1
|
First biphotochromic fluorescent protein moxSAASoti stabilized for oxidizing environment. Sci Rep 2022; 12:7862. [PMID: 35551209 PMCID: PMC9098843 DOI: 10.1038/s41598-022-11249-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
Biphotochromic proteins simultaneously possess reversible photoswitching (on-to-off) and irreversible photoconversion (green-to-red). High photochemical reactivity of cysteine residues is one of the reasons for the development of "mox"-monomeric and oxidation resistant proteins. Based on site-saturated simultaneous two-point C105 and C117 mutagenesis, we chose C21N/C71G/C105G/C117T/C175A as the moxSAASoti variant. Since its on-to-off photoswitching rate is higher, off-to-on recovery is more complete and photoconversion rates are higher than those of mSAASoti. We analyzed the conformational behavior of the F177 side chain by classical MD simulations. The conformational flexibility of the F177 side chain is mainly responsible for the off-to-on conversion rate changes and can be further utilized as a measure of the conversion rate. Point mutations in mSAASoti mainly affect the pKa values of the red form and off-to-on switching. We demonstrate that the microscopic measure of the observed pKa value is the C-O bond length in the phenyl fragment of the neutral chromophore. According to molecular dynamics simulations with QM/MM potentials, larger C-O bond lengths are found for proteins with larger pKa. This feature can be utilized for prediction of the pKa values of red fluorescent proteins.
Collapse
|
2
|
Gavshina AV, Marynich NK, Khrenova MG, Solovyev ID, Savitsky AP. The role of cysteine residues in the allosteric modulation of the chromophore phototransformations of biphotochromic fluorescent protein SAASoti. Sci Rep 2021; 11:24314. [PMID: 34934103 PMCID: PMC8692419 DOI: 10.1038/s41598-021-03634-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/02/2021] [Indexed: 11/09/2022] Open
Abstract
Biphotochromic fluorescent protein SAASoti contains five cysteine residues in its sequence and a V127T point mutation transforms it to the monomeric form, mSAASoti. These cysteine residues are located far from the chromophore and might control its properties only allosterically. The influence of individual, double and triple cysteine substitutions of mSAASoti on fluorescent parameters and phototransformation reactions (irreversible green-to-red photoconversion and reversible photoswitching) is studied. A set of mSAASoti mutant forms (C21N, C117S, C71V, C105V, C175A, C21N/C71V, C21N/C175A, C21N/C71G/C175A) is obtained by site-directed mutagenesis. We demonstrate that the C21N variant exists in a monomeric form up to high concentrations, the C71V substitution accelerates photoconversion to the red form and the C105V variant has the maximum photoswitching rate. All C175A-containing variants demonstrate different photoswitching kinetics and decreased photostability during subsequent switching cycles compared with other considered systems. Classical molecular dynamic simulations reveal that the F177 side chain located in the vicinity of the chromophore is considerably more flexible in the mSAASoti compared with its C175A variant. This might be the explanation of the experimentally observed slowdown the thermal relaxation rate, i.e., trans-cis isomerization of the chromophore in mSAASoti upon C175A substitution.
Collapse
Affiliation(s)
- A V Gavshina
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - N K Marynich
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - M G Khrenova
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - I D Solovyev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - A P Savitsky
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
3
|
Shroff R, Cole AW, Diaz DJ, Morrow BR, Donnell I, Annapareddy A, Gollihar J, Ellington AD, Thyer R. Discovery of Novel Gain-of-Function Mutations Guided by Structure-Based Deep Learning. ACS Synth Biol 2020; 9:2927-2935. [PMID: 33064458 DOI: 10.1021/acssynbio.0c00345] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Despite the promise of deep learning accelerated protein engineering, examples of such improved proteins are scarce. Here we report that a 3D convolutional neural network trained to associate amino acids with neighboring chemical microenvironments can guide identification of novel gain-of-function mutations that are not predicted by energetics-based approaches. Amalgamation of these mutations improved protein function in vivo across three diverse proteins by at least 5-fold. Furthermore, this model provides a means to interrogate the chemical space within protein microenvironments and identify specific chemical interactions that contribute to the gain-of-function phenotypes resulting from individual mutations.
