1
|
Guillot-Ferriols M, Costa CM, Correia DM, Rodríguez-Hernández JC, Tsimbouri PM, Lanceros-Méndez S, Dalby MJ, Gómez Ribelles JL, Gallego-Ferrer G. Piezoelectric Stimulation Induces Osteogenesis in Mesenchymal Stem Cells Cultured on Electroactive Two-Dimensional Substrates. ACS APPLIED POLYMER MATERIALS 2024; 6:13710-13722. [PMID: 39606252 PMCID: PMC11590054 DOI: 10.1021/acsapm.4c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Physical cues have been shown to be effective in inducing osteogenic differentiation of mesenchymal stem cells (MSCs). Here, we propose piezoelectric stimulation as a potential osteogenic cue mimicking the electroactive properties of bone's extracellular matrix. When combined with a magnetostrictive component, piezoelectric polymers can be used for MSC stimulation by applying an external magnetic field. The deformation of the magnetostrictive component produces a deformation in the polymer matrix, generating a change in the surface charge that induces an electric field that can be transmitted to the cells. Cell adhesion, cytoskeleton changes, and metabolomics are the first evidence of MSC osteoblastogenesis and can be used to study initial MSC response to this kind of stimulation. In the current study, poly(vinylidene) fluoride (PVDF) piezoelectric films with and without cobalt ferrite oxide (CFO) crystallized from the melt in the presence of the ionic liquid 1-butyl-3-methyl-imidazolium chloride ([Bmim][Cl]) were produced. [Bmim][Cl] allowed the production of the β-phase, the most electroactive phase, even without CFO. After ionic liquid removal, PVDF and PVDF-CFO films presented high percentages of the β-phase and similar crystalline content. Incorporating CFO nanoparticles was effective, allowing the electromechanical stimulation of MSCs by applying a magnetic field with a bioreactor. Before stimulation, the initial response of MSCs was characterized in static conditions, showing that the produced films were biocompatible and noncytotoxic, allowing MSC adhesion and proliferation in the short term. Stimulation experiments revealed that MSCs electromechanically stimulated for 3 days in PVDF-CFO supports showed longer focal adhesions and decreased vimentin cytoskeletal density, both signals of early osteogenic differentiation. Furthermore, they rearranged their energy metabolism toward an osteogenic phenotype after 7 days of culture under the same stimulation. The results prove that MSCs respond to electromechanical stimulation by osteogenic differentiation.
Collapse
Affiliation(s)
- Maria Guillot-Ferriols
- Center for
Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia 46022, Spain
| | - Carlos M. Costa
- Physics Centre
of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics
for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga 4710-057, Portugal
| | | | | | - Penelope M. Tsimbouri
- Center for
the Cellular Microenvironment, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United
Kingdom
| | - Senentxu Lanceros-Méndez
- Physics Centre
of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics
for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU, Science Park, Leioa 48940, Spain
- Basque Foundation
for Science, IKERBASQUE, Bilbao 48009, Spain
| | - Matthew J. Dalby
- Center for
the Cellular Microenvironment, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United
Kingdom
| | - José Luis Gómez Ribelles
- Center for
Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia 46022, Spain
| | - Gloria Gallego-Ferrer
- Center for
Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, Valencia 46022, Spain
- Biomedical
Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia 46022, Spain
| |
Collapse
|
2
|
Wang B, Shao W, Zhao Y, Li Z, Wang P, Lv X, Chen Y, Chen X, Zhu Y, Ma Y, Han L, Wu W, Feng Y. Radial extracorporeal shockwave promotes osteogenesis-angiogenesis coupling of bone marrow stromal cells from senile osteoporosis via activating the Piezo1/CaMKII/CREB axis. Bone 2024; 187:117196. [PMID: 39004161 DOI: 10.1016/j.bone.2024.117196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Radial extracorporeal shockwave (r-ESW) and bone marrow stromal cells (BMSCs) have been reported to alleviate senile osteoporosis (SOP), but its regulatory mechanism remains unclear. In this study, we firstly isolated human BMSCs from bone marrow samples and treated with varying r-ESW doses. And we found that r-ESW could enhance the proliferation of SOP-BMSCs in a dose-dependent manner by EdU assay. Subsequently, the impact of r-ESW on the proliferation, apoptosis and multipotency of BMSCs was assessed. And the outcomes of flow cytometry, Alizarin red S (ARS), and tube formation test demonstrated that the optimal shockwave obviously boosted SOP-BMSCs osteogenesis and angiogenesis but exhibited no significant impact on cell apoptosis. Additionally, the signaling of Piezo1 and CaMKII/CREB was examined by Western blotting, qPCR and immunofluorescence. And the results showed that r-ESW promoted the expression of Piezo1, increased intracellular Ca2+ and activated the CaMKII/CREB signaling pathway. Then, the application of Piezo1 siRNA hindered the r-ESW-induced enhancement ability of osteogenesis coupling with angiogenesis of SOP-BMSCs. The use of the CaMKII/CREB signaling pathway inhibitor KN93 suppressed the Piezo1-induced increase in osteogenesis and angiogenesis in SOP-BMSCs. Finally, we also found that r-ESW might alleviate SOP in the senescence-accelerated mouse prone 6 (SAMP6) model by activating Piezo1. In conclusion, our research offers experimental evidence and an elucidated underlying molecular mechanism to support the use of r-ESW as a credible rehabilitative treatment for senile osteoporosis.
Collapse
Affiliation(s)
- Bo Wang
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenkai Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yubai Zhao
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zilin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ping Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Lv
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongjin Chen
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaodong Chen
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Anhui Key Laboratory of Tissue Transformation, Bengbu Medical University, Bengbu 233000, Anhui Province, PR China
| | - Yuanxiao Zhu
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Ma
- Department of Rehabilitation, Wuhan No. 1 Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lizhi Han
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical University, Anhui Key Laboratory of Tissue Transformation, Bengbu Medical University, Bengbu 233000, Anhui Province, PR China.
| | - Wen Wu
- Department of Rehabilitation, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Yong Feng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Silva JC, Marcelino P, Meneses J, Barbosa F, Moura CS, Marques AC, Cabral JMS, Pascoal-Faria P, Alves N, Morgado J, Ferreira FC, Garrudo FFF. Synergy between 3D-extruded electroconductive scaffolds and electrical stimulation to improve bone tissue engineering strategies. J Mater Chem B 2024; 12:2771-2794. [PMID: 38384239 DOI: 10.1039/d3tb02673f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In this work, we propose a simple, reliable, and versatile strategy to create 3D electroconductive scaffolds suitable for bone tissue engineering (TE) applications with electrical stimulation (ES). The proposed scaffolds are made of 3D-extruded poly(ε-caprolactone) (PCL), subjected to alkaline treatment, and of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), anchored to PCL with one of two different crosslinkers: (3-glycidyloxypropyl)trimethoxysilane (GOPS) and divinyl sulfone (DVS). Both cross-linkers allowed the formation of a homogenous and continuous coating of PEDOT:PSS to PCL. We show that these PEDOT:PSS coatings are electroconductive (11.3-20.1 S cm-1), stable (up to 21 days in saline solution), and allow the immobilization of gelatin (Gel) to further improve bioactivity. In vitro mineralization of the corresponding 3D conductive scaffolds was greatly enhanced (GOPS(NaOH)-Gel - 3.1 fold, DVS(NaOH)-Gel - 2.0 fold) and cell colonization and proliferation were the highest for the DVS(NaOH)-Gel scaffold. In silico modelling of ES application in DVS(NaOH)-Gel scaffolds indicates that the electrical field distribution is homogeneous, which reduces the probability of formation of faradaic products. Osteogenic differentiation of human bone marrow derived mesenchymal stem/stromal cells (hBM-MSCs) was performed under ES. Importantly, our results clearly demonstrated a synergistic effect of scaffold electroconductivity and ES on the enhancement of MSC osteogenic differentiation, particularly on cell-secreted calcium deposition and the upregulation of osteogenic gene markers such as COL I, OC and CACNA1C. These scaffolds hold promise for future clinical applications, including manufacturing of personalized bone TE grafts for transplantation with enhanced maturation/functionality or bioelectronic devices.
