1
|
Sun J, Dong Y, Meng Y, Bi J, Liu H, Ren J, Wang J, Ren Y, Yang M. Effect of transgene on salt tolerance of tobacco. Transgenic Res 2025; 34:11. [PMID: 39873834 DOI: 10.1007/s11248-025-00430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/13/2025] [Indexed: 01/30/2025]
Abstract
To explore the effects of salt-tolerance gene accumulation on salt tolerance in transgenic plant, we used four types of plant expression vector (N27, N28, N29, and N30) carrying mtlD, mtlD + gutD, mtlD + gutD + BADH, mtlD + gutD + BADH + sacB genes respectively, to transform tobacco through Agrobacterium-mediated method. Transgenic lines were identified through polymerase chain reaction (PCR) detection. Transgenic lines and non-transgenic plant (CK) were subjected to 6‰ sodium chloride solution stress; then, fluorescence quantitative PCR (FQ-PCR) and salt tolerance indexes were used to assess characteristics. PCR showed the exogenous genes had been integrated into the tobacco genome. FQ-PCR showed under clean water treatment the target genes were expressed in all transgenic plants at the transcriptional level. The transcript abundances of target genes changed with the number of genes increased, and improved following salt stress. Comparative analyses of salt tolerance indexes showed height growth, biomass (except for N29), chlorophyll content, net photosynthetic rate, Fv/Fm, and PI of all transgenic plants and CK were lower under salt stress than under clean water treatment, to varying degrees. However, the descent ratio was smaller in transgenic plants. A comprehensive evaluation of multiple salt-tolerance indicators performed using the membership function method showed the average salt tolerance of each vector transgenic line was higher than that of CK, and salt tolerance was greater in transgenic polyvalent gene lines than in transgenic monovalent gene lines. The average salt tolerance was N29 > N28 > N30 > N27 > CK. This study provides a theoretical and practical reference for salt tolerance breeding in other plants.
Collapse
Affiliation(s)
- Jie Sun
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding, 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, 071000, China
| | - Yan Dong
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding, 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, 071000, China
| | - Yuemei Meng
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Jingran Bi
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Hongmei Liu
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding, 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, 071000, China
| | - Junjie Ren
- Hongya Mountain State-Owned Forest Farm of Hebei Province, Baoding, 074200, China
| | - Jinmao Wang
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding, 071000, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, 071000, China
| | - Yachao Ren
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, 071000, China.
| | - Minsheng Yang
- Forest Department, College of Forestry, Hebei Agricultural University, Baoding, 071000, China.
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding, 071000, China.
| |
Collapse
|
2
|
Yu Z, Niu L, Cai Q, Wei J, Shang L, Yang X, Ma R. Improved salt-tolerance of transgenic soybean by stable over-expression of AhBADH gene from Atriplex hortensis. PLANT CELL REPORTS 2023:10.1007/s00299-023-03031-8. [PMID: 37195504 DOI: 10.1007/s00299-023-03031-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE The salt-tolerance of transgenic soybean cleared for environmental release was improved by stable over-expression of AhBADH gene from Atriplex hortensis, which was demonstrated through molecular analysis and field experiments. An effective strategy for increasing the productivity of major crops under salt stress conditions is the development of transgenics that harbor genes responsible for salinity tolerance. Betaine aldehyde dehydrogenase (BADH) is a key enzyme involved in the biosynthesis of the osmoprotectant, glycine betaine (GB), and osmotic balance in plants, and several plants transformed with BADH gene have shown significant improvements in salt tolerance. However, very few field-tested transgenic cultivars have been reported, as most of the transgenic studies are limited to laboratory or green house experiments. In this study, we demonstrated through field experiments that AhBADH from Atriplex hortensis confers salt tolerance when transformed into soybean (Glycine max L.). AhBADH was successfully introduced into soybean by Agrobacterium mediated transformation. A total of 256 transgenic plants were obtained, out of which 47 lines showed significant enhancement of salt tolerance compared to non-transgenic control plants. Molecular analyses of the transgenic line TL2 and TL7 with the highest salt tolerance exhibited stable inheritance and expression of AhBADH in progenies with a single copy insertion. TL1, TL2 and TL7 exhibited stable enhanced salt tolerance and improved agronomic traits when subjected to 300mM NaCl treatment. Currently, the transgenic line TL2 and TL7 with stable enhanced salt tolerance, which have been cleared for environmental release, are under biosafety assessment. TL 2 and TL7 stably expressing AhBADH could then be applied in commercial breeding experiments to genetically improve salt tolerance in soybean.