Collapse
Affiliation(s)
- Raghav Shroff
- Center for Systems and Synthetic Biology, The Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Austin W. Cole
- Center for Systems and Synthetic Biology, The Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Daniel J. Diaz
- The Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Barrett R. Morrow
- Center for Systems and Synthetic Biology, The Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Isaac Donnell
- Center for Systems and Synthetic Biology, The Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ankur Annapareddy
- US Army Research Laboratories − South, 2506 Speedway, Austin, Texas 78712, United States
| | - Jimmy Gollihar
- US Army Research Laboratories − South, 2506 Speedway, Austin, Texas 78712, United States
| | - Andrew D. Ellington
- Center for Systems and Synthetic Biology, The Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ross Thyer
- Center for Systems and Synthetic Biology, The Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Peñalva MA, Moscoso‐Romero E, Hernández‐González M. Tracking exocytosis of aGPI‐anchored protein inAspergillus nidulans. Traffic 2020; 21:675-688. [DOI: 10.1111/tra.12761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Miguel A. Peñalva
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas CSIC Madrid Spain
| | - Esteban Moscoso‐Romero
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas CSIC Madrid Spain
- Morphogenesis and Cell Polarity Unit Instituto de Biología Funcional y Genómica CSIC‐Universidad de Salamanca Salamanca Spain
| | - Miguel Hernández‐González
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas CSIC Madrid Spain
- The Francis Crick Institute London UK
| |
Collapse
|
5
|
moxMaple3: a Photoswitchable Fluorescent Protein for PALM and Protein Highlighting in Oxidizing Cellular Environments. Sci Rep 2018; 8:14738. [PMID: 30283009 PMCID: PMC6170497 DOI: 10.1038/s41598-018-32955-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022] Open
Abstract
The ability of fluorescent proteins (FPs) to fold robustly is fundamental to the autocatalytic formation of the chromophore. While the importance of the tertiary protein structure is well appreciated, the impact of individual amino acid mutations for FPs is often not intuitive and requires direct testing. In this study, we describe the engineering of a monomeric photoswitchable FP, moxMaple3, for use in oxidizing cellular environments, especially the eukaryotic secretory pathway. Surprisingly, a point mutation to replace a cysteine substantially improved the yield of correctly folded FP capable of chromophore formation, regardless of cellular environment. The improved folding of moxMaple3 increases the fraction of visibly tagged fusion proteins, as well as FP performance in PALM super-resolution microscopy, and thus makes moxMaple3 a robust monomeric FP choice for PALM and optical highlighting applications.
Collapse
|
6
|
Hernández‐González M, Pantazopoulou A, Spanoudakis D, Seegers CL, Peñalva MA. Genetic dissection of the secretory route followed by a fungal extracellular glycosyl hydrolase. Mol Microbiol 2018; 109:781-800. [DOI: 10.1111/mmi.14073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/15/2018] [Accepted: 07/02/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Miguel Hernández‐González
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
| | - Areti Pantazopoulou
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
- Department of Molecular Genetics and Cell Biology The University of Chicago Chicago IL USA
| | - Dimitris Spanoudakis
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
| | - Christel L.C. Seegers
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
- Avebe UA Foxhol The Netherlands
| | - Miguel A. Peñalva
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
| |
Collapse
|
7
|
Abstract