Collapse
Affiliation(s)
- João C Silva
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Avenida. Rovisco Pais, Lisboa 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
| | - Pedro Marcelino
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Avenida. Rovisco Pais, Lisboa 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
- CDRSP - Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande 2430-028, Portugal
| | - João Meneses
- CDRSP - Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande 2430-028, Portugal
| | - Frederico Barbosa
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Avenida. Rovisco Pais, Lisboa 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
| | - Carla S Moura
- CDRSP - Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande 2430-028, Portugal
- Research Centre for Natural Resources Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Bencanta, 3045-601 Coimbra, Portugal
| | - Ana C Marques
- CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
- Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
| | - Joaquim M S Cabral
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Avenida. Rovisco Pais, Lisboa 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
| | - Paula Pascoal-Faria
- CDRSP - Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande 2430-028, Portugal
- Department of Mathematics, School of Technology and Management, Polytechnic of Leiria, Morro do Lena-Alto do Vieiro, Apartado 4163, Leiria 2411-901, Portugal
- Associate Laboratory Arise, Porto, Portugal
| | - Nuno Alves
- CDRSP - Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua de Portugal-Zona Industrial, Marinha Grande 2430-028, Portugal
- Department of Mechanical Engineering, School of Technology and Management, Polytechnic of Leiria, Morro do Lena-Alto do Vieiro, Apartado 4163, Leiria 2411-901, Portugal
- Associate Laboratory Arise, Porto, Portugal
| | - Jorge Morgado
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
| | - Frederico Castelo Ferreira
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Avenida. Rovisco Pais, Lisboa 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
| | - Fábio F F Garrudo
- iBB - Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisboa 1049-001, Portugal.
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Avenida. Rovisco Pais, Lisboa 1049-001, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
- Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, Lisboa 1049-001, Portugal
| |
Collapse
|
4
|
Leser JM, Torre OM, Gould NR, Guo Q, Buck HV, Kodama J, Otsuru S, Stains JP. Osteoblast-lineage calcium/calmodulin-dependent kinase 2 delta and gamma regulates bone mass and quality. Proc Natl Acad Sci U S A 2023; 120:e2304492120. [PMID: 37976259 PMCID: PMC10666124 DOI: 10.1073/pnas.2304492120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/30/2023] [Indexed: 11/19/2023] Open
Abstract
Bone regulates its mass and quality in response to diverse mechanical, hormonal, and local signals. The bone anabolic or catabolic responses to these signals are often received by osteocytes, which then coordinate the activity of osteoblasts and osteoclasts on bone surfaces. We previously established that calcium/calmodulin-dependent kinase 2 (CaMKII) is required for osteocytes to respond to some bone anabolic cues in vitro. However, a role for CaMKII in bone physiology in vivo is largely undescribed. Here, we show that conditional codeletion of the most abundant isoforms of CaMKII (delta and gamma) in mature osteoblasts and osteocytes [Ocn-cre:Camk2d/Camk2g double-knockout (dCKO)] caused severe osteopenia in both cortical and trabecular compartments by 8 wk of age. In addition to having less bone mass, dCKO bones are of worse quality, with significant deficits in mechanical properties, and a propensity to fracture. This striking skeletal phenotype is multifactorial, including diminished osteoblast activity, increased osteoclast activity, and altered phosphate homeostasis both systemically and locally. These dCKO mice exhibited decreased circulating phosphate (hypophosphatemia) and increased expression of the phosphate-regulating hormone fibroblast growth factor 23. Additionally, dCKO mice expressed less bone-derived tissue nonspecific alkaline phosphatase protein than control mice. Consistent with altered phosphate homeostasis, we observed that dCKO bones were hypo-mineralized with prominent osteoid seams, analogous to the phenotypes of mice with hypophosphatemia. Altogether, these data reveal a fundamental role for osteocyte CaMKIIδ and CaMKIIγ in the maintenance of bone mass and bone quality and link osteoblast/osteocyte CaMKII to phosphate homeostasis.
Collapse
Affiliation(s)
- Jenna M. Leser
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Olivia M. Torre
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Nicole R. Gould
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Qiaoyue Guo
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Heather V. Buck
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Joe Kodama
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Satoru Otsuru
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| | - Joseph P. Stains
- Department of Othopaedics, University of Maryland School of Medicine, Baltimore, MD21201
| |
Collapse
|
5
|
Besio R, Contento BM, Garibaldi N, Filibian M, Sonntag S, Shmerling D, Tonelli F, Biggiogera M, Brini M, Salmaso A, Jovanovic M, Marini JC, Rossi A, Forlino A. CaMKII inhibition due to TRIC-B loss-of-function dysregulates SMAD signaling in osteogenesis imperfecta. Matrix Biol 2023; 120:43-59. [PMID: 37178987 PMCID: PMC11123566 DOI: 10.1016/j.matbio.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/02/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
Ca2+ is a second messenger that regulates a variety of cellular responses in bone, including osteoblast differentiation. Mutations in trimeric intracellular cation channel B (TRIC-B), an endoplasmic reticulum channel specific for K+, a counter ion for Ca2+flux, affect bone and cause a recessive form of osteogenesis imperfecta (OI) with a still puzzling mechanism. Using a conditional Tmem38b knock out mouse, we demonstrated that lack of TRIC-B in osteoblasts strongly impairs skeleton growth and structure, leading to bone fractures. At the cellular level, delayed osteoblast differentiation and decreased collagen synthesis were found consequent to the Ca2+ imbalance and associated with reduced collagen incorporation in the extracellular matrix and poor mineralization. The impaired SMAD signaling detected in mutant mice, and validated in OI patient osteoblasts, explained the osteoblast malfunction. The reduced SMAD phosphorylation and nuclear translocation were mainly caused by alteration in Ca2+ calmodulin kinase II (CaMKII)-mediated signaling and to a less extend by a lower TGF-β reservoir. SMAD signaling, osteoblast differentiation and matrix mineralization were only partially rescued by TGF-β treatment, strengthening the impact of CaMKII-SMAD axes on osteoblast function. Our data established the TRIC-B role in osteoblasts and deepened the contribution of the CaMKII-SMAD signaling in bone.
Collapse
Affiliation(s)
- Roberta Besio
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Barbara M Contento
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Nadia Garibaldi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Marta Filibian
- Centro Grandi Strumenti, University of Pavia, Pavia, Italy; INFN, Istituto Nazionale di Fisica Nucleare-Pavia Unit, Pavia, Italy
| | - Stephan Sonntag
- PolyGene AG, Rümlang, Switzerland; LIMES-Institute, University of Bonn, Bonn , Germany
| | | | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Marisa Brini
- Department of Biology, University of Padova, Padova, Italy; Centro Studi per la Neurodegenerazione (CESNE), University of Padova, Padova, Italy
| | - Andrea Salmaso
- Department of Biology, University of Padova, Padova, Italy
| | - Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States of America
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shiver National Institute of Child Health and Human Development, National Institute of Health, Bethesda, MD, United States of America
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| |
Collapse
|
6
|
Guillot-Ferriols M, Lanceros-Méndez S, Gómez Ribelles JL, Gallego Ferrer G. Electrical stimulation: Effective cue to direct osteogenic differentiation of mesenchymal stem cells? BIOMATERIALS ADVANCES 2022; 138:212918. [PMID: 35913228 DOI: 10.1016/j.bioadv.2022.212918] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Mesenchymal stem cells (MSCs) play a major role in bone tissue engineering (BTE) thanks to their capacity for osteogenic differentiation and being easily available. In vivo, MSCs are exposed to an electroactive microenvironment in the bone niche, which has piezoelectric properties. The correlation between the electrically active milieu and bone's ability to adapt to mechanical stress and self-regenerate has led to using electrical stimulation (ES) as physical cue to direct MSCs differentiation towards the osteogenic lineage in BTE. This review summarizes the different techniques to electrically stimulate MSCs to induce their osteoblastogenesis in vitro, including general electrical stimulation and substrate mediated stimulation by means of conductive or piezoelectric cell culture supports. Several aspects are covered, including stimulation parameters, treatment times and cell culture media to summarize the best conditions for inducing MSCs osteogenic commitment by electrical stimulation, from a critical point of view. Electrical stimulation activates different signaling pathways, including bone morphogenetic protein (BMP) Smad-dependent or independent, regulated by mitogen activated protein kinases (MAPK), extracellular signal-regulated kinases (ERK) and p38. The roles of voltage gate calcium channels (VGCC) and integrins are also highlighted according to their application technique and parameters, mainly converging in the expression of RUNX2, the master regulator of the osteogenic differentiation pathway. Despite the evident lack of homogeneity in the approaches used, the ever-increasing scientific evidence confirms ES potential as an osteoinductive cue, mimicking aspects of the in vivo microenvironment and moving one step forward to the translation of this approach into clinic.