Collapse
Affiliation(s)
- Zhijing Yu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qinan Cai
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jia Wei
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lixia Shang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Rui Ma
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
3
|
A Flashforward Look into Solutions for Fruit and Vegetable Production. Genes (Basel) 2022; 13:genes13101886. [PMID: 36292770 PMCID: PMC9602186 DOI: 10.3390/genes13101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/26/2022] [Accepted: 10/13/2022] [Indexed: 12/02/2022] Open
Abstract
One of the most important challenges facing current and future generations is how climate change and continuous population growth adversely affect food security. To address this, the food system needs a complete transformation where more is produced in non-optimal and space-limited areas while reducing negative environmental impacts. Fruits and vegetables, essential for human health, are high-value-added crops, which are grown in both greenhouses and open field environments. Here, we review potential practices to reduce the impact of climate variation and ecosystem damages on fruit and vegetable crop yield, as well as highlight current bottlenecks for indoor and outdoor agrosystems. To obtain sustainability, high-tech greenhouses are increasingly important and biotechnological means are becoming instrumental in designing the crops of tomorrow. We discuss key traits that need to be studied to improve agrosystem sustainability and fruit yield.
Collapse
|
4
|
Abstract
Nowadays, crop insufficiency resulting from soil salinization is threatening the world. On the basis that soil salinization has become a worldwide problem, studying the mechanisms of plant salt tolerance is of great theoretical and practical significance to improve crop yield, to cultivate new salt-tolerant varieties, and to make full use of saline land. Based on previous studies, this paper reviews the damage of salt stress to plants, including suppression of photosynthesis, disturbance of ion homeostasis, and membrane peroxidation. We have also summarized the physiological mechanisms of salt tolerance, including reactive oxygen species (ROS) scavenging and osmotic adjustment. Four main stress-related signaling pathways, salt overly sensitive (SOS) pathway, calcium-dependent protein kinase (CDPK) pathway, mitogen-activated protein kinase (MAPKs) pathway, and abscisic acid (ABA) pathway, are included. We have also enumerated some salt stress-responsive genes that correspond to physiological mechanisms. In the end, we have outlined the present approaches and techniques to improve salt tolerance of plants. All in all, we reviewed those aspects above, in the hope of providing valuable background knowledge for the future cultivation of agricultural and forestry plants.
Collapse
|
5
|
Krishna R, Karkute SG, Ansari WA, Jaiswal DK, Verma JP, Singh M. Transgenic tomatoes for abiotic stress tolerance: status and way ahead. 3 Biotech 2019; 9:143. [PMID: 30944790 DOI: 10.1007/s13205-019-1665-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/01/2019] [Indexed: 11/25/2022] Open
Abstract
Tomato (Solanum lycopersicum) is one of the most important vegetable crops; its production, productivity and quality are adversely affected by abiotic stresses. Abiotic stresses such as drought, extreme temperature and high salinity affect almost every stage of tomato life cycle. Depending upon the plant stage and duration of the stress, abiotic stress causes about 70% yield loss. Several wild tomato species have the stress tolerance genes; however, it is very difficult to transfer them into cultivars due to high genetic distance and crossing barriers. Transgenic technology is an alternative potential tool for the improvement of tomato crop to cope with abiotic stress, as it allows gene transfer across species. In recent decades, many transgenic tomatoes have been developed, and many more are under progress against abiotic stress using transgenes such as DREBs, Osmotin, ZAT12 and BADH2. The altered expression of these transgenes under abiotic stresses are involved in every step of stress responses, such as signaling, control of transcription, proteins and membrane protection, compatible solute (betaines, sugars, polyols, and amino acids) synthesis, and free-radical and toxic-compound scavenging. The stress-tolerant transgenic tomato development is based on introgression of a gene with known function in stress response and putative tolerance. Transgenic tomato plants have been developed against drought, heat and salt stress with the help of various transgenes, expression of which manages the stress at the cellular level by modulating the expression of downstream genes to ultimately improve growth and yield of tomato plants and help in sustainable agricultural production. The transgenic technology could be a faster way towards tomato improvement against abiotic stress. This review provides comprehensive information about transgenic tomato development against abiotic stress such as drought, heat and salinity for researcher attention and a better understanding of transgenic technology used in tomato improvement and sustainable agricultural production.