During hepatitis B virus (HBV) infections, subviral particles (SVP) consisting only of viral envelope proteins and lipids are secreted. Heterologous expression of the small envelope protein S in mammalian cells is sufficient for SVP generation. S is synthesized as a transmembrane protein with N-terminal (TM1), central (TM2), and hydrophobic C-terminal (HCR) transmembrane domains. The loops between TM1 and TM2 (the cytosolic loop [CL]) and between TM2 and the HCR (the luminal loop [LL]) are located in the cytosol and the endoplasmic reticulum (ER) lumen, respectively. To define the domains of S mediating oligomerization during SVP morphogenesis, S mutants were characterized by expression in transiently transfected cells. Mutation of 12 out of 15 amino acids of TM1 to alanines, as well as the deletion of HCR, still allowed SVP formation, demonstrating that these two domains are not essential for contacts between S proteins. Furthermore, the oligomerization of S was measured with a fluorescence-activated cell sorter (FACS)-based Förster resonance energy transfer (FRET) assay. This approach demonstrated that the CL, TM2, and the LL independently contributed to S oligomerization, while TM1 and the HCR played minor roles. Apparently, intermolecular homo-oligomerization of the CL, TM2, and the LL drives S protein aggregation. Detailed analyses revealed that the point mutation C65S in the CL, the mutation of 13 out of 19 amino acids of TM2 to alanine residues, and the simultaneous replacement of all 8 cysteine residues in the LL by serine residues blocked the abilities of these domains to support S protein interactions. Altogether, specific domains and residues in the HBV S protein that are required for oligomerization and SVP generation were defined.IMPORTANCE The small hepatitis B virus envelope protein S has the intrinsic ability to direct the morphogenesis of spherical 20-nm subviral lipoprotein particles. Such particles expressed in yeast or mammalian cells represent the antigenic component of current hepatitis B vaccines. Our knowledge about the steps leading from the initial, monomeric, transmembrane translation product of S to SVP is very limited, as is our information on the structure of the complex main epitope of SVP that induces the formation of protective antibodies after vaccination. This study contributes to our understanding of the oligomerization process of S chains during SVP formation and shows that the cytoplasmic loop, one membrane-embedded domain, and the luminal loop of S independently drive S-S oligomerization.
Collapse
|
8
|
Kaberniuk AA, Morano NC, Verkhusha VV, Snapp EL. moxDendra2: an inert photoswitchable protein for oxidizing environments. Chem Commun (Camb) 2018; 53:2106-2109. [PMID: 28133646 DOI: 10.1039/c6cc09997a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fluorescent proteins (FPs) that can be optically highlighted enable PALM super-resolution microscopy and pulse-chase experiments of cellular molecules. Most FPs evolved in cytoplasmic environments either in the original source organism or in the cytoplasm of bacteria during the course of optimization for research applications. Consequently, many FPs may fold incorrectly in the chemically distinct environments in subcellular organelles. Here, we describe the first monomeric photoswitchable (from green to bright red) FP adapted for oxidizing environments.
Collapse
Affiliation(s)
- Andrii A Kaberniuk
- Albert Einstein College of Medicine, Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas C Morano
- Albert Einstein College of Medicine, Department of Biochemistry, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Vladislav V Verkhusha
- Albert Einstein College of Medicine, Department of Anatomy and Structural Biology and Gruss-Lipper Biophotonics Center, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Erik Lee Snapp
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA.