Collapse
Affiliation(s)
- M Guillot-Ferriols
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain.
| | - S Lanceros-Méndez
- Centre of Physics of Minho and Porto Universities, Universidade do Minho, 4710-058 Braga, Portugal; BCMaterials, Basque Centre for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - J L Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - G Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering (CBIT), Universitat Politècnica de València, 46022 Valencia, Spain; Biomedical Research Networking Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| |
Collapse
|
7
|
Matur AV, Plummer ZJ, Mejia-Munne JC, Tabbosha M, Virojanapa JN, Nasser R, Cheng JS. Noninvasive electrical stimulation as an adjunct to fusion procedures: a systematic review and meta-analysis. J Neurosurg Spine 2022; 37:137-148. [PMID: 35090134 DOI: 10.3171/2021.11.spine211098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/19/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Noninvasive electrical stimulation represents a distinct group of devices used to augment fusion rates. However, data regarding outcomes of noninvasive electrical stimulation have come from a small number of studies. The goal of this systematic review and meta-analysis was to determine outcomes of noninvasive electrical stimulation used as an adjunct to fusion procedures to improve rates of successful fusion. METHODS PubMed, Embase, and the Cochrane Clinical Trials database were searched according to search strategy and PRISMA guidelines. Random-effects meta-analyses of fusion rates with the three main modalities of noninvasive electrical stimulation, capacitively coupled stimulation (CCS), pulsed electromagnetic fields (PEMFs), and combined magnetic fields (CMFs), were conducted using R version 4.1.0 (The R Foundation for Statistical Computing). Both retrospective studies and clinical trials were included. Animal studies were excluded. Risk-of-bias analysis was performed with the Risk of Bias 2 (RoB 2) and Risk of Bias in Nonrandomized Studies of Interventions (ROBINS-I) tools. RESULTS Searches of PubMed, Embase, and the Cochrane Clinical Trials database identified 8 articles with 1216 participants meeting criteria from 213 initial results. There was a high overall risk of bias identified for the majority of randomized studies. No meta-analysis could be performed for CCS as only 1 study was identified. Meta-analysis of 6 studies of fusion rates in PEMF did not find any difference between treatment and control groups (OR 1.89, 95% CI 0.36-9.80, p = 0.449). Meta-analysis of 2 studies of CMF found no difference in fusion rates between control and treatment groups (OR 0.90, 95% CI 0.07-11.93, p = 0.939). Subgroup analysis of PEMF was limited given the small number of studies and patients, although significantly increased fusion rates were seen in some subgroups. CONCLUSIONS This meta-analysis of clinical outcomes and fusion rates in noninvasive electrical stimulation compared to no stimulation did not identify any increases in fusion rates for any modality. A high degree of heterogeneity between studies was noted. Although subgroup analysis identified significant differences in fusion rates in certain groups, these findings were based on a small number of studies and further research is needed. This analysis does not support routine use of these devices to augment fusion rates, although the data are limited by a high risk of bias and a small number of available studies.
Collapse
Affiliation(s)
- Abhijith V Matur
- 1Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati; and
| | - Zachary J Plummer
- 1Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati; and
| | - Juan C Mejia-Munne
- 1Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati; and
| | - Monir Tabbosha
- 2Department of Neurosurgery, The Christ Hospital, Cincinnati, Ohio
| | - Justin N Virojanapa
- 1Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati; and
| | - Rani Nasser
- 1Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati; and
| | - Joseph S Cheng
- 1Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati; and
| |
Collapse
|
8
|
Sautchuk R, Eliseev RA. Cell energy metabolism and bone formation. Bone Rep 2022; 16:101594. [PMID: 35669927 PMCID: PMC9162940 DOI: 10.1016/j.bonr.2022.101594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Energy metabolism plays an important role in cell and tissue ability to effectively function, maintain homeostasis, and perform repair. Yet, the role of energy metabolism in skeletal tissues in general and in bone, in particular, remains understudied. We, here, review the aspects of cell energy metabolism relevant to bone tissue, such as: i) availability of substrates and oxygen; ii) metabolism regulatory mechanisms most active in bone tissue, e.g. HIF and BMP; iii) crosstalk of cell bioenergetics with other cell functions, e.g. proliferation and differentiation; iv) role of glycolysis and mitochondrial oxidative phosphorylation in osteogenic lineage; and v) most significant changes in bone energy metabolism observed in aging and other pathologies. In addition, we review available methods to study energy metabolism on a subcellular, cellular, tissue, and live animal levels.
Collapse
Affiliation(s)
- Rubens Sautchuk
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Roman A. Eliseev
- Center for Musculoskeletal Research, University of Rochester School of Medicine & Dentistry, 601 Elmwood Ave, Rochester, NY 14642, United States
| |
Collapse
|
9
|
Hou P, Sun Y, Yang W, Wu H, Sun L, Xiu X, Xiu C, Zhang X, Zhang W. Magnesium promotes osteogenesis via increasing OPN expression and activating CaM/CaMKIV/CREB1 pathway. J Biomed Mater Res B Appl Biomater 2022; 110:1594-1603. [PMID: 35106922 DOI: 10.1002/jbm.b.35020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/05/2022] [Accepted: 01/18/2022] [Indexed: 11/11/2022]
Abstract
Magnesium (Mg) based alloy has been used as a biodegradable implant for fracture repair with considerable efficacy, and it has been proved that magnesium ion (Mg2+ ), one of the degradation products, could stimulate osteogenesis. Here, we investigated the osteogenesis property of magnesium both in vitro and in vivo, and to identify the cellular and molecular mechanisms that mediate these effects. Results showed that magnesium exerts a dose-dependent increase in the proliferation of MC3T3 and MG63 cells, and in the expression of osteopontin (OPN), a promising biomarker of osteogenesis. Subsequently, the protein-protein interaction (PPI) network analysis showed the interactions between calmodulin (CaM) and calmodulin-dependent protein kinase (CaMK) and CREB1. The ratio of p-CaMKIV/CaMKIV and p-CREB1/CREB were increased at protein level in MC3T3 and MG63 cells after treatment with Mg2+ . Dual-luciferase reporter gene assay showed that p-CREB1 could directly bind to OPN promoter and up-regulate the transcription of OPN after nuclear entry. Meanwhile, the expression of OPN and p-CREB1, which increased after Mg2+ treatment, was down-regulated by sh-CaMKIV or sh-CREB1. Moreover, the mineralized deposit and expression of OPN were reduced after treatment with an inhibitor of CaMKIV, KN93. In addition, massive cavities in the cortical bone around the Mg screw were showed in vivo after injection of KN93. These data indicated that the osteogenic effect of Mg is related to the activation OPN through CaM/CaMKIV/CREB1 signaling pathway.