Collapse
Affiliation(s)
- Ram Krishna
- 1Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005 India
- 2Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305 India
| | - Suhas G Karkute
- 2Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305 India
| | - Waquar A Ansari
- 2Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305 India
| | - Durgesh Kumar Jaiswal
- 1Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005 India
| | - Jay Prakash Verma
- 1Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005 India
- 3Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Locked Bag 1797, Penrith, Sydney, NSW 2750 Australia
| | - Major Singh
- 4ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410505 India
| |
Collapse
|
6
|
Kumari PH, Kumar SA, Sivan P, Katam R, Suravajhala P, Rao KS, Varshney RK, Kishor PBK. Overexpression of a Plasma Membrane Bound Na +/H + Antiporter-Like Protein ( SbNHXLP) Confers Salt Tolerance and Improves Fruit Yield in Tomato by Maintaining Ion Homeostasis. FRONTIERS IN PLANT SCIENCE 2017; 7:2027. [PMID: 28111589 PMCID: PMC5216050 DOI: 10.3389/fpls.2016.02027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/19/2016] [Indexed: 05/05/2023]
Abstract
A Na+/H+ antiporter-like protein (NHXLP) was isolated from Sorghum bicolor L. (SbNHXLP) and validated by overexpressing in tomato for salt tolerance. Homozygous T2 transgenic lines when evaluated for salt tolerance, accumulated low Na+ and displayed enhanced salt tolerance compared to wild-type plants (WT). This is consistent with the amiloride binding assay of the protein. Transgenics exhibited higher accumulation of proline, K+, Ca2+, improved cambial conductivity, higher PSII, and antioxidative enzyme activities than WT. Fluorescence imaging results revealed lower Na+ and higher Ca2+ levels in transgenic roots. Co-immunoprecipitation experiments demonstrate that SbNHXLP interacts with a Solanum lycopersicum cation proton antiporter protein2 (SlCHX2). qRT-PCR results showed upregulation of SbNHXLP and SlCHX2 upon treatment with 200 mM NaCl and 100 mM potassium nitrate. SlCHX2 is known to be involved in K+ acquisition, and the interaction between these two proteins might help to accumulate more K+ ions, and thus maintain ion homeostasis. These results strongly suggest that plasma membrane bound SbNHXLP involves in Na+ exclusion, maintains ion homeostasis in transgenics in comparison with WT and alleviates NaCl stress.
Collapse
Affiliation(s)
- P. Hima Kumari
- Department of Genetics, Osmania UniversityHyderabad, India
| | - S. Anil Kumar
- Department of Genetics, Osmania UniversityHyderabad, India
| | - Pramod Sivan
- Department of Biosciences, Sardar Patel UniversityAnand, India
| | - Ramesh Katam
- Department of Biological Sciences, College of Science and Technology, Florida A&M UniversityTallahassee, FL, USA
| | | | - K. S. Rao
- Department of Biosciences, Sardar Patel UniversityAnand, India
| | - Rajeev K. Varshney
- Center of Excellence in Genomics, International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | | |
Collapse
|
7
|
CHEN LJ, ZHANG L, QI WK, IRFAN M, LIN JW, MA H, GUO ZF, ZHONG M, LI TL. Characterization of the promoter region of the glycerol-3-phosphate-O-acyltransferase gene in Lilium pensylvanicum. Turk J Biol 2017. [DOI: 10.3906/biy-1611-56] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
8
|
Sharma P, Gaur SN, Goel N, Arora N. Engineered hypoallergenic variants of osmotin demonstrate hypoallergenicity with in vitro and in vivo methods. Mol Immunol 2015; 64:46-54. [DOI: 10.1016/j.molimm.2014.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 10/13/2014] [Accepted: 10/25/2014] [Indexed: 12/15/2022]
|
9
|
Bergougnoux V. The history of tomato: From domestication to biopharming. Biotechnol Adv 2014; 32:170-89. [DOI: 10.1016/j.biotechadv.2013.11.003] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/24/2013] [Accepted: 11/03/2013] [Indexed: 11/28/2022]
|