1
|
Wu H, Min D, Sun B, Ma Y, Chen H, Wu J, Ren P, Wu J, Cao Y, Zhao B, Wang P. Effect of WiFi signal exposure in utero and early life on neurodevelopment and behaviors of rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:95892-95900. [PMID: 37561300 DOI: 10.1007/s11356-023-29159-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/31/2023] [Indexed: 08/11/2023]
Abstract
The aim of this study is to examine the long-term effects of prenatal and early-life WIFI signal exposure on neurodevelopment and behaviors as well as biochemical alterations of Wistar rats. On the first day of pregnancy (E0), expectant rats were allocated into two groups: the control group (n = 12) and the WiFi-exposed group (WiFi group, n = 12). WiFi group was exposed to turn on WiFi for 24 h/day from E0 to postnatal day (PND) 42. The control group was exposed to turn-off WiFi at the same time. On PND7-42, we evaluated the development and behavior of the offspring, including body weight, pain threshold, and swimming ability, spatial learning, and memory among others. Also, levels of proteins involved in apoptosis were analyzed histologically in the hippocampus in response to oxidative stress. The results showed that WiFi signal exposure in utero and early life (1) increased the body weight of WiFi + M (WiFi + male) group; (2) no change in neuro-behavioral development was observed in WiFi group; (3) increased learning and memory function in WiFi + M group; (4) enhanced comparative levels of BDNF and p-CREB proteins in the hippocampus of WiFi + M group; (5) no neuronal loss or degeneration was detected, and neuronal numbers in hippocampal CA1 were no evidently differences in each group; (6) no change in the apoptosis-related proteins (caspase-3 and Bax) levels; and (7) no difference in GSH-PX and SOD activities in the hippocampus. Prenatal WiFi exposure has no effects on hippocampal CA1 neurons, oxidative equilibrium in brain, and neurodevelopment of rats. Some effects of prenatal WiFi exposure are sex dependent. Prenatal WiFi exposure increased the body weight, improved the spatial memory and learning function, and induced behavioral hyperactivity of male rats.
Collapse
Affiliation(s)
- Hongmei Wu
- Department of Nursing, Harbin Medical University, Daqing, China
| | - Dongyu Min
- The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Buxun Sun
- Department of Physiology, Harbin Medical University, No. 39 Xinyang Road, Gaoxin District, DaqingDaqing, 163319, Heilongjiang, China
| | - Yifan Ma
- Department of Physiology, Harbin Medical University, No. 39 Xinyang Road, Gaoxin District, DaqingDaqing, 163319, Heilongjiang, China
| | - Hongpeng Chen
- Department of Physiology, Harbin Medical University, No. 39 Xinyang Road, Gaoxin District, DaqingDaqing, 163319, Heilongjiang, China
| | - Jing Wu
- Department of Pharmacology, Harbin Medical University, Daqing, China
| | - Ping Ren
- Department of Pharmacology, Harbin Medical University, Daqing, China
| | - Jiabi Wu
- Department of Pharmacology, Harbin Medical University, Daqing, China
| | - Yonggang Cao
- Department of Pharmacology, Harbin Medical University, Daqing, China
| | - Baoshan Zhao
- Department of Pathology and Pathophysiology, Harbin Medical University, Daqing, China
| | - Peng Wang
- Department of Physiology, Harbin Medical University, No. 39 Xinyang Road, Gaoxin District, DaqingDaqing, 163319, Heilongjiang, China.
| |
Collapse
|
2
|
Yadav H, Sharma RS, Singh R. Immunotoxicity of radiofrequency radiation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119793. [PMID: 35863710 DOI: 10.1016/j.envpol.2022.119793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/27/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Growing evidence recommends that radiofrequency radiations might be a new type of environmental pollutant. The consequences of RFR on the human immune system have gained considerable interest in recent years, not only to examine probable negative effects on health but also to understand if RFR can modulate the immune response positively. Although several studies have been published on the immune effects of RFR but no satisfactory agreement has been reached. Hence this review aims to evaluate the RFR modulating impacts on particular immune cells contributing to various innate or adaptive immune responses. In view of existing pieces of evidence, we have suggested an intracellular signaling cascade responsible for RFR action. The bio-effects of RFR on immune cell morphology, viability, proliferation, genome integrity, and immune functions such as ROS, cytokine secretion, phagocytosis, apoptosis, etc. are discussed. The majority of existing evidence point toward the possible shifts in the activity, number, and/or function of immunocompetent cells, but the outcome of several studies is still contradictory and needs further studies to reach a conclusion. Also, the direct association of experimental studies to human risks might not be helpful as exposure parameters vary in real life. On the basis of recent available literature, we suggest that special experiments should be designed to test each particular signal utilized in communication technologies to rule out the hypothesis that longer exposure to RFR emitting devices would affect the immunity by inducing genotoxic effects in human immune cells.