Collapse
Affiliation(s)
- Peng Hou
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yu Sun
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weichao Yang
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongliu Wu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Luyuan Sun
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xinjie Xiu
- College of Food Science and Engineering of Qingdao Agricultural University, Qingdao, China
| | - Chaoyang Xiu
- College of Food Science and Engineering of Qingdao Agricultural University, Qingdao, China
| | - Xiaonong Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Wen Zhang
- Orthopaedic Department, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
10
|
Weng Y, Wang Z, Fukuhara Y, Tanai A, Ikegame M, Yamada D, Takarada T, Izawa T, Hayano S, Yoshida K, Kamioka H, Okamura H. O-GlcNAcylation drives calcium signaling toward osteoblast differentiation: A bioinformatics-oriented study. Biofactors 2021; 47:992-1015. [PMID: 34418170 DOI: 10.1002/biof.1774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
This study aimed to reveal the possible mechanisms by which O-linked-N-acetylglucosaminylation (O-GlcNAcylation) regulates osteoblast differentiation using a series of bioinformatics-oriented experiments. To examine the influence of O-GlcNAcylation levels on osteoblast differentiation, osteoblastic MC3T3-E1 cells were treated with O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) inhibitors. Correlations between the levels of O-GlcNAcylation and the expression of osteogenic markers as well as OGT were evaluated by qPCR and western blotting. The O-GlcNAcylated proteins assumed to correlate with Runx2 expression were retrieved from several public databases and used for further bioinformatics analysis. Following the findings of the bioinformatics analysis, intracellular calcium ([Ca2+ ]i ) was monitored in the cells treated with OGT and OGA inhibitors using a confocal laser-scanning microscope (CLS). The interaction effect between O-GlcNAcylation and [Ca2+ ]i on osteogenic marker expression was determined using stable OGT knockdown MC3T3-E1 cells. O-GlcNAcylation was positively associated with osteoblast differentiation. The time-course profile of global O-GlcNAcylated proteins showed a distinctive pattern with different molecular weights during osteoblast differentiation. The expression pattern of several O-GlcNAcylated proteins was significantly similar to that of Runx2 expression. Bioinformatic analysis of the retrieved Runx2-related-O-GlcNAcylated-proteins revealed the importance of [Ca2+ ]i . CLS showed that alteration of O-GlcNAcylation rapidly changed [Ca2+ ]i in MC3T3-E1 cells. O-GlcNAcylation and [Ca2+ ]i showed an interaction effect on the expression of osteogenic markers. OGT knockdown disrupted the [Ca2+ ]i -induced expression changes of osteogenic markers. O-GlcNAcylation interacts with [Ca2+ ]i and elicits osteoblast differentiation by regulating the expression of osteogenic markers.
Collapse
Affiliation(s)
- Yao Weng
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Ziyi Wang
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yoko Fukuhara
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Airi Tanai
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Daisuke Yamada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takeshi Takarada
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takashi Izawa
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Satoru Hayano
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Kaya Yoshida
- Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
11
|
Ren R, Guo J, Chen Y, Zhang Y, Chen L, Xiong W. The role of Ca 2+ /Calcineurin/NFAT signalling pathway in osteoblastogenesis. Cell Prolif 2021; 54:e13122. [PMID: 34523757 PMCID: PMC8560623 DOI: 10.1111/cpr.13122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/18/2022] Open
Abstract
The bone remodelling process is closely related to bone health. Osteoblasts and osteoclasts participate in the bone remodelling process under the regulation of various factors inside and outside. Excessive activation of osteoclasts or lack of function of osteoblasts will cause occurrence and development of multiple bone‐related diseases. Ca2+/Calcineurin/NFAT signalling pathway regulates the growth and development of many types of cells, such as cardiomyocyte differentiation, angiogenesis, chondrogenesis, myogenesis, bone development and regeneration, etc. Some evidences indicate that this signalling pathway plays an extremely important role in bone formation and bone pathophysiologic changes. This review discusses the role of Ca2+/Calcineurin/NFAT signalling pathway in the process of osteogenic differentiation, as well as the influence of regulating each component in this signalling pathway on the differentiation and function of osteoblasts, whereby the relationship between Ca2+/Calcineurin/NFAT signalling pathway and osteoblastogenesis could be deeper understood.
Collapse
Affiliation(s)
- Ranyue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangmengfan Chen
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, BG Trauma Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Yayun Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangxi Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
12
|
Du W, Bhojwani A, Hu JK. FACEts of mechanical regulation in the morphogenesis of craniofacial structures. Int J Oral Sci 2021; 13:4. [PMID: 33547271 PMCID: PMC7865003 DOI: 10.1038/s41368-020-00110-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
During embryonic development, organs undergo distinct and programmed morphological changes as they develop into their functional forms. While genetics and biochemical signals are well recognized regulators of morphogenesis, mechanical forces and the physical properties of tissues are now emerging as integral parts of this process as well. These physical factors drive coordinated cell movements and reorganizations, shape and size changes, proliferation and differentiation, as well as gene expression changes, and ultimately sculpt any developing structure by guiding correct cellular architectures and compositions. In this review we focus on several craniofacial structures, including the tooth, the mandible, the palate, and the cranium. We discuss the spatiotemporal regulation of different mechanical cues at both the cellular and tissue scales during craniofacial development and examine how tissue mechanics control various aspects of cell biology and signaling to shape a developing craniofacial organ.
Collapse
Affiliation(s)
- Wei Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Arshia Bhojwani
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Hong F, Wu S, Zhang C, Li L, Chen J, Fu Y, Wang J. TRPM7 Upregulate the Activity of SMAD1 through PLC Signaling Way to Promote Osteogenesis of hBMSCs. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9458983. [PMID: 32596398 PMCID: PMC7294393 DOI: 10.1155/2020/9458983] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/18/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
TRPM7 is a member of the transient receptor potential cation channel (TRP channel) subfamily M and possesses both an ion channel domain and a functional serine/threonine α-kinase domain. It has been proven to play an essential role in the osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). However, the signaling pathway and molecular mechanism for TRPM7 in regulating osteogenic differentiation remain largely unknown. In this study, the potential role and mechanism of TRPM7 in the osteogenic differentiation of hBMSCs were investigated. The results showed that the expression of TRPM7 mRNA and protein increased, as did the osteogenic induction time. Upregulation or inhibition of TRPM7 could promote or inhibit the osteogenic differentiation of hBMSCs for 14 days. It was also found that the upregulation or inhibition of TRPM7 promoted or inhibited the activity of PLC and SMAD1, respectively, during osteogenic differentiation. PLC could promote osteogenic differentiation by upregulating the activity of SMAD1. However, inhibition of PLC alone could reduce the activity of SMAD1 but not inhibit completely the activation of SMAD1. Therefore, we inferred that it is an important signaling pathway for TRPM7 to upregulate the activity of SMAD1 through PLC and thereby promote the osteogenic differentiation of hBMSCs, but it is not a singular pathway. TRPM7 may also regulate the activation of SMAD1 through other ways, except for PLC, during osteogenic differentiation of hBMSCs.
Collapse
Affiliation(s)
- Fanfan Hong
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shali Wu
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Cui Zhang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Liang Li
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jianling Chen
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yong Fu
- Department of ENT, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Jinfu Wang
- Institute of Cell and Development Biology, College of Life Sciences, Zijingang Campus, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of ENT, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Abuna RPF, Oliveira FS, Adolpho LF, Fernandes RR, Rosa AL, Beloti MM. Frizzled 6 disruption suppresses osteoblast differentiation induced by nanotopography through the canonical Wnt signaling pathway. J Cell Physiol 2020; 235:8293-8303. [PMID: 32239701 DOI: 10.1002/jcp.29674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/08/2020] [Indexed: 02/05/2023]
Abstract
This study aimed to investigate if wingless-related integration site (Wnt) signaling participates in the high osteogenic potential of titanium with nanotopography (Ti-Nano). We showed that among the several components of the Wnt signaling pathway, Frizzled 6 (Fzd6) was the transcript most intensely modulated by nanotopography compared with the untreated Ti surface (Ti-Machined). Then, we investigated whether and how Fzd6 participates in the regulation of osteoblast differentiation caused by nanotopography. The Fzd6 silencing with CRISPR-Cas9 transfection in MC3T3-E1 cells induced a more pronounced inhibition of osteoblast differentiation of cells cultured on nanotopography than those cultured on Ti-Machined. The analysis of the expression of calcium-calmodulin-dependent protein kinase II and β-catenin demonstrated that Fzd6 disruption inhibited the osteoblast differentiation induced by Ti-Nano by preventing the activation of Wnt/β-catenin but not that of Wnt/Ca2+ signaling, which is usually triggered by the receptor Fzd6. These findings elucidate the biological function of Fzd6 as a receptor that triggers Wnt/β-catenin signaling and the cellular mechanisms modulated by nanotopography during osteoblast differentiation.
