1
|
Zhou Z, Peng H, Li J, Chen Z, Huo J, Zhou T. Real-time monitoring of the contractile properties of H9C2 cardiomyocytes by double resonator piezoelectric cytometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2839-2852. [PMID: 37272335 DOI: 10.1039/d3ay00254c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Testing the mechanical properties of cardiomyocytes plays an important role in the study of the physiological and pathological processes of constant contraction and diastole of the cardiovascular system. However, there is currently no satisfactory and dynamic technology to measure the mechanical properties of cardiomyocytes in a sustained manner, greatly affecting their practical application in clinical diagnosis and treatment evaluation. Herein, a double resonator piezoelectric cytometry (DRPC) technique was employed for dynamic monitoring of H9C2 cardiomyocyte adhesion and the effects of two cardiovascular drugs on the contractile properties of H9C2 cardiomyocytes, i.e., isoprenaline (ISO, a positive inotropic agent) and verapamil (VRP, a negative inotropic agent). Specifically, we used 9 MHz AT and BT-cut bare gold and transparent ITO electrodes and compared their dynamic adhesion to the two electrodes modified with RGD and gelatin respectively versus unmodified to measure the cell generated stress (ΔS) exerted on the quartz crystal surface by a population of cells and the cell viscoelastic index (CVI). We found that the DRPC technique can quantitatively measure the magnitude and direction of the generated forces during the adhesion process of the cells and under the effect of drugs. In conclusion, the technique presented in this study can be used for the simultaneous measurement of cell adhesion, traction force and viscoelasticity of living cells in a noninvasive, dynamic and continuous way, making it an ideal tool for assessing the population contractility of cardiomyocytes and evaluating the efficacy and toxicity of cardiovascular drugs.
Collapse
Affiliation(s)
- Zhen Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| | - Hange Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| | - Jiali Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| | - Zhihui Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| | - Jingyi Huo
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| | - Tiean Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| |
Collapse
|
2
|
Zhou Z, Zhang X, Zhou T, Huang F, Chen J. Quartz Crystal Microbalance Technology Coupled with Impedance for the Dynamic Monitoring of the Cardiomyocyte Beating Function and Drug Screening. BIOSENSORS 2023; 13:198. [PMID: 36831964 PMCID: PMC9953959 DOI: 10.3390/bios13020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
The main sensing techniques used to study myocardial pulsation are electrical impedance sensing (EIS) and by quartz crystal microbalance (QCM). While electrical impedance technology is the gold standard for the study of myocardial pulsation, the clinical application of drugs is being followed up in real time additionally, thus, QCM technology needs to be further developed as a very important class of quality sensor technology. Moreover, the application of EIS, in combination with the QCM, for monitoring myocardial pulsation, has been rarely reported. In this paper, a series of cell growth and adhesion conditions were optimized using rat primary cardiomyocytes, and QCM was used in combination with EIS to monitor the adhesion and the myocardial pulsation ability of the cells in real time. Furthermore, cardiomyocytes that adhered to the QCM and EIS were treated with isoprenaline (ISO), a positive inotropic drug, and verapamil (VRP), a negative inotropic drug. Next, the cell index (CI)-time (T) plots, beating amplitude (BA) and beating rate (BR) of the cardiomyocytes were calculated and changes in these parameters, before and after, dosing were evaluated. The results showed that the QCM technique results were not only consistent with the results obtained with EIS, but also that the QCM technique had a certain degree of sensitivity for the calculation of cardiomyocyte beating. Thus, our findings validate the reliability and validity of the QCM technique for measuring cardiomyocyte beating and drug testing. We hope that further studies would evaluate the application of the QCM technology for clinical use.