Collapse
Affiliation(s)
- Himanshi Yadav
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India
| | | | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, 110052, India.
| |
Collapse
|
3
|
Radiofrequency Electromagnetic Field Exposure and Apoptosis: A Scoping Review of In Vitro Studies on Mammalian Cells. Int J Mol Sci 2022; 23:ijms23042322. [PMID: 35216437 PMCID: PMC8877695 DOI: 10.3390/ijms23042322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
In the last decades, experimental studies have been carried out to investigate the effects of radiofrequency (RF, 100 kHz–300 GHz) electromagnetic fields (EMF) exposure on the apoptotic process. As evidence-based critical evaluation of RF and apoptosis in vitro is lacking, we performed a scoping literature review with the aim of systematically mapping the research performed in this area and identifying gaps in knowledge. Eligible for inclusion were in vitro studies assessing apoptosis in mammalian cells exposed to RF-EMF, which met basic quality criteria (sham control, at least three independent experiments, appropriate dosimetry analysis and temperature monitoring). We conducted a systematic literature review and charted data in order to overview the main characteristics of included studies. From the 4362 papers retrieved with our search strategy, 121 were pertinent but, among them, only 42 met basic quality criteria. We pooled data with respect to exposure (frequency, exposure level and duration) and biological parameters (cell type, endpoint), and highlighted some qualitative trends with respect to the detection of significant effect of RF-EMF on the apoptotic process. We provided a qualitative picture of the evidence accumulated so far, and highlighted that the quality of experimental methodology still needs to be highly improved.
Collapse
|
4
|
Halgamuge MN, Skafidas E, Davis D. A meta-analysis of in vitro exposures to weak radiofrequency radiation exposure from mobile phones (1990-2015). ENVIRONMENTAL RESEARCH 2020; 184:109227. [PMID: 32199316 DOI: 10.1016/j.envres.2020.109227] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 06/10/2023]
Abstract
To function, mobile phone systems require transmitters that emit and receive radiofrequency signals over an extended geographical area exposing humans in all stages of development ranging from in-utero, early childhood, adolescents and adults. This study evaluates the question of the impact of radiofrequency radiation on living organisms in vitro studies. In this study, we abstract data from 300 peer-reviewed scientific publications (1990-2015) describing 1127 experimental observations in cell-based in vitro models. Our first analysis of these data found that out of 746 human cell experiments, 45.3% indicated cell changes, whereas 54.7% indicated no changes (p = 0.001). Realizing that there are profound distinctions between cell types in terms of age, rate of proliferation and apoptosis, and other characteristics and that RF signals can be characterized in terms of polarity, information content, frequency, Specific Absorption Rate (SAR) and power, we further refined our analysis to determine if there were some distinct properties of negative and positive findings associated with these specific characteristics. We further analyzed the data taking into account the cumulative effect (SAR × exposure time) to acquire the cumulative energy absorption of experiments due to radiofrequency exposure, which we believe, has not been fully considered previously. When the frequency of signals, length and type of exposure, and maturity, rate of growth (doubling time), apoptosis and other properties of individual cell types are considered, our results identify a number of potential non-thermal effects of radiofrequency fields that are restricted to a subset of specific faster-growing less differentiated cell types such as human spermatozoa (based on 19 reported experiments, p-value = 0.002) and human epithelial cells (based on 89 reported experiments, p-value < 0.0001). In contrast, for mature, differentiated adult cells of Glia (p = 0.001) and Glioblastoma (p < 0.0001) and adult human blood lymphocytes (p < 0.0001) there are no statistically significant differences for these more slowly reproducing cell lines. Thus, we show that RF induces significant changes in human cells (45.3%), and in faster-growing rat/mouse cell dataset (47.3%). In parallel with this finding, further analysis of faster-growing cells from other species (chicken, rabbit, pig, frog, snail) indicates that most undergo significant changes (74.4%) when exposed to RF. This study confirms observations from the REFLEX project, Belyaev and others that cellular response varies with signal properties. We concur that differentiation of cell type thus constitutes a critical piece of information and should be useful as a reference for many researchers planning additional studies. Sponsorship bias is also a factor that we did not take into account in this analysis.