Collapse
Affiliation(s)
- Rodrigo Paolo Flores Abuna
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiola Singaretti Oliveira
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leticia Faustino Adolpho
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roger Rodrigo Fernandes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
15
|
The Administration of 4-Hexylresorcinol Accelerates Orthodontic Tooth Movement and Increases the Expression Level of Bone Turnover Markers in Ovariectomized Rats. Int J Mol Sci 2020; 21:ijms21041526. [PMID: 32102282 PMCID: PMC7073238 DOI: 10.3390/ijms21041526] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Surgical methods for accelerating orthodontic tooth movement are limited by possible damage to the tooth root and patient discomfort. 4-Hexylresorcinol (4HR) has been shown to increase bone remodeling and may potentially facilitate tooth movement. This study investigated the (1) effect of 4HR administration on osteoblast-like cells and (2) effect of 4HR administration on tooth movement in ovariectomized rats. Saos-2 cells were treated with either 4HR or solvent (control). Protein expression levels were investigated 2, 8, and 24 h after treatment. Thirty ovariectomized Sprague-Dawley rats were divided into two experimental groups (A and B) and one control group. After installation of an orthodontic tooth movement device, groups A and B received subcutaneous weekly injections of 4HR (1.28 and 128 mg/kg). Micro-computerized tomography and histological analyses were performed after 2 weeks of tooth movement. The application of 4HR elevated expression of osteogenic markers in Saos-2 cells. Movement of the first molars was significantly greater in rats administered 4HR. Furthermore, the expression of bone morphogenic protein-2, receptor activator of nuclear factor kappa-B ligand, osteocalcin, and tartrate-resistant acid phosphatase were increased after 4HR administration. 4HR application demonstrated increased expression of osteogenic markers in Saos-2 cells and accelerated orthodontic tooth movement in rats.
Collapse
|
16
|
Cottrill E, Pennington Z, Ahmed AK, Lubelski D, Goodwin ML, Perdomo-Pantoja A, Westbroek EM, Theodore N, Witham T, Sciubba D. The effect of electrical stimulation therapies on spinal fusion: a cross-disciplinary systematic review and meta-analysis of the preclinical and clinical data. J Neurosurg Spine 2020; 32:106-126. [PMID: 31593923 DOI: 10.3171/2019.5.spine19465] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/17/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Nonunion is a common complication of spinal fusion surgeries. Electrical stimulation technologies (ESTs)-namely, direct current stimulation (DCS), capacitive coupling stimulation (CCS), and inductive coupling stimulation (ICS)-have been suggested to improve fusion rates. However, the evidence to support their use is based solely on small trials. Here, the authors report the results of meta-analyses of the preclinical and clinical data from the literature to provide estimates of the overall effect of these therapies at large and in subgroups. METHODS A systematic review of the English-language literature was performed using PubMed, Embase, and Web of Science databases. The query of these databases was designed to include all preclinical and clinical studies examining ESTs for spinal fusion. The primary endpoint was the fusion rate at the last follow-up. Meta-analyses were performed using a Freeman-Tukey double arcsine transformation followed by random-effects modeling. RESULTS A total of 33 articles (17 preclinical, 16 clinical) were identified, of which 11 preclinical studies (257 animals) and 13 clinical studies (2144 patients) were included in the meta-analysis. Among preclinical studies, the mean fusion rates were higher among EST-treated animals (OR 4.79, p < 0.001). Clinical studies similarly showed ESTs to increase fusion rates (OR 2.26, p < 0.001). Of EST modalities, only DCS improved fusion rates in both preclinical (OR 5.64, p < 0.001) and clinical (OR 2.13, p = 0.03) populations; ICS improved fusion in clinical studies only (OR 2.45, p = 0.014). CCS was not effective at increasing fusion, although only one clinical study was identified. A subanalysis of the clinical studies found that ESTs increased fusion rates in the following populations: patients with difficult-to-fuse spines, those who smoke, and those who underwent multilevel fusions. CONCLUSIONS The authors found that electrical stimulation devices may produce clinically significant increases in arthrodesis rates among patients undergoing spinal fusion. They also found that the pro-arthrodesis effects seen in preclinical studies are also found in clinical populations, suggesting that findings in animal studies are translatable. Additional research is needed to analyze the cost-effectiveness of these devices.
Collapse
|
17
|
The role of CaO/SiO 2 ratio and P 2O 5 content in gel-derived bioactive glass-polymer composites in the modulation of their bioactivity and osteoinductivity in human BMSCs. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110535. [PMID: 32228933 DOI: 10.1016/j.msec.2019.110535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/19/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023]
Abstract
We obtained a range of PLGA-based composites containing sol-gel bioactive glasses (SBG) from the SiO2-CaO and SiO2-CaO-P2O5 systems. Eight SBGs with different CaO/SiO2 ratios with and without P2O5 were incorporated at 50% w/w to PLGA matrix and structured into thin films suitable for cell culture. The SBG/PLGA composites were examined for their bioactivity in simulated body fluid (SBF), ion release profile in culture media with and without cells, and osteoinductivity in standard human bone marrow stromal cell (hBMSC) cultures without osteogenic growth factors. Our results indicate different surface activity of composites depending on the presence/absence of P2O5 in SBG composition. Furthermore, ion release profile to culture medium differed depending on the presence/absence of cells. Direct culture of hBMSC on the SiO2-CaO/PLGA composite films resulted in elevated Runx-2 mRNA, opposite to low Runx-2 mRNA levels on SiO2-CaO-P2O5/PLGA films. All studied composites increased Osx mRNA levels. Whereas some of SiO2-CaO/PLGA composites did not elevate BMP-2 and -6 proteins in hBMSC cultures, high levels of these BMPs were present in all cultures on SiO2-CaO-P2O5/PLGA composites. All composites induced BMP-related Tak1 signalling, whereas Smad1 signalling was restricted mostly to composites containing three-component SBGs. ALP activity of hBMSC and BMP-related luciferase activity of mouse BRITE cells differed depending on whether the cells were stimulated with culture medium conditioned with SBG/PLGA composites or the cells were directly cultured on the composite surfaces. Altogether, beyond bioactivity and osteoinductivity of SBG/PLGA composites, our studies show key differences in the biological response to both the bioactive material dissolution products and upon direct cell-material contacts.
Collapse
|
18
|
Sun W, Chi S, Li Y, Ling S, Tan Y, Xu Y, Jiang F, Li J, Liu C, Zhong G, Cao D, Jin X, Zhao D, Gao X, Liu Z, Xiao B, Li Y. The mechanosensitive Piezo1 channel is required for bone formation. eLife 2019; 8:47454. [PMID: 31290742 PMCID: PMC6685704 DOI: 10.7554/elife.47454] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/06/2019] [Indexed: 12/17/2022] Open
Abstract
Mechanical load of the skeleton system is essential for the development, growth, and maintenance of bone. However, the molecular mechanism by which mechanical stimuli are converted into osteogenesis and bone formation remains unclear. Here we report that Piezo1, a bona fide mechanotransducer that is critical for various biological processes, plays a critical role in bone formation. Knockout of Piezo1 in osteoblast lineage cells disrupts the osteogenesis of osteoblasts and severely impairs bone structure and strength. Bone loss that is induced by mechanical unloading is blunted in knockout mice. Intriguingly, simulated microgravity treatment reduced the function of osteoblasts by suppressing the expression of Piezo1. Furthermore, osteoporosis patients show reduced expression of Piezo1, which is closely correlated with osteoblast dysfunction. These data collectively suggest that Piezo1 functions as a key mechanotransducer for conferring mechanosensitivity to osteoblasts and determining mechanical-load-dependent bone formation, and represents a novel therapeutic target for treating osteoporosis or mechanical unloading-induced severe bone loss.
