1
|
Liu D, Li Y, Zhao Q. Effects of Inflammatory Cell Death Caused by Catheter Ablation on Atrial Fibrillation. J Inflamm Res 2023; 16:3491-3508. [PMID: 37608882 PMCID: PMC10441646 DOI: 10.2147/jir.s422002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
Atrial fibrillation (AF) poses a serious healthcare burden on society due to its high morbidity and the resulting serious complications such as thrombosis and heart failure. The principle of catheter ablation is to achieve electrical isolation by linear destruction of cardiac tissue, which makes AF a curable disease. Currently, catheter ablation does not have a high long-term success rate. The current academic consensus is that inflammation and fibrosis are central mechanisms in the progression of AF. However, artificially caused inflammatory cell death by catheter ablation may have a significant impact on structural and electrical remodeling, which may affect the long-term prognosis. This review first focused on the inflammatory response induced by apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis and their interaction with arrhythmia. Then, we compared the differences in cell death induced by radiofrequency ablation, cryoballoon ablation and pulsed-field ablation. Finally, we discussed the structural and electrical remodeling caused by inflammation and the association between inflammation and the recurrence of AF after catheter ablation. Collectively, pulsed-field ablation will be a revolutionary innovation with faster, safer, better tissue selectivity and less inflammatory response induced by apoptosis-dominated cell death.
Collapse
Affiliation(s)
- Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Yajia Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, People’s Republic of China
- Cardiovascular Research Institute, Wuhan University, Wuhan, 430060, People’s Republic of China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, People’s Republic of China
| |
Collapse
|
2
|
Campelo SN, Huang PH, Buie CR, Davalos RV. Recent Advancements in Electroporation Technologies: From Bench to Clinic. Annu Rev Biomed Eng 2023; 25:77-100. [PMID: 36854260 DOI: 10.1146/annurev-bioeng-110220-023800] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Over the past decade, the increased adoption of electroporation-based technologies has led to an expansion of clinical research initiatives. Electroporation has been utilized in molecular biology for mammalian and bacterial transfection; for food sanitation; and in therapeutic settings to increase drug uptake, for gene therapy, and to eliminate cancerous tissues. We begin this article by discussing the biophysics required for understanding the concepts behind the cell permeation phenomenon that is electroporation. We then review nano- and microscale single-cell electroporation technologies before scaling up to emerging in vivo applications.
Collapse
Affiliation(s)
- Sabrina N Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, USA;
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Cullen R Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia, USA;
| |
Collapse
|
3
|
Sowa PW, Kiełbik AS, Pakhomov AG, Gudvangen E, Mangalanathan U, Adams V, Pakhomova ON. How to alleviate cardiac injury from electric shocks at the cellular level. Front Cardiovasc Med 2022; 9:1004024. [PMID: 36620647 PMCID: PMC9812960 DOI: 10.3389/fcvm.2022.1004024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Electric shocks, the only effective therapy for ventricular fibrillation, also electroporate cardiac cells and contribute to the high-mortality post-cardiac arrest syndrome. Copolymers such as Poloxamer 188 (P188) are known to preserve the membrane integrity and viability of electroporated cells, but their utility against cardiac injury from cardiopulmonary resuscitation (CPR) remains to be established. We studied the time course of cell killing, mechanisms of cell death, and protection with P188 in AC16 human cardiomyocytes exposed to micro- or nanosecond pulsed electric field (μsPEF and nsPEF) shocks. A 3D printer was customized with an electrode holder to precisely position electrodes orthogonal to a cell monolayer in a nanofiber multiwell plate. Trains of nsPEF shocks (200, 300-ns pulses at 1.74 kV) or μsPEF shocks (20, 100-μs pulses at 300 V) produced a non-uniform electric field enabling efficient measurements of the lethal effect in a wide range of the electric field strength. Cell viability and caspase 3/7 expression were measured by fluorescent microscopy 2-24 h after the treatment. nsPEF shocks caused little or no caspase 3/7 activation; most of the lethally injured cells were permeable to propidium dye already at 2 h after the exposure. In contrast, μsPEF shocks caused strong activation of caspase 3/7 at 2 h and the number of dead cells grew up to 24 h, indicating the prevalence of the apoptotic death pathway. P188 at 0.2-1% reduced cell death, suggesting its potential utility in vivo to alleviate electric injury from defibrillation.