Collapse
Affiliation(s)
- Zhen Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| | - Xiaoyu Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| | - Tiean Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| | - Fushen Huang
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China
| | - Jinjun Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
- Hunan Provincial Engineering Technology Research Center for Cell Mechanics and Function Analysis, Changsha 410128, China
| |
Collapse
|
3
|
Callaghan NI, Hadipour-Lakmehsari S, Lee SH, Gramolini AO, Simmons CA. Modeling cardiac complexity: Advancements in myocardial models and analytical techniques for physiological investigation and therapeutic development in vitro. APL Bioeng 2019; 3:011501. [PMID: 31069331 PMCID: PMC6481739 DOI: 10.1063/1.5055873] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023] Open
Abstract
Cardiomyopathies, heart failure, and arrhythmias or conduction blockages impact millions of patients worldwide and are associated with marked increases in sudden cardiac death, decline in the quality of life, and the induction of secondary pathologies. These pathologies stem from dysfunction in the contractile or conductive properties of the cardiomyocyte, which as a result is a focus of fundamental investigation, drug discovery and therapeutic development, and tissue engineering. All of these foci require in vitro myocardial models and experimental techniques to probe the physiological functions of the cardiomyocyte. In this review, we provide a detailed exploration of different cell models, disease modeling strategies, and tissue constructs used from basic to translational research. Furthermore, we highlight recent advancements in imaging, electrophysiology, metabolic measurements, and mechanical and contractile characterization modalities that are advancing our understanding of cardiomyocyte physiology. With this review, we aim to both provide a biological framework for engineers contributing to the field and demonstrate the technical basis and limitations underlying physiological measurement modalities for biologists attempting to take advantage of these state-of-the-art techniques.
Collapse
Affiliation(s)
| | | | | | | | - Craig A. Simmons
- Author to whom correspondence should be addressed: . Present address: Ted Rogers Centre for Heart
Research, 661 University Avenue, 14th Floor Toronto, Ontario M5G 1M1, Canada. Tel.:
416-946-0548. Fax: 416-978-7753
| |
Collapse
|
4
|
Gibbons A, Lang O, Kojima Y, Ito M, Ono K, Tanaka K, Sivaniah E. Real-time visualization of cardiac cell beating behaviour on polymer diffraction gratings. RSC Adv 2017. [DOI: 10.1039/c7ra06515a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cardiotoxicity is a major adverse effect to pharmaceuticals. A new method to prepare optically sensitive substrates for measuring the beating of cardiac cells and their response to pharmaceuticals is reported.
Collapse
Affiliation(s)
- A. Gibbons
- Institute for Integrated Cell-Material Sciences
- Kyoto University
- Kyoto
- Japan
- Department of Physics and Astronomy
| | - O. Lang
- Chemotaxis Research Group
- Department of Genetics, Cell and Immunobiology
- Semmelweis University
- Budapest
- Hungary
| | - Y. Kojima
- Institute for Integrated Cell-Material Sciences
- Kyoto University
- Kyoto
- Japan
- Center for iPS Cell Research and Application (CiRA)
| | - M. Ito
- Institute for Integrated Cell-Material Sciences
- Kyoto University
- Kyoto
- Japan
| | - K. Ono
- Department of Cardiovascular Medicine
- Graduate School of Medicine
- Kyoto University
- Kyoto
- Japan
| | - K. Tanaka
- Institute for Integrated Cell-Material Sciences
- Kyoto University
- Kyoto
- Japan
- Department of Physics and Astronomy
| | - E. Sivaniah
- Institute for Integrated Cell-Material Sciences
- Kyoto University
- Kyoto
- Japan
| |
Collapse
|
5
|
Pesl M, Pribyl J, Caluori G, Cmiel V, Acimovic I, Jelinkova S, Dvorak P, Starek Z, Skladal P, Rotrekl V. Phenotypic assays for analyses of pluripotent stem cell-derived cardiomyocytes. J Mol Recognit 2016; 30. [PMID: 27995655 DOI: 10.1002/jmr.2602] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 12/27/2022]
Abstract
Stem cell-derived cardiomyocytes (CMs) hold great hopes for myocardium regeneration because of their ability to produce functional cardiac cells in large quantities. They also hold promise in dissecting the molecular principles involved in heart diseases and also in drug development, owing to their ability to model the diseases using patient-specific human pluripotent stem cell (hPSC)-derived CMs. The CM properties essential for the desired applications are frequently evaluated through morphologic and genotypic screenings. Even though these characterizations are necessary, they cannot in principle guarantee the CM functionality and their drug response. The CM functional characteristics can be quantified by phenotype assays, including electrophysiological, optical, and/or mechanical approaches implemented in the past decades, especially when used to investigate responses of the CMs to known stimuli (eg, adrenergic stimulation). Such methods can be used to indirectly determine the electrochemomechanics of the cardiac excitation-contraction coupling, which determines important functional properties of the hPSC-derived CMs, such as their differentiation efficacy, their maturation level, and their functionality. In this work, we aim to systematically review the techniques and methodologies implemented in the phenotype characterization of hPSC-derived CMs. Further, we introduce a novel approach combining atomic force microscopy, fluorescent microscopy, and external electrophysiology through microelectrode arrays. We demonstrate that this novel method can be used to gain unique information on the complex excitation-contraction coupling dynamics of the hPSC-derived CMs.