Collapse
Affiliation(s)
- Malka N Halgamuge
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia.
| | - Efstratios Skafidas
- Department Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Devra Davis
- Environmental Health Trust, Teton Village, WY, 83025, USA
| |
Collapse
|
5
|
Electromagnetic Fields, Genomic Instability and Cancer: A Systems Biological View. Genes (Basel) 2019; 10:genes10060479. [PMID: 31242701 PMCID: PMC6627294 DOI: 10.3390/genes10060479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/19/2019] [Accepted: 06/22/2019] [Indexed: 12/12/2022] Open
Abstract
This review discusses the use of systems biology in understanding the biological effects of electromagnetic fields, with particular focus on induction of genomic instability and cancer. We introduce basic concepts of the dynamical systems theory such as the state space and attractors and the use of these concepts in understanding the behavior of complex biological systems. We then discuss genomic instability in the framework of the dynamical systems theory, and describe the hypothesis that environmentally induced genomic instability corresponds to abnormal attractor states; large enough environmental perturbations can force the biological system to leave normal evolutionarily optimized attractors (corresponding to normal cell phenotypes) and migrate to less stable variant attractors. We discuss experimental approaches that can be coupled with theoretical systems biology such as testable predictions, derived from the theory and experimental methods, that can be used for measuring the state of the complex biological system. We also review potentially informative studies and make recommendations for further studies.
Collapse
|
6
|
Wang S, Liu Z, Ye Y, Li B, Liu T, Zhang W, Liu GH, Zhang YA, Qu J, Xu D, Chen Z. Ectopic hTERT expression facilitates reprograming of fibroblasts derived from patients with Werner syndrome as a WS cellular model. Cell Death Dis 2018; 9:923. [PMID: 30206203 PMCID: PMC6134116 DOI: 10.1038/s41419-018-0948-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/14/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
The induced pluripotent stem cell (iPSC) technology has provided a unique opportunity to develop disease-specific models and personalized treatment for genetic disorders, and is well suitable for the study of Werner syndrome (WS), an autosomal recessive disease with adult onset of premature aging caused by mutations in the RecQ like helicase (WRN) gene. WS-derived fibroblasts were previously shown to be able to generate iPSCs; however, it remains elusive how WS-derived iPSCs behave and whether they are able to mimic the disease-specific phenotype. The present study was designed to address these issues. Unexpectedly, we found that a specific WS fibroblast line of homozygous truncation mutation was difficult to be reprogrammed by using the Yamanaka factors even under hypoxic conditions due to their defect in induction of hTERT, the catalytic unit of telomerase. Ectopic expression of hTERT restores the ability of this WS fibroblast line to form iPSCs, although with a low efficiency. To examine the phenotype of WRN-deficient pluripotent stem cells, we also generated WRN knockout human embryonic stem (ES) cells by using the CRISPR/Cas9 method. The iPSCs derived from WS-hTERT cells and WRN-/- ESCs are fully pluripotent, express pluripotent markers and can differentiate into three germ layer cells; however, WS-iPSCs and WRN-/- ESCs show S phase defect in cell cycle progression. Moreover, WS-iPSCs and WRN-/- ESCs, like WS patient-derived fibroblasts, remain hypersensitive to topoisomerase inhibitors. Collectively, WS-derived iPSCs and WRN-/- ESCs mimic the intrinsic disease phenotype, which may serve as a suitable disease model, whereas not be good for a therapeutic purpose without gene correction.
