1
|
Beltrán-Castillo S, Bravo K, Eugenín J. Impact of Prenatal Nicotine Exposure on Placental Function and Respiratory Neural Network Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1428:233-244. [PMID: 37466776 DOI: 10.1007/978-3-031-32554-0_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Smoking during pregnancy is associated with multiple undesirable outcomes in infants, such as low birth weight, increased neonatal morbidity and mortality, and catastrophic conditions like sudden infant death syndrome (SIDS). Nicotine, the most addictive and teratogenic substance in tobacco smoke, reaches and crosses the placenta and can be accumulated in the amniotic fluid and distributed by fetal circulation, altering the cholinergic transmission by acting on the nicotinic acetylcholine receptors (nAChRs) expressed from very early gestational stages in the placenta and fetal tissue. Because nAChRs influence the establishment of feto-maternal circulation and the emergence of neuronal networks, prenatal nicotine exposure can lead to multiple alterations in newborns. In this mini-review, we discuss the undeniable effects of nicotine in the placenta and the respiratory neural network as examples of how prenatal nicotine and smoking exposition can affect brain development because dysfunction in this network is involved in SIDS etiology.
Collapse
Affiliation(s)
- Sebastián Beltrán-Castillo
- Centro integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| | - Karina Bravo
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile USACH, Santiago, Chile
- Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile
| | - Jaime Eugenín
- Laboratorio de Sistemas Neurales, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile USACH, Santiago, Chile.
| |
Collapse
|
2
|
Ishizuka T, Ozawa A, Katsuura M, Nomura S, Satoh Y. Effects of muscarinic acetylcholine receptor stimulation on the differentiation of mouse induced pluripotent stem cells into neural progenitor cells. Clin Exp Pharmacol Physiol 2018; 45:1198-1205. [PMID: 29920752 DOI: 10.1111/1440-1681.12993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 11/30/2022]
Abstract
Muscarinic acetylcholine receptors (mAchRs), which are expressed in various embryonic cells, may regulate neuronal differentiation. In the present study, we examined the effects of mAchR stimulation on the differentiation of mouse induced pluripotent stem (iPS) cells into neural progenitor cells (NPCs). Mouse iPS cells were cultured on ultra-low attachment dishes to induce embryoid body (EB) formation. All-trans retinoic acid (ATRA, 3 μmol/L) and/or pilocarpine (10 or 100 μmol/L), a mAchR agonist, were added to EB cultures for 4 days, following which the EBs were cultured on gelatin-coated plates for 7 days. Subtype-specific antibody staining revealed that mouse iPS cells predominantly express m2 - and m4 -AchR. Treatment with pilocarpine alone did not affect the expression of Nestin (a specific marker for neural progenitor cells). However, additional treatment with pilocarpine significantly suppressed ATRA-induced Nestin expression. Pretreating EBs with either AF-DX116 (an antagonist of both m2 - and m4 -AchR) or forskolin (an activator of adenylate cyclase) significantly reversed the pilocarpine-induced suppression of Nestin expression. In addition, treatment with pilocarpine significantly suppressed ATRA-induced phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB). These findings suggest that the stimulation of m2 - or m4 -AchR suppresses ATRA-induced differentiation of mouse iPS cells into NPCs by inhibiting the cAMP/protein kinase A pathway and CREB activation.
Collapse
Affiliation(s)
- Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Ayako Ozawa
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Mieko Katsuura
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Sayaka Nomura
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yasushi Satoh
- Department of Pharmacology, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
3
|
Okamoto-Uchida Y, Yu R, Miyamura N, Arima N, Ishigami-Yuasa M, Kagechika H, Yoshida S, Hosoya T, Nawa M, Kasama T, Asaoka Y, Alois RW, Elling U, Penninger JM, Nishina S, Azuma N, Nishina H. The mevalonate pathway regulates primitive streak formation via protein farnesylation. Sci Rep 2016; 6:37697. [PMID: 27883036 PMCID: PMC5121603 DOI: 10.1038/srep37697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/02/2016] [Indexed: 01/25/2023] Open
Abstract
The primitive streak in peri-implantation embryos forms the mesoderm and endoderm and controls cell differentiation. The metabolic cues regulating primitive streak formation remain largely unknown. Here we utilised a mouse embryonic stem (ES) cell differentiation system and a library of well-characterised drugs to identify these metabolic factors. We found that statins, which inhibit the mevalonate metabolic pathway, suppressed primitive streak formation in vitro and in vivo. Using metabolomics and pharmacologic approaches we identified the downstream signalling pathway of mevalonate and revealed that primitive streak formation requires protein farnesylation but not cholesterol synthesis. A tagging-via-substrate approach revealed that nuclear lamin B1 and small G proteins were farnesylated in embryoid bodies and important for primitive streak gene expression. In conclusion, protein farnesylation driven by the mevalonate pathway is a metabolic cue essential for primitive streak formation.