Collapse
Affiliation(s)
- Weijia Sun
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shaopeng Chi
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yuheng Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Shukuan Ling
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yingjun Tan
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Youjia Xu
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fan Jiang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jianwei Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Caizhi Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Guohui Zhong
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dengchao Cao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaoyan Jin
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Dingsheng Zhao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xingcheng Gao
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zizhong Liu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Bailong Xiao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, IDG/McGovern Institute for Brain Research, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yingxian Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
19
|
Schneider RA. Neural crest and the origin of species-specific pattern. Genesis 2018; 56:e23219. [PMID: 30134069 PMCID: PMC6108449 DOI: 10.1002/dvg.23219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022]
Abstract
For well over half of the 150 years since the discovery of the neural crest, the special ability of these cells to function as a source of species-specific pattern has been clearly recognized. Initially, this observation arose in association with chimeric transplant experiments among differentially pigmented amphibians, where the neural crest origin for melanocytes had been duly noted. Shortly thereafter, the role of cranial neural crest cells in transmitting species-specific information on size and shape to the pharyngeal arch skeleton as well as in regulating the timing of its differentiation became readily apparent. Since then, what has emerged is a deeper understanding of how the neural crest accomplishes such a presumably difficult mission, and this includes a more complete picture of the molecular and cellular programs whereby neural crest shapes the face of each species. This review covers studies on a broad range of vertebrates and describes neural-crest-mediated mechanisms that endow the craniofacial complex with species-specific pattern. A major focus is on experiments in quail and duck embryos that reveal a hierarchy of cell-autonomous and non-autonomous signaling interactions through which neural crest generates species-specific pattern in the craniofacial integument, skeleton, and musculature. By controlling size and shape throughout the development of these systems, the neural crest underlies the structural and functional integration of the craniofacial complex during evolution.
Collapse
Affiliation(s)
- Richard A. Schneider
- Department of Orthopedic SurgeryUniversity of California at San Francisco, 513 Parnassus AvenueS‐1161San Francisco, California
| |
Collapse
|
20
|
Liao AM, Jung H, Yu JW, Lee DH, Park SS, Cai B, Chun C. Synthesis and biological evaluation of arginyl-diosgenin conjugate as a potential bone tissue engineering agent. Chem Biol Drug Des 2017. [DOI: 10.1111/cbdd.13050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Ai-Mei Liao
- Research Institute of Drug Development; College of Pharmacy; Chonnam National University; Gwangju Korea
- School of Life Science; Hefei Normal University; Hefei China
| | - Hana Jung
- CELLINBIO Co., Ltd.; Suwon-si Gyeonggi-do Korea
| | - Ji Won Yu
- CELLINBIO Co., Ltd.; Suwon-si Gyeonggi-do Korea
| | - Dong Hee Lee
- CELLINBIO Co., Ltd.; Suwon-si Gyeonggi-do Korea
- Jeonnam NanoBio Research Center; Jangseong-gun Jeollanam-do Korea
| | | | - Bangrong Cai
- Research Institute of Drug Development; College of Pharmacy; Chonnam National University; Gwangju Korea
| | - ChangJu Chun
- Research Institute of Drug Development; College of Pharmacy; Chonnam National University; Gwangju Korea
| |
Collapse
|
21
|
McClellan P, Jacquet R, Yu Q, Landis WJ. A Method for the Immunohistochemical Identification and Localization of Osterix in Periosteum-Wrapped Constructs for Tissue Engineering of Bone. J Histochem Cytochem 2017; 65:407-420. [PMID: 28415912 PMCID: PMC5490846 DOI: 10.1369/0022155417705300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/24/2017] [Indexed: 12/31/2022] Open
Abstract
A novel immunohistochemistry (IHC) approach has been developed to label and localize osterix, a bone-specific transcription factor, within formalin-fixed, paraffin-embedded, tissue-engineered constructs uniquely containing synthetic polymers and human periosteal tissue. Generally, such specimens consisting in part of polymeric materials and mineral are particularly difficult for IHC identification of proteins. Samples here were fabricated from human periosteum, electrospun poly-l-lactic acid (PLLA) nanofibers, and polycaprolactone/poly-l-lactic acid (PCL/PLLA, 75/25) scaffolds and harvested following 10 weeks of implantation in athymic mice. Heat-induced and protease-induced epitope retrieval methods from selected existing protocols were examined to identify osterix. All such protease-induced techniques were unsuccessful. Heat-induced retrieval gave positive results for osterix immunohistochemical staining in sodium citrate/EDTA/Tween 20 with high heat (120C) and pressure (~30 psi) for 10 min, but the heat and pressure levels resulted in tissue damage and section delamination from slides that limited protocol effectiveness. Heat-induced epitope retrieval led to other osterix-positive staining results achieved with minimal impact on structural integrity of the tissue and polymers in sodium citrate/EDTA/Tween 20 buffer at 60C and normal pressure (14.5 psi) for 72 hr. The latter approach identified osterix-positive cells by IHC within periosteal tissue, layers of electrospun PLLA nanofibers, and underlying PCL/PLLA scaffolds of the tissue-engineered constructs.
Collapse
Affiliation(s)
- Phillip McClellan
- Department of Polymer Science, The University of Akron, Akron, Ohio (PM, RJ, QY, WJL)
| | - Robin Jacquet
- Department of Polymer Science, The University of Akron, Akron, Ohio (PM, RJ, QY, WJL)
| | - Qing Yu
- Department of Polymer Science, The University of Akron, Akron, Ohio (PM, RJ, QY, WJL)
| | - William J. Landis
- Department of Polymer Science, The University of Akron, Akron, Ohio (PM, RJ, QY, WJL)
| |
Collapse
|
22
|
Ahi EP. Signalling pathways in trophic skeletal development and morphogenesis: Insights from studies on teleost fish. Dev Biol 2016; 420:11-31. [PMID: 27713057 DOI: 10.1016/j.ydbio.2016.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
During the development of the vertebrate feeding apparatus, a variety of complicated cellular and molecular processes participate in the formation and integration of individual skeletal elements. The molecular mechanisms regulating the formation of skeletal primordia and their development into specific morphological structures are tightly controlled by a set of interconnected signalling pathways. Some of these pathways, such as Bmp, Hedgehog, Notch and Wnt, are long known for their pivotal roles in craniofacial skeletogenesis. Studies addressing the functional details of their components and downstream targets, the mechanisms of their interactions with other signals as well as their potential roles in adaptive morphological divergence, are currently attracting considerable attention. An increasing number of signalling pathways that had previously been described in different biological contexts have been shown to be important in the regulation of jaw skeletal development and morphogenesis. In this review, I provide an overview of signalling pathways involved in trophic skeletogenesis emphasizing studies of the most species-rich group of vertebrates, the teleost fish, which through their evolutionary history have undergone repeated episodes of spectacular trophic diversification.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Zoology, University of Graz, Universitätsplatz 2, A-8010 Graz, Austria; Institute of Life and Environmental Sciences, University of Iceland, Sturlugata 7, 101 Reykjavik, Iceland.