Collapse
Affiliation(s)
- Shuyan Wang
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Zhongfeng Liu
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China.,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
| | - Yanxia Ye
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bingnan Li
- Division of Hematology, Department of Medicine and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Tiantian Liu
- Department of Pathology, Shandong University School of Medicine, Jinan, China
| | - Weiqi Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Guang-Hui Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Y Alex Zhang
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Dawei Xu
- Division of Hematology, Department of Medicine and Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Zhiguo Chen
- Cell Therapy Center, Xuanwu Hospital, Capital Medical University, and Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, China. .,Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
7
|
Kuzniar A, Laffeber C, Eppink B, Bezstarosti K, Dekkers D, Woelders H, Zwamborn APM, Demmers J, Lebbink JHG, Kanaar R. Semi-quantitative proteomics of mammalian cells upon short-term exposure to non-ionizing electromagnetic fields. PLoS One 2017; 12:e0170762. [PMID: 28234898 PMCID: PMC5325209 DOI: 10.1371/journal.pone.0170762] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/10/2017] [Indexed: 01/26/2023] Open
Abstract
The potential effects of non-ionizing electromagnetic fields (EMFs), such as those emitted by power-lines (in extremely low frequency range), mobile cellular systems and wireless networking devices (in radio frequency range) on human health have been intensively researched and debated. However, how exposure to these EMFs may lead to biological changes underlying possible health effects is still unclear. To reveal EMF-induced molecular changes, unbiased experiments (without a priori focusing on specific biological processes) with sensitive readouts are required. We present the first proteome-wide semi-quantitative mass spectrometry analysis of human fibroblasts, osteosarcomas and mouse embryonic stem cells exposed to three types of non-ionizing EMFs (ELF 50 Hz, UMTS 2.1 GHz and WiFi 5.8 GHz). We performed controlled in vitro EMF exposures of metabolically labeled mammalian cells followed by reliable statistical analyses of differential protein- and pathway-level regulations using an array of established bioinformatics methods. Our results indicate that less than 1% of the quantitated human or mouse proteome responds to the EMFs by small changes in protein abundance. Further network-based analysis of the differentially regulated proteins did not detect significantly perturbed cellular processes or pathways in human and mouse cells in response to ELF, UMTS or WiFi exposure. In conclusion, our extensive bioinformatics analyses of semi-quantitative mass spectrometry data do not support the notion that the short-time exposures to non-ionizing EMFs have a consistent biologically significant bearing on mammalian cells in culture.
Collapse
Affiliation(s)
- Arnold Kuzniar
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
- Netherlands eScience Center, Amsterdam, The Netherlands
- * E-mail: (RK); (AK)
| | - Charlie Laffeber
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Berina Eppink
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dick Dekkers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Henri Woelders
- Wageningen Livestock Research, Wageningen, The Netherlands
| | | | - Jeroen Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
- Netherlands Proteomics Center, Rotterdam, The Netherlands
| | - Joyce H. G. Lebbink
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Cancer Genomics Netherlands, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
- * E-mail: (RK); (AK)
| |
Collapse
|
8
|
Quality Matters: Systematic Analysis of Endpoints Related to "Cellular Life" in Vitro Data of Radiofrequency Electromagnetic Field Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13070701. [PMID: 27420084 PMCID: PMC4962242 DOI: 10.3390/ijerph13070701] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/04/2016] [Accepted: 07/05/2016] [Indexed: 01/09/2023]
Abstract
Possible hazardous effects of radiofrequency electromagnetic fields (RF-EMF) at low exposure levels are controversially discussed due to inconsistent study findings. Therefore, the main focus of the present study is to detect if any statistical association exists between RF-EMF and cellular responses, considering cell proliferation and apoptosis endpoints separately and with both combined as a group of “cellular life” to increase the statistical power of the analysis. We searched for publications regarding RF-EMF in vitro studies in the PubMed database for the period 1995–2014 and extracted the data to the relevant parameters, such as cell culture type, frequency, exposure duration, SAR, and five exposure-related quality criteria. These parameters were used for an association study with the experimental outcome in terms of the defined endpoints. We identified 104 published articles, from which 483 different experiments were extracted and analyzed. Cellular responses after exposure to RF-EMF were significantly associated to cell lines rather than to primary cells. No other experimental parameter was significantly associated with cellular responses. A highly significant negative association with exposure condition-quality and cellular responses was detected, showing that the more the quality criteria requirements were satisfied, the smaller the number of detected cellular responses. According to our knowledge, this is the first systematic analysis of specific RF-EMF bio-effects in association to exposure quality, highlighting the need for more stringent quality procedures for the exposure conditions.
Collapse
|
9
|
Schmid G, Kuster N. The discrepancy between maximum in vitro exposure levels and realistic conservative exposure levels of mobile phones operating at 900/1800 MHz. Bioelectromagnetics 2015; 36:133-48. [DOI: 10.1002/bem.21895] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 12/21/2014] [Indexed: 11/11/2022]
Affiliation(s)
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society (IT'IS); Zurich Switzerland
- Swiss Federal Institute of Technology (ETH); Zurich Switzerland
| |
Collapse
|