Collapse
Affiliation(s)
- Yoshimi Okamoto-Uchida
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan.,Division of Medicinal Safety Science, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo, Japan
| | - Ruoxing Yu
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Norio Miyamura
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Norie Arima
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Mari Ishigami-Yuasa
- Chemical Biology Screening Center, Institute of Biomaterials and Bioengineering, TMDU, Tokyo, Japan
| | - Hiroyuki Kagechika
- Chemical Biology Screening Center, Institute of Biomaterials and Bioengineering, TMDU, Tokyo, Japan.,Department of Organic and Medicinal Chemistry, Institute of Biomaterials and Bioengineering, TMDU, Tokyo, Japan
| | - Suguru Yoshida
- Department of Chemical Bioscience, Institute of Biomaterials and Bioengineering, TMDU, Tokyo, Japan
| | - Takamitsu Hosoya
- Department of Chemical Bioscience, Institute of Biomaterials and Bioengineering, TMDU, Tokyo, Japan
| | - Makiko Nawa
- Laboratory of Cytometry and Proteome Research, TMDU, Tokyo, Japan
| | - Takeshi Kasama
- Instrumental Analysis Research Division, Research Center for Medical and Dental Sciences, TMDU, Tokyo, Japan
| | - Yoichi Asaoka
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| | - Reiner Wimmer Alois
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Ulrich Elling
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | - Sachiko Nishina
- Department of Ophthalmology and Laboratory for Visual Science, National Center for Child Health and Development, Tokyo, Japan
| | - Noriyuki Azuma
- Department of Ophthalmology and Laboratory for Visual Science, National Center for Child Health and Development, Tokyo, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
4
|
Boxman J, Sagy N, Achanta S, Vadigepalli R, Nachman I. Integrated live imaging and molecular profiling of embryoid bodies reveals a synchronized progression of early differentiation. Sci Rep 2016; 6:31623. [PMID: 27530599 PMCID: PMC4987683 DOI: 10.1038/srep31623] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/22/2016] [Indexed: 01/23/2023] Open
Abstract
Embryonic stem cells can spontaneously differentiate into cell types of all germ layers within embryoid bodies (EBs) in a highly variable manner. Whether there exists an intrinsic differentiation program common to all EBs is unknown. Here, we present a novel combination of high-throughput live two-photon imaging and gene expression profiling to study early differentiation dynamics spontaneously occurring within developing EBs. Onset timing of Brachyury-GFP was highly variable across EBs, while the spatial patterns as well as the dynamics of mesendodermal progression following onset were remarkably similar. We therefore defined a 'developmental clock' using the Brachyury-GFP signal onset timing. Mapping snapshot gene expression measurements to this clock revealed their temporal trends, indicating that loss of pluripotency, formation of primitive streak and mesodermal lineage progression are synchronized in EBs. Exogenous activation of Wnt or BMP signaling accelerated the intrinsic clock. CHIR down-regulated Wnt3, allowing insights into dependency mechanisms between canonical Wnt signaling and multiple genes. Our findings reveal a developmental clock characteristic of an early differentiation program common to all EBs, further establishing them as an in vitro developmental model.