Collapse
Affiliation(s)
- Pamela W. Sowa
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States,Laboratory of Molecular and Experimental Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany,Department of Cardiology and Angiology, University Hospital Tübingen, Eberhard Karls University of Tübingen, Tübingen, Germany,*Correspondence: Pamela W. Sowa,
| | - Aleksander S. Kiełbik
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States,Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Wrocław, Poland
| | - Andrei G. Pakhomov
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Emily Gudvangen
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Uma Mangalanathan
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Olga N. Pakhomova
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, United States
| |
Collapse
|
4
|
Ruiz-Fernández AR, Rosemblatt M, Perez-Acle T. Nanosecond pulsed electric field (nsPEF) and vaccines: a novel technique for the inactivation of SARS-CoV-2 and other viruses? Ann Med 2022; 54:1749-1756. [PMID: 35786157 PMCID: PMC9258060 DOI: 10.1080/07853890.2022.2087898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Since the beginning of 2020, worldwide attention has been being focussed on SARS-CoV-2, the second strain of the severe acute respiratory syndrome virus. Although advances in vaccine technology have been made, particularly considering the advent of mRNA vaccines, up to date, no single antigen design can ensure optimal immune response. Therefore, new technologies must be tested as to their ability to further improve vaccines. Nanosecond Pulsed Electric Field (nsPEF) is one such method showing great promise in different biomedical and industrial fields, including the fight against COVID-19. Of note, available research shows that nsPEF directly damages the cell's DNA, so it is critical to determine if this technology could be able to fragment either viral DNA or RNA so as to be used as a novel technology to produce inactivated pathogenic agents that may, in turn, be used for the production of vaccines. Considering the available evidence, we propose that nsPEF may be used to produce inactivated SARS-CoV-2 viruses that may in turn be used to produce novel vaccines, as another tool to address 20 the current COVID-19 pandemic.Key MessagesViral inactivation by using pulsed electric fields in the nanosecond frequency.DNA fragmentation by a Nanosecond Pulsed Electric Field (nsPEF).Opportunity to apply new technologies in vaccine development.
Collapse
Affiliation(s)
- A R Ruiz-Fernández
- Computational Biology Lab, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago, Chile
| | - M Rosemblatt
- Computational Biology Lab, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - T Perez-Acle
- Computational Biology Lab, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile.,Facultad de Ingeniería y Tecnología, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
5
|
Tasu JP, Tougeron D, Rols MP. Irreversible electroporation and electrochemotherapy in oncology: State of the art. Diagn Interv Imaging 2022; 103:499-509. [DOI: 10.1016/j.diii.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023]
|
6
|
Qiu J, Lan L, Wang Y. Pulsed Electrical Field in Arrhythmia Treatment: Current Status and Future Directions. Pacing Clin Electrophysiol 2022; 45:1255-1262. [PMID: 36029174 DOI: 10.1111/pace.14586] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
Pulsed electrical field (PEF) ablation is a promising novel ablation modality for the treatment of arrhythmia, especially for atrial fibrillation(AF). It relies on electroporation inducing cellular permeabilization by the formation of pores in cell membranes, potentially resulting in cell death. Due to its' non-thermal nature and remarkable tissue selectivity, PEF ablation has be expected largely to replace conventional energy sources, such as radiofrequency (RF) and cryothermy. Up to now, the results in almost all clinical studies of PFA for AF ablation are optimistic, both in terms of effectiveness and safety. The possibility of clinical application of this technology to ventricular tachycardia(VT) has also been supported by several animal models. In this review, we aim to give an overview of the mechanism and technical progress of PFA in cardiac arrhythmia treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jie Qiu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Lan
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Wang Y, Jiang T, Xie L, Wang H, Zhao J, Xu L, Fang C. Effect of pulsed field ablation on solid tumor cells and microenvironment. Front Oncol 2022; 12:899722. [PMID: 36081554 PMCID: PMC9447365 DOI: 10.3389/fonc.2022.899722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Pulsed field ablation can increase membrane permeability and is an emerging non-thermal ablation. While ablating tumor tissues, electrical pulses not only act on the membrane structure of cells to cause irreversible electroporation, but also convert tumors into an immune active state, increase the permeability of microvessels, inhibit the proliferation of pathological blood vessels, and soften the extracellular matrix thereby inhibiting infiltrative tumor growth. Electrical pulses can alter the tumor microenvironment, making the inhibitory effect on the tumor not limited to short-term killing, but mobilizing the collective immune system to inhibit tumor growth and invasion together.
Collapse
Affiliation(s)
- Yujue Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tian’an Jiang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
- Zhejiang University Cancer Center, Hangzhou, China
- *Correspondence: Tian’an Jiang,
| | - Liting Xie
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Huiyang Wang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou, China
| | - Jing Zhao
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Xu
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengyu Fang
- Department of Ultrasound Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
8
|
Justesen TF, Orhan A, Raskov H, Nolsoe C, Gögenur I. Electroporation and Immunotherapy-Unleashing the Abscopal Effect. Cancers (Basel) 2022; 14:cancers14122876. [PMID: 35740542 PMCID: PMC9221311 DOI: 10.3390/cancers14122876] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Electrochemotherapy and irreversible electroporation are primarily used for treating patients with cutaneous and subcutaneous tumors and pancreatic cancer, respectively. Increasing numbers of studies have shown that the treatments may elicit an immune response