| |
Collapse
|
9
|
Jiang Y, Di Gregorio SE, Duennwald ML, Lajoie P. Polyglutamine toxicity in yeast uncovers phenotypic variations between different fluorescent protein fusions. Traffic 2016; 18:58-70. [PMID: 27734565 DOI: 10.1111/tra.12453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/28/2022]
Abstract
The palette of fluorescent proteins (FPs) available for live-cell imaging contains proteins that strongly differ in their biophysical properties. FPs cannot be assumed to be equivalent and in certain cases could significantly perturb the behavior of fluorescent reporters. We employed Saccharomyces cerevisiae to comprehensively study the impact of FPs on the toxicity of polyglutamine (polyQ) expansion proteins associated with Huntington's disease. The toxicity of polyQ fusion constructs is highly dependent on the sequences flanking the polyQ repeats. Thus, they represent a powerful tool to study the impact of fluorescent fusion partners. We observed significant differences on polyQ aggregation and toxicity between commonly used FPs. We generated a novel series of vectors with latest yeast-optimized FPs for investigation of Htt toxicity, including a newly optimized blue FP for expression in yeast. Our study highlights the importance of carefully choosing the optimal FPs when designing tagging strategies.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Sonja E Di Gregorio
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Canada
| | - Martin L Duennwald
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada.,Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| |
Collapse
|
10
|
Costantini LM, Baloban M, Markwardt ML, Rizzo MA, Guo F, Verkhusha VV, Snapp EL. A palette of fluorescent proteins optimized for diverse cellular environments. Nat Commun 2015; 6:7670. [PMID: 26158227 PMCID: PMC4499870 DOI: 10.1038/ncomms8670] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 05/28/2015] [Indexed: 12/18/2022] Open
Abstract
To perform quantitative live cell imaging, investigators require fluorescent reporters that accurately report protein localization and levels, while minimally perturbing the cell. Yet, within the biochemically distinct environments of cellular organelles, popular fluorescent proteins (FPs), including EGFP, can be unreliable for quantitative imaging, resulting in the underestimation of protein levels and incorrect localization. Specifically, within the secretory pathway, significant populations of FPs misfold and fail to fluoresce due to non-native disulphide bond formation. Furthermore, transmembrane FP-fusion constructs can disrupt organelle architecture due to oligomerizing tendencies of numerous common FPs. Here, we describe a powerful set of bright and inert FPs optimized for use in multiple cellular compartments, especially oxidizing environments and biological membranes. Also, we provide new insights into the use of red FPs in the secretory pathway. Our monomeric 'oxFPs' finally resolve long-standing, underappreciated and important problems of cell biology and should be useful for a number of applications.
Collapse
Affiliation(s)
- Lindsey M. Costantini
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461 New York USA
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461 New York USA
| | - Michele L. Markwardt
- Department of Physiology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, 21201 Maryland USA
| | - Megan A. Rizzo
- Department of Physiology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, 21201 Maryland USA
| | - Feng Guo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461 New York USA
| | - Vladislav V. Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461 New York USA
| | - Erik L. Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461 New York USA
| |
Collapse
|
11
|
Byun H, Gou Y, Zook A, Lozano MM, Dudley JP. ERAD and how viruses exploit it. Front Microbiol 2014; 5:330. [PMID: 25071743 PMCID: PMC4080680 DOI: 10.3389/fmicb.2014.00330] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/16/2014] [Indexed: 01/09/2023] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) is a universally important process among eukaryotic cells. ERAD is necessary to preserve cell integrity since the accumulation of defective proteins results in diseases associated with neurological dysfunction, cancer, and infections. This process involves recognition of misfolded or misassembled proteins that have been translated in association with ER membranes. Recognition of ERAD substrates leads to their extraction through the ER membrane (retrotranslocation or dislocation), ubiquitination, and destruction by cytosolic proteasomes. This review focuses on ERAD and its components as well as how viruses use this process to promote their replication and to avoid the immune response.
Collapse
Affiliation(s)
- Hyewon Byun
- Department of Molecular Biosciences, Center for Infectious Diseases and Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Yongqiang Gou
- Department of Molecular Biosciences, Center for Infectious Diseases and Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Adam Zook
- Department of Molecular Biosciences, Center for Infectious Diseases and Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Mary M Lozano
- Department of Molecular Biosciences, Center for Infectious Diseases and Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| | - Jaquelin P Dudley
- Department of Molecular Biosciences, Center for Infectious Diseases and Institute for Cellular and Molecular Biology, The University of Texas at Austin Austin, TX, USA
| |
Collapse
|
12
|
Approaches to imaging unfolded secretory protein stress in living cells. ENDOPLASMIC RETICULUM STRESS IN DISEASES 2014; 1:27-39. [PMID: 25419521 DOI: 10.2478/ersc-2014-0002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The endoplasmic reticulum (ER) is the point of entry of proteins into the secretory pathway. Nascent peptides interact with the ER quality control machinery that ensures correct folding of the nascent proteins. Failure to properly fold proteins can lead to loss of protein function and cytotoxic aggregation of misfolded proteins that can lead to cell death. To cope with increases in the ER unfolded secretory protein burden, cells have evolved the Unfolded Protein Response (UPR). The UPR is the primary signaling pathway that monitors the state of the ER folding environment. When the unfolded protein burden overwhelms the capacity of the ER quality control machinery, a state termed ER stress, sensor proteins detect accumulation of misfolded peptides and trigger the UPR transcriptional response. The UPR, which is conserved from yeast to mammals, consists of an ensemble of complex signaling pathways that aims at adapting the ER to the new misfolded protein load. To determine how different factors impact the ER folding environment, various tools and assays have been developed. In this review, we discuss recent advances in live cell imaging reporters and model systems that enable researchers to monitor changes in the unfolded secretory protein burden and activation of the UPR and its associated signaling pathways.
