1
|
Singh S, Sevalkar RR, Sarkar D, Karthikeyan S. Characteristics of the essential pathogenicity factor Rv1828, a MerR family transcription regulator from Mycobacterium tuberculosis. FEBS J 2018; 285:4424-4444. [PMID: 30306715 DOI: 10.1111/febs.14676] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/02/2018] [Accepted: 10/08/2018] [Indexed: 01/16/2023]
Abstract
The gene Rv1828 in Mycobacterium tuberculosis is shown to be essential for the pathogen and encodes for an uncharacterized protein. In this study, we have carried out biochemical and structural characterization of Rv1828 at the molecular level to understand its mechanism of action. The Rv1828 is annotated as helix-turn-helix (HTH)-type MerR family transcription regulator based on its N-terminal amino acid sequence similarity. The MerR family protein binds to a specific DNA sequence in the spacer region between -35 and -10 elements of a promoter through its N-terminal domain (NTD) and acts as transcriptional repressor or activator depending on the absence or presence of effector that binds to its C-terminal domain (CTD). A characteristic feature of MerR family protein is its ability to bind to 19 ± 1 bp DNA sequence in the spacer region between -35 and -10 elements which is otherwise a suboptimal length for transcription initiation by RNA polymerase. Here, we show the Rv1828 through its NTD binds to a specific DNA sequence that exists on its own as well as in other promoter regions. Moreover, the crystal structure of CTD of Rv1828, determined by single-wavelength anomalous diffraction method, reveals a distinctive dimerization. The biochemical and structural analysis reveals that Rv1828 specifically binds to an everted repeat through its winged-HTH motif. Taken together, we demonstrate that the Rv1828 encodes for a MerR family transcription regulator.
Collapse
Affiliation(s)
- Suruchi Singh
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Ritesh Rajesh Sevalkar
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Dibyendu Sarkar
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| | - Subramanian Karthikeyan
- CSIR-Institute of Microbial Technology, Council of Scientific and Industrial Research, Chandigarh, India
| |
Collapse
|
2
|
Korostelev YD, Zharov IA, Mironov AA, Rakhmaininova AB, Gelfand MS. Identification of Position-Specific Correlations between DNA-Binding Domains and Their Binding Sites. Application to the MerR Family of Transcription Factors. PLoS One 2016; 11:e0162681. [PMID: 27690309 PMCID: PMC5045206 DOI: 10.1371/journal.pone.0162681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 08/26/2016] [Indexed: 11/25/2022] Open
Abstract
The large and increasing volume of genomic data analyzed by comparative methods provides information about transcription factors and their binding sites that, in turn, enables statistical analysis of correlations between factors and sites, uncovering mechanisms and evolution of specific protein-DNA recognition. Here we present an online tool, Prot-DNA-Korr, designed to identify and analyze crucial protein-DNA pairs of positions in a family of transcription factors. Correlations are identified by analysis of mutual information between columns of protein and DNA alignments. The algorithm reduces the effects of common phylogenetic history and of abundance of closely related proteins and binding sites. We apply it to five closely related subfamilies of the MerR family of bacterial transcription factors that regulate heavy metal resistance systems. We validate the approach using known 3D structures of MerR-family proteins in complexes with their cognate DNA binding sites and demonstrate that a significant fraction of correlated positions indeed form specific side-chain-to-base contacts. The joint distribution of amino acids and nucleotides hence may be used to predict changes of specificity for point mutations in transcription factors.
Collapse
Affiliation(s)
- Yuriy D. Korostelev
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 19-1 Bolshoy Karetny pereulok, Moscow, Russia, 127994
- Department of Bioengineering and Bioinformatics, Moscow State University, 1-73 Vorobievy Gory, Moscow, Russia, 119991
| | - Ilya A. Zharov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 19-1 Bolshoy Karetny pereulok, Moscow, Russia, 127994
| | - Andrey A. Mironov
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 19-1 Bolshoy Karetny pereulok, Moscow, Russia, 127994
- Department of Bioengineering and Bioinformatics, Moscow State University, 1-73 Vorobievy Gory, Moscow, Russia, 119991
| | - Alexandra B. Rakhmaininova
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 19-1 Bolshoy Karetny pereulok, Moscow, Russia, 127994
| | - Mikhail S. Gelfand
- A.A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, 19-1 Bolshoy Karetny pereulok, Moscow, Russia, 127994
- Department of Bioengineering and Bioinformatics, Moscow State University, 1-73 Vorobievy Gory, Moscow, Russia, 119991
- * E-mail:
| |
Collapse
|
3
|
Hayashi T, Tanaka Y, Sakai N, Okada U, Yao M, Watanabe N, Tamura T, Tanaka I. Structural and genomic DNA analysis of the putative TetR transcriptional repressor SCO7518 from Streptomyces coelicolor A3(2). FEBS Lett 2014; 588:4311-8. [PMID: 25305383 DOI: 10.1016/j.febslet.2014.09.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 10/24/2022]
Abstract
SCO7518 is a protein of unknown function from Streptomyces coelicolor A3(2) that has been classified into the TetR transcriptional regulator family. In this study, a crystal structure of SCO7518 was determined at 2.29Å resolution. The structure is a homodimer of protomers that comprise an N-terminal DNA-binding domain and a C-terminal dimerization and regulatory domain, and possess a putative ligand-binding cavity. Genomic systematic evolution of ligands by exponential enrichment and electrophoretic mobility shift assays revealed that SCO7518 specifically binds to an operator sequence located upstream of the sco7519 gene, which encodes a maltose O-acetyltransferase. These results suggest that SCO7518 is a transcriptional repressor of sco7519 expression.
Collapse
Affiliation(s)
- Takeshi Hayashi
- Department of Food and Fermentation Science, Faculty of Food and Nutrition, Beppu University, Beppu, Oita 874-8501, Japan; Food Science and Nutrition, Graduate School of Food Science and Nutrition, Beppu University, Beppu, Oita 874-8501, Japan
| | - Yoshikazu Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Naoki Sakai
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ui Okada
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Min Yao
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Nobuhisa Watanabe
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tomohiro Tamura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo 062-8517, Japan
| | - Isao Tanaka
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Division of Biological Sciences, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|