCC cells reduced the expression of cyclin D1, cell proliferation, anchorage-independent growth and tumor formation in athymic nude mice, whereas overexpression of Prx II increased or aggravated the tumor phenotypes. Importantly, the expression of Prx II was correlated with that of FoxM1 in HCC patients. The activation of extracellular signal-related kinase (ERK) pathway and the expression of FoxM1 and cyclin D1 were highly dependent on Prx II in H-ras(G12V)-HCC cells and H-ras(G12V)-Tg livers. Prx II is FoxM1-dependently-expressed antioxidant in HCC and function as an enhancer of Ras(G12V) oncogenic potential in hepatic tumorigenesis through activation of ERK/FoxM1/cyclin D1 cascade.
Collapse
Affiliation(s)
- Y-H Park
- Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - S-U Kim
- Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| | - T-H Kwon
- Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - J-M Kim
- School of Medicine, Chungnam National University, Daejeon, Korea
| | - I-S Song
- Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | - H-J Shin
- Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - B-K Lee
- Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - D-H Bang
- School of Medicine, Wonkwang University, Iksan, Korea
| | - S-J Lee
- Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - D-S Lee
- College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - K-T Chang
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - B-Y Kim
- World Class Institute, Korea Research Institute of Bioscience and Biotechnology, Ochang, Korea
| | - D-Y Yu
- Aging Intervention Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea.,Department of Functional Genomics, University of Science and Technology, Daejeon, Korea
| |
Collapse
|
22
|
Jang GB, Hong IS, Kim RJ, Lee SY, Park SJ, Lee ES, Park JH, Yun CH, Chung JU, Lee KJ, Lee HY, Nam JS. Wnt/β-Catenin Small-Molecule Inhibitor CWP232228 Preferentially Inhibits the Growth of Breast Cancer Stem-like Cells. Cancer Res 2015; 75:1691-702. [PMID: 25660951 DOI: 10.1158/0008-5472.can-14-2041] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/28/2015] [Indexed: 11/16/2022]
Abstract
Breast cancer stem cells (BCSC) are resistant to conventional chemotherapy and radiotherapy, which may destroy tumor masses but not all BCSC that can mediate relapses. In the present study, we showed that the level of Wnt/β-catenin signaling in BCSC is relatively higher than in bulk tumor cells, contributing to a relatively higher level of therapeutic resistance. We designed a highly potent small-molecule inhibitor, CWP232228, which antagonizes binding of β-catenin to T-cell factor (TCF) in the nucleus. Notably, although CWP232228 inhibited the growth of both BCSC and bulk tumor cells by inhibiting β-catenin-mediated transcription, BCSC exhibited greater growth inhibition than bulk tumor cells. We also documented evidence of greater insulin-like growth factor-I (IGF-I) expression by BCSC than by bulk tumor cells and that CWP232228 attenuated IGF-I-mediated BCSC functions. These results suggested that the inhibitory effect of CWP232228 on BCSC growth might be achieved through the disruption of IGF-I activity. Taken together, our findings indicate that CWP232228 offers a candidate therapeutic agent for breast cancer that preferentially targets BCSC as well as bulk tumor cells.
Collapse
Affiliation(s)
- Gyu-Beom Jang
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea. Department of Molecular Medicine, School of Medicine, Gachon University, Incheon South Korea
| | - In-Sun Hong
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea. Department of Molecular Medicine, School of Medicine, Gachon University, Incheon South Korea
| | - Ran-Ju Kim
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea. Department of Molecular Medicine, School of Medicine, Gachon University, Incheon South Korea
| | - Su-Youn Lee
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea. Department of Molecular Medicine, School of Medicine, Gachon University, Incheon South Korea
| | - Se-Jin Park
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea. Department of Molecular Medicine, School of Medicine, Gachon University, Incheon South Korea
| | - Eun-Sook Lee
- Division of Convergence Technology, Center for Breast Cancer, Research Institute and Hospital, National Cancer Center 323, Ilsan-ro, Ilsandong-gu, Goyang-si Gyeonggi-do, South Korea
| | - Jung Hyuck Park
- JW Pharmaceutical, 2477 Nambusunhwan-ro, Seocho-gu, Seoul, South Korea
| | - Chi-Ho Yun
- JW Pharmaceutical, 2477 Nambusunhwan-ro, Seocho-gu, Seoul, South Korea
| | - Jae-Uk Chung
- JW Pharmaceutical, 2477 Nambusunhwan-ro, Seocho-gu, Seoul, South Korea
| | - Kyoung-June Lee
- JW Pharmaceutical, 2477 Nambusunhwan-ro, Seocho-gu, Seoul, South Korea
| | - Hwa-Yong Lee
- The Faculty of Liberal Arts, Jungwon University, Chungbuk, Republic of Korea
| | - Jeong-Seok Nam
- Laboratory of Tumor Suppressor, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, South Korea. Department of Molecular Medicine, School of Medicine, Gachon University, Incheon South Korea.
| |
Collapse
|
23
|
Arnold KM, Opdenaker LM, Flynn D, Sims-Mourtada J. Wound healing and cancer stem cells: inflammation as a driver of treatment resistance in breast cancer. CANCER GROWTH AND METASTASIS 2015; 8:1-13. [PMID: 25674014 PMCID: PMC4315129 DOI: 10.4137/cgm.s11286] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/01/2014] [Accepted: 12/05/2014] [Indexed: 12/13/2022]
Abstract
The relationship between wound healing and cancer has long been recognized. The mechanisms that regulate wound healing have been shown to promote transformation and growth of malignant cells. In addition, chronic inflammation has been associated with malignant transformation in many tissues. Recently, pathways involved in inflammation and wound healing have been reported to enhance cancer stem cell (CSC) populations. These cells, which are highly resistant to current treatments, are capable of repopulating the tumor after treatment, causing local and systemic recurrences. In this review, we highlight proinflammatory cytokines and developmental pathways involved in tissue repair, whose deregulation in the tumor microenvironment may promote growth and survival of CSCs. We propose that the addition of anti-inflammatory agents to current treatment regimens may slow the growth of CSCs and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Kimberly M Arnold
- Center for Translational Cancer Research, Helen F. Graham Cancer Center, Christiana Care Health Services, Inc., Newark, DE, USA. ; Department of Medical Laboratory Sciences, University of Delaware, Newark, DE, USA
| | - Lynn M Opdenaker
- Center for Translational Cancer Research, Helen F. Graham Cancer Center, Christiana Care Health Services, Inc., Newark, DE, USA. ; Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Daniel Flynn
- Center for Translational Cancer Research, Helen F. Graham Cancer Center, Christiana Care Health Services, Inc., Newark, DE, USA. ; Department of Medical Laboratory Sciences, University of Delaware, Newark, DE, USA
| | - Jennifer Sims-Mourtada
- Center for Translational Cancer Research, Helen F. Graham Cancer Center, Christiana Care Health Services, Inc., Newark, DE, USA. ; Department of Medical Laboratory Sciences, University of Delaware, Newark, DE, USA
| |
Collapse
|
24
|
Paltridge JL, Belle L, Khew-Goodall Y. The secretome in cancer progression. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:2233-41. [DOI: 10.1016/j.bbapap.2013.03.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/05/2013] [Accepted: 03/12/2013] [Indexed: 12/21/2022]
|