Collapse
|
13
|
Costantini LM, Snapp EL. Fluorescent proteins in cellular organelles: serious pitfalls and some solutions. DNA Cell Biol 2013; 32:622-7. [PMID: 23971632 PMCID: PMC3806368 DOI: 10.1089/dna.2013.2172] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 07/28/2013] [Indexed: 01/27/2023] Open
Abstract
Fluorescent proteins (FPs) have been powerful tools for cell biologists for over 15 years. The large variety of FPs available rarely comes with an instruction manual or a warning label. The potential pitfalls of the use of FPs in cellular organelles represent a significant concern for investigators. FPs generally did not evolve in the often distinctive physicochemical environments of subcellular organelles. In organelles, FPs can misfold, go dark, and even distort organelle morphology. In this minireview, we describe the issues associated with FPs in organelles and provide solutions to enable investigators to better exploit FP technology in cells.
Collapse
Affiliation(s)
- Lindsey M Costantini
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine , Bronx, New York
| | | |
Collapse
|
14
|
Costantini L, Snapp E. Probing endoplasmic reticulum dynamics using fluorescence imaging and photobleaching techniques. CURRENT PROTOCOLS IN CELL BIOLOGY 2013; 60:21.7.1-21.7.29. [PMID: 24510787 PMCID: PMC3920296 DOI: 10.1002/0471143030.cb2107s60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
This unit describes approaches and tools for studying the dynamics and organization of endoplasmic reticulum (ER) membranes and proteins in living cells using fluorescence microscopy. The ER plays a key role in secretory protein biogenesis, calcium regulation, and lipid synthesis. However, study of these processes has often been restricted to biochemical assays that average millions of lysed cells or imaging of static fixed cells. With new fluorescent protein (FP) reporter tools, sensitive commercial microscopes, and photobleaching techniques, investigators can interrogate the behaviors of ER proteins, membranes, and stress pathways in single live cells. Solutions are described for imaging challenges relevant to the ER, including the mobility of ER membranes, a range of ER structures, and the influence of post-translational modifications on FP reporters. Considerations for performing photobleaching assays for ER proteins are discussed. Finally, reporters and drugs for studying misfolded secretory protein stress and the unfolded protein response are described.
Collapse
Affiliation(s)
- Lindsey Costantini
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| | - Erik Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461
| |
Collapse
|
15
|
Abstract
The Golgi complex (GC) is a highly dynamic organelle that constantly receives and exports proteins and lipids from both the endoplasmic reticulum and the plasma membrane. While protein trafficking can be monitored with traditional biochemical methods, these approaches average the behaviors of millions of cells, provide modest temporal information and no spatial information. Photobleaching methods enable investigators to monitor protein trafficking in single cells or even single GC stacks with subsecond precision. Furthermore, photobleaching can be exploited to monitor the behaviors of resident GC proteins to provide insight into mechanisms of retention and trafficking. In this chapter, general photobleaching approaches with laser scanning confocal microscopes are described. Importantly, the problems associated with many fluorescent proteins (FPs) and their uses in the secretory pathway are discussed and appropriate choices are suggested. For example, Enhanced Green Fluorescent Protein (EGFP) and most red FPs are extremely problematic. Finally, options for data analyses are described.
Collapse
Affiliation(s)
- Erik Lee Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, USA
| |
Collapse
|