| |
Collapse
|
23
|
Osteogenesis induced by frizzled-related protein (FRZB) is linked to the netrin-like domain. J Transl Med 2016; 96:570-80. [PMID: 26927515 DOI: 10.1038/labinvest.2016.38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/05/2016] [Accepted: 01/25/2016] [Indexed: 12/17/2022] Open
Abstract
Abnormal Wnt signaling is associated with bone mass disorders. Frizzled-related protein (FRZB, also known as secreted frizzled-related protein-3 (SFRP3)) is a Wnt modulator that contains an amino-terminal cysteine-rich domain (CRD) and a carboxy-terminal Netrin-like (NTN) motif. Frzb(-/-) mice show increased cortical thickness. However, the direct effect of FRZB on osteogenic differentiation and the involvement of the structural domains herein are not fully understood. In this study, we observed that stable overexpression of Frzb in MC3T3-E1 cells increased calcium deposition and osteoblast markers compared with control. Western blot analysis showed that the increased osteogenesis was associated with reduced canonical, but increased non-canonical Wnt signaling. On the contrary, loss of Frzb induced the opposite effects on osteogenesis and Wnt signaling. To translationally validate the positive effects of FRZB on primary human cells, we treated human periosteal and human bone marrow stromal cells with conditioned medium from MC3T3-E1 cells overexpressing Frzb and observed an increase in Alizarin red staining. We further studied the effect of the domains. FrzbNTN overexpression induced similar effects on osteogenesis as full-length Frzb, whereas FrzbCRD overexpressing cells mimicked loss of Frzb experiments. The CRD is considered as the Wnt binding domain, but the NTN domain also has important effects on bone biology. FRZB and other SFRPs or their specific domains may hold surprising potential as therapeutics for bone and joint disorders considering that excess of SFRPs has effects that are not expected under physiological, endogenous expression conditions.
Collapse
|
24
|
He YD, Sui BD, Li M, Huang J, Chen S, Wu LA. Site-specific function and regulation of Osterix in tooth root formation. Int Endod J 2016; 49:1124-1131. [PMID: 26599722 DOI: 10.1111/iej.12585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 11/16/2015] [Indexed: 02/06/2023]
Abstract
Congenital diseases of tooth roots, in terms of developmental abnormalities of short and thin root phenotypes, can lead to loss of teeth. A more complete understanding of the genetic molecular pathways and biological processes controlling tooth root formation is required. Recent studies have revealed that Osterix (Osx), a key mesenchymal transcriptional factor participating in both the processes of osteogenesis and odontogenesis, plays a vital role underlying the mechanisms of developmental differences between root and crown. During tooth development, Osx expression has been identified from late embryonic to postnatal stages when the tooth root develops, particularly in odontoblasts and cementoblasts to promote their differentiation and mineralization. Furthermore, the site-specific function of Osx in tooth root formation has been confirmed, because odontoblastic Osx-conditional knockout mice demonstrate primarily short and thin root phenotypes with no apparent abnormalities in the crown (Journal of Bone and Mineral Research 30, 2014 and 742, Journal of Dental Research 94, 2015 and 430). These findings suggest that Osx functions to promote odontoblast and cementoblast differentiation and root elongation only in root, but not in crown formation. Mechanistic research shows regulatory networks of Osx expression, which can be controlled through manipulating the epithelial BMP signalling, mesenchymal Runx2 expression and cellular phosphorylation levels, indicating feasible routes of promoting Osx expression postnatally (Journal of Cellular Biochemistry 114, 2013 and 975). In this regard, a promising approach might be available to regenerate the congenitally diseased root and that regenerative therapy would be the best choice for patients with developmental tooth diseases.
Collapse
Affiliation(s)
- Y D He
- Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - B D Sui
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Research and Development Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - M Li
- State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - J Huang
- Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Anatomy, Histology & Embryology, Basic Medical College, The Fourth Military Medical University, Xi'an, China
| | - S Chen
- Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Developmental Dentistry, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - L A Wu
- Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
25
|
Ealba EL, Jheon AH, Hall J, Curantz C, Butcher KD, Schneider RA. Neural crest-mediated bone resorption is a determinant of species-specific jaw length. Dev Biol 2015; 408:151-63. [PMID: 26449912 PMCID: PMC4698309 DOI: 10.1016/j.ydbio.2015.10.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/29/2015] [Accepted: 10/01/2015] [Indexed: 11/28/2022]
Abstract
Precise control of jaw length during development is crucial for proper form and function. Previously we have shown that in birds, neural crest mesenchyme (NCM) confers species-specific size and shape to the beak by regulating molecular and histological programs for the induction and deposition of cartilage and bone. Here we reveal that a hitherto unrecognized but similarly essential mechanism for establishing jaw length is the ability of NCM to mediate bone resorption. Osteoclasts are considered the predominant cells that resorb bone, although osteocytes have also been shown to participate in this process. In adults, bone resorption is tightly coupled to bone deposition as a means to maintain skeletal homeostasis. Yet, the role and regulation of bone resorption during growth of the embryonic skeleton have remained relatively unexplored. We compare jaw development in short-beaked quail versus long-billed duck and find that quail have substantially higher levels of enzymes expressed by bone-resorbing cells including tartrate-resistant acid phosphatase (TRAP), Matrix metalloproteinase 13 (Mmp13), and Mmp9. Then, we transplant NCM destined to form the jaw skeleton from quail to duck and generate chimeras in which osteocytes arise from quail donor NCM and osteoclasts come exclusively from the duck host. Chimeras develop quail-like jaw skeletons coincident with dramatically elevated expression of TRAP, Mmp13, and Mmp9. To test for a link between bone resorption and jaw length, we block resorption using a bisphosphonate, osteoprotegerin protein, or an MMP13 inhibitor, and this significantly lengthens the jaw. Conversely, activating resorption with RANKL protein shortens the jaw. Finally, we find that higher resorption in quail presages their relatively lower adult jaw bone mineral density (BMD) and that BMD is also NCM-mediated. Thus, our experiments suggest that NCM not only controls bone resorption by its own derivatives but also modulates the activity of mesoderm-derived osteoclasts, and in so doing enlists bone resorption as a key patterning mechanism underlying the functional morphology and evolution of the jaw.
Collapse
Affiliation(s)
- Erin L Ealba
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Andrew H Jheon
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Jane Hall
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Camille Curantz
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Kristin D Butcher
- Department of Orthopaedic Surgery, University of California, San Francisco, USA
| | - Richard A Schneider
- Department of Orofacial Sciences, University of California, San Francisco, USA; Department of Orthopaedic Surgery, University of California, San Francisco, USA.
| |
Collapse
|
26
|
Abstract
Molecular and cellular mechanisms that control jaw length are becoming better understood. This is significant since the jaws are not only critical for species-specific adaptation and survival, but they are often affected by a variety of size-related anomalies including mandibular hypoplasia, retrognathia, asymmetry, and clefting. This chapter overviews how jaw length is established during the allocation, proliferation, differentiation, and growth of jaw precursor cells, which originate from neural crest mesenchyme (NCM). The focus is mainly on results from experiments transplanting NCM between quail and duck embryos. Quail have short jaws whereas those of duck are relatively long. Quail-duck chimeras reveal that the determinants of jaw length are NCM mediated throughout development and include species-specific differences in jaw progenitor number, differential regulation of various signaling pathways, and the autonomous activation of programs for skeletal matrix deposition and resorption. Such insights help make the goal of devising new therapies for birth defects, diseases, and injuries to the jaw skeleton seem ever more likely.
Collapse
Affiliation(s)
- Richard A Schneider
- Department of Orthopaedic Surgery, University of California at San Francisco, San Francisco, California, USA.
| |
Collapse
|
27
|
Abdallah BM, Jafari A, Zaher W, Qiu W, Kassem M. Skeletal (stromal) stem cells: an update on intracellular signaling pathways controlling osteoblast differentiation. Bone 2015; 70:28-36. [PMID: 25138551 DOI: 10.1016/j.bone.2014.07.028] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/22/2014] [Accepted: 07/24/2014] [Indexed: 01/06/2023]
Abstract
Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy for identifying druggable targets for enhancing bone formation. This review will discuss the functions and the molecular mechanisms of action on osteoblast differentiation and bone formation; of a number of recently identified regulatory molecules: the non-canonical Notch signaling molecule Delta-like 1/preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone.