Collapse
Affiliation(s)
- Martin Pesl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Pribyl
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Guido Caluori
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Vratislav Cmiel
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
| | - Ivana Acimovic
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Petr Dvorak
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Zdenek Starek
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Petr Skladal
- CEITEC, Masaryk University, Brno, Czech Republic
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vladimir Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- ICRC, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
6
|
Kunze A, Steel D, Dahlenborg K, Sartipy P, Svedhem S. Non-Invasive Acoustical sensing of Drug-Induced Effects on the Contractile Machinery of Human Cardiomyocyte Clusters. PLoS One 2015; 10:e0125540. [PMID: 25961711 PMCID: PMC4427273 DOI: 10.1371/journal.pone.0125540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/25/2015] [Indexed: 11/19/2022] Open
Abstract
There is an urgent need for improved models for cardiotoxicity testing. Here we propose acoustic sensing applied to beating human cardiomyocyte clusters for non-invasive, surrogate measuring of the QT interval and other characteristics of the contractile machinery. In experiments with the acoustic method quartz crystal microbalance with dissipation monitoring (QCM-D), the shape of the recorded signals was very similar to the extracellular field potential detected in electrochemical experiments, and the expected changes of the QT interval in response to addition of conventional drugs (E-4031 or nifedipine) were observed. Additionally, changes in the dissipation signal upon addition of cytochalasin D were in good agreement with the known, corresponding shortening of the contraction-relaxation time. These findings suggest that QCM-D has great potential as a tool for cardiotoxicological screening, where effects of compounds on the cardiomyocyte contractile machinery can be detected independently of whether the extracellular field potential is altered or not.
Collapse
Affiliation(s)
- Angelika Kunze
- Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden
| | | | | | - Peter Sartipy
- Cellectis AB, Göteborg, Sweden
- Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Sofia Svedhem
- Department of Applied Physics, Chalmers University of Technology, Göteborg, Sweden
- * E-mail:
| |
Collapse
|
7
|
Sun L, Frykholm K, Fornander LH, Svedhem S, Westerlund F, Akerman B. Sensing conformational changes in DNA upon ligand binding using QCM-D. Polyamine condensation and Rad51 extension of DNA layers. J Phys Chem B 2014; 118:11895-904. [PMID: 25197950 DOI: 10.1021/jp506733w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Biosensors, in which binding of ligands is detected through changes in the optical or electrochemical properties of a DNA layer confined to the sensor surface, are important tools for investigating DNA interactions. Here, we investigate if conformational changes induced in surface-attached DNA molecules upon ligand binding can be monitored by the quartz crystal microbalance with dissipation (QCM-D) technique. DNA duplexes containing 59-184 base pairs were formed on QCM-D crystals by stepwise assembly of synthetic oligonucleotides of designed base sequences. The DNA films were exposed to the cationic polyamines spermidine and spermine, known to condense DNA molecules in bulk experiments, or to the recombination protein Rad51, known to extend the DNA helix. The binding and dissociation of the ligands to the DNA films were monitored in real time by measurements of the shifts in resonance frequency (Δf) and in dissipation (ΔD). The QCM-D data were analyzed using a Voigt-based model for the viscoelastic properties of polymer films in order to evaluate how the ligands affect thickness and shear viscosity of the DNA layer. Binding of spermine shrinks all DNA layers and increases their viscosity in a reversible fashion, and so does spermidine, but to a smaller extent, in agreement with its lower positive charge. SPR was used to measure the amount of bound polyamines, and when combined with QCM-D, the data indicate that the layer condensation leads to a small release of water from the highly hydrated DNA films. The binding of Rad51 increases the effective layer thickness of a 59 bp film, more than expected from the know 50% DNA helix extension. The combined results provide guidelines for a QCM-D biosensor based on ligand-induced structural changes in DNA films. The QCM-D approach provides high discrimination between ligands affecting the thickness and the structural properties of the DNA layer differently. The reversibility of the film deformation allows comparative studies of two or more analytes using the same DNA layer as demonstrated here by spermine and spermidine.
Collapse
Affiliation(s)
- Lu Sun
- Department of Chemical and Biological Engineering and ‡Department of Applied Physics, Chalmers University of Technology , SE-412 96 Gothenburg, Sweden
| | | | | | | | | | | |
Collapse
|