Collapse
Affiliation(s)
- Jonathan Boxman
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Israel
| | - Naor Sagy
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Israel
| | - Sirisha Achanta
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Iftach Nachman
- Department of Biochemistry and Molecular Biology, Tel Aviv University, Israel
| |
Collapse
|
5
|
A Modified Murine Embryonic Stem Cell Test for Evaluating the Teratogenic Effects of Drugs on Early Embryogenesis. PLoS One 2015; 10:e0145286. [PMID: 26682887 PMCID: PMC4686177 DOI: 10.1371/journal.pone.0145286] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/02/2015] [Indexed: 12/27/2022] Open
Abstract
Mammalian fetal development is easily disrupted by exogenous agents, making it essential to test new drug candidates for embryotoxicity and teratogenicity. To standardize the testing of drugs that might be used to treat pregnant women, the U.S. Food and Drug Administration (FDA) formulated special grade categories, labeled A, B, C, D and X, that define the level of risk associated with the use of a specific drug during pregnancy. Drugs in categories (Cat.) D and X are those with embryotoxic and/or teratogenic effects on humans and animals. However, which stages of pregnancy are affected by these agents and their molecular mechanisms are unknown. We describe here an embryonic stem cell test (EST) that classifies FDA pregnancy Cat.D and Cat.X drugs into 4 classes based on their differing effects on primitive streak formation. We show that ~84% of Cat.D and Cat.X drugs target this period of embryogenesis. Our results demonstrate that our modified EST can identify how a drug affects early embryogenesis, when it acts, and its molecular mechanism. Our test may thus be a useful addition to the drug safety testing armamentarium.
Collapse
|
7
|
Three-dimensional imaging of lipids and metabolites in tissues by nanospray desorption electrospray ionization mass spectrometry. Anal Bioanal Chem 2014; 407:2063-71. [PMID: 25395201 DOI: 10.1007/s00216-014-8174-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/03/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
Abstract
Three-dimensional (3D) imaging of tissue sections is a new frontier in mass spectrometry imaging (MSI). Here, we report on fast 3D imaging of lipids and metabolites associated with mouse uterine decidual cells and embryo at the implantation site on day 6 of pregnancy. 2D imaging of 16-20 serial tissue sections deposited on the same glass slide was performed using nanospray desorption electrospray ionization (nano-DESI)-an ambient ionization technique that enables sensitive localized analysis of analytes on surfaces without special sample pretreatment. In this proof-of-principle study, nano-DESI was coupled to a high-resolution Q-Exactive instrument operated at high repetition rate of >5 Hz with moderate mass resolution of 35,000 (m/Δm at m/z 200), which enabled acquisition of the entire 3D image with a spatial resolution of ∼150 μm in less than 4.5 h. The results demonstrate localization of acetylcholine in the primary decidual zone (PDZ) of the implantation site throughout the depth of the tissue examined, indicating an important role of this signaling molecule in decidualization. Choline and phosphocholine-metabolites associated with cell growth-are enhanced in the PDZ and abundant in other cellular regions of the implantation site. Very different 3D distributions were obtained for fatty acids (FA), oleic acid and linoleic acid (FA 18:1 and FA 18:2), differing only by one double bond. Localization of FA 18:2 in the PDZ indicates its important role in decidualization while FA 18:1 is distributed more evenly throughout the tissue. In contrast, several lysophosphatidylcholines (LPC) observed in this study show donut-like distributions with localization around the PDZ. Complementary distributions with minimal overlap were observed for LPC 18:0 and FA 18:2 while the 3D image of the potential precursor phosphatidylcholine 36:2 (PC 36:2) showed a significant overlap with both LPC 18:0 and FA 18:2.
Collapse
|
8
|
Condic ML. Totipotency: what it is and what it is not. Stem Cells Dev 2014; 23:796-812. [PMID: 24368070 PMCID: PMC3991987 DOI: 10.1089/scd.2013.0364] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 12/23/2013] [Indexed: 02/03/2023] Open
Abstract
There is surprising confusion surrounding the concept of biological totipotency, both within the scientific community and in society at large. Increasingly, ethical objections to scientific research have both practical and political implications. Ethical controversy surrounding an area of research can have a chilling effect on investors and industry, which in turn slows the development of novel medical therapies. In this context, clarifying precisely what is meant by "totipotency" and how it is experimentally determined will both avoid unnecessary controversy and potentially reduce inappropriate barriers to research. Here, the concept of totipotency is discussed, and the confusions surrounding this term in the scientific and nonscientific literature are considered. A new term, "plenipotent," is proposed to resolve this confusion. The requirement for specific, oocyte-derived cytoplasm as a component of totipotency is outlined. Finally, the implications of twinning for our understanding of totipotency are discussed.
Collapse
Affiliation(s)
- Maureen L Condic
- Department of Neurobiology, School of Medicine, University of Utah , Salt Lake City, Utah
| |
Collapse
|