Collapse
Affiliation(s)
- Basem M Abdallah
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Abbas Jafari
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; DanStem (Danish Stem Cell Center), Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Walid Zaher
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Saudi Arabia
| | - Weimin Qiu
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Moustapha Kassem
- Molecular Endocrinology Laboratory (KMEB), Department of Endocrinology, Odense University Hospital & University of Southern Denmark, Odense, Denmark; DanStem (Danish Stem Cell Center), Panum Institute, University of Copenhagen, Copenhagen, Denmark; Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Saudi Arabia.
| |
Collapse
|
28
|
Wu Y, Yang M, Fan J, Peng Y, Deng L, Ding Y, Yang R, Zhou J, Miao D, Fu Q. Deficiency of osteoblastic Arl6ip5 impaired osteoblast differentiation and enhanced osteoclastogenesis via disturbance of ER calcium homeostasis and induction of ER stress-mediated apoptosis. Cell Death Dis 2014; 5:e1464. [PMID: 25321471 PMCID: PMC4237252 DOI: 10.1038/cddis.2014.427] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 12/15/2022]
Abstract
ADP-ribosylation-like factor 6 interacting protein 5 (Arl6ip5), which belongs to the prenylated rab-acceptor-family, has an important role in exocytic protein trafficking, glutathione metabolism and involves in cancer progression. However, its expression pattern and functional role in bone are unknown. Here we demonstrate that Arl6ip5 knock-out mice (Arl6ip5 (Δ2/Δ2)) show marked decrease of bone mineral density, trabecular bone volume and trabecular thickness. Histomorphometric studies reveal that bone formation parameters are decreased but bone resorption parameters and mRNA level of osteoclast-specific markers are increased in Arl6ip5(Δ2/Δ2) mice. In osteoblast, we demonstrate that Arl6ip5 abundantly expresses in osteoblastic cells and is regulated by bone metabolism-related hormones and growth factors. In vitro analysis reveals that osteoblast proliferation and differentiation are impaired in Arl6ip5 knocked-down and deficient primary osteoblast. Arl6ip5 is also found to function as an ER calcium regulator and control calmodulin signaling for osteoblast proliferation. Moreover, Arl6ip5 insufficiency in osteoblast induces ER stress and enhances ER stress-mediated apoptosis. CCAAT/enhancer-binding protein homologous protein (Chop) is involved in the regulation of apoptosis and differentiation in Arl6ip5 knocked-down osteoblasts. For osteoclastogenesis, Arl6ip5 insufficiency in osteoclast precursors has no effect on osteoclast formation. However, knocked-down osteoblastic Arl6ip5 induces receptor activator of nuclear factor-κB ligand (RANKL) expression and enhances osteoclastogenesis. In addition, ER stress and Chop are involved in the RANKL expression in Arl6ip5 knocked-down osteoblasts. In conclusion, we demonstrate that Arl6ip5 is a novel regulator of bone formation in osteoblasts.
Collapse
Affiliation(s)
- Y Wu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - M Yang
- Department of Radiotherapy, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - J Fan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Y Peng
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - L Deng
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Y Ding
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - R Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - J Zhou
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - D Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology, and Embryology, Nanjing, China
| | - Q Fu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
29
|
He S, Choi YH, Choi JK, Yeo CY, Chun C, Lee KY. Protein kinase A regulates the osteogenic activity of Osterix. J Cell Biochem 2014; 115:1808-15. [PMID: 24905700 DOI: 10.1002/jcb.24851] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/12/2014] [Indexed: 11/09/2022]
Abstract
Osterix belongs to the SP gene family and is a core transcription factor responsible for osteoblast differentiation and bone formation. Activation of protein kinase A (PKA), a serine/threonine kinase, is essential for controlling bone formation and BMP-induced osteoblast differentiation. However, the relationship between Osterix and PKA is still unclear. In this report, we investigated the precise role of the PKA pathway in regulating Osterix during osteoblast differentiation. We found that PKA increased the protein level of Osterix; PKA phosphorylated Osterix, increased protein stability, and enhanced the transcriptional activity of Osterix. These results suggest that Osterix is a novel target of PKA, and PKA modulates osteoblast differentiation partially through the regulation of Osterix.
Collapse
Affiliation(s)
- Siyuan He
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | | | | | | | | | | |
Collapse
|
30
|
Zaher W, Harkness L, Jafari A, Kassem M. An update of human mesenchymal stem cell biology and their clinical uses. Arch Toxicol 2014; 88:1069-82. [PMID: 24691703 DOI: 10.1007/s00204-014-1232-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 03/18/2014] [Indexed: 12/13/2022]
Abstract
In the past decade, an increasing urge to develop new and novel methods for the treatment of degenerative diseases where there is currently no effective therapy has lead to the emerging of the cell therapy or cellular therapeutics approach for the management of those conditions where organ functions are restored through transplantation of healthy and functional cells. Stem cells, because of their nature, are currently considered among the most suitable cell types for cell therapy. There are an increasing number of studies that have tested the stromal stem cell functionality both in vitro and in vivo. Consequently, stromal (mesenchymal) stem cells (MSCs) are being introduced into many clinical trials due to their ease of isolation and efficacy in treating a number of disease conditions in animal preclinical disease models. The aim of this review is to revise MSC biology, their potential translation in therapy, and the challenges facing their adaptation in clinical practice.
Collapse
Affiliation(s)
- Walid Zaher
- Endocrine Research (KMEB), Department of Endocrinology, Odense University Hospital, University of Southern Denmark, 5000, Odense C, Denmark
| | | | | | | |
Collapse
|
31
|
Gunter HM, Koppermann C, Meyer A. Revisiting de Beer's textbook example of heterochrony and jaw elongation in fish: calmodulin expression reflects heterochronic growth, and underlies morphological innovation in the jaws of belonoid fishes. EvoDevo 2014; 5:8. [PMID: 24499543 PMCID: PMC3927394 DOI: 10.1186/2041-9139-5-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/12/2013] [Indexed: 01/08/2023] Open
Abstract
Background Heterochronic shifts during ontogeny can result in adaptively important innovations and might be initiated by simple developmental switches. Understanding the nature of these developmental events can provide insights into fundamental molecular mechanisms of evolutionary change. Fishes from the Suborder Belonoidei display a vast array of extreme craniofacial morphologies that appear to have arisen through a series of heterochronic shifts. We performed a molecular heterochrony study, comparing postembryonic jaw development in representatives of the Suborder Belonoidei, the halfbeak Dermogenys pusilla (where the lower jaw is considerably elongated compared to the upper jaw) and the needlefish Belone belone (where both jaws are elongated), to a representative of their sister group the Suborder Adrianichthyoidei, the medaka Oryzias latipes, which has retained the ancestral morphology. Results Early in development, the lower jaw displays accelerated growth both in needlefish and halfbeak compared to medaka, and secondary acceleration of the upper jaw is seen in needlefish later in their development, representing a case of mosaic heterochrony. We identified toothless extensions of the dentaries as innovations of Belonoid fishes and the source of heterochronic growth. The molecular basis of growth heterochronies in the Belonoidei was examined through comparing expression of skeletogenic genes during development of halfbeak and medaka. The calmodulin paralogue calm1 was identified as a potential regulator of jaw length in halfbeak as its expression gradually increases in the lower jaw, but not the upper jaw, in a pattern that matches its outgrowth. Moreover, medaka displays equal expression of calm1 in the upper and lower jaws, consistent with the lack of jaw outgrowth in this species. Conclusions Heterochronic shifts in jaw growth have occurred repeatedly during the evolution of Belonoid fishes and we identify toothless extensions of the dentaries as an important innovation of this group. Our results suggest that calm1 contributes to jaw heterochrony in halfbeak, potentially driving further heterochronic shifts in jaw growth across the Suborder Belonoidei, such as the upper jaw acceleration observed in needlefish.
Collapse
Affiliation(s)
| | | | - Axel Meyer
- Department of Biology, Lehrstuhl für Zoologie und Evolutionsbiologie, University of Konstanz, Universitätstrasse 10, 78457 Constance, Germany.
| |
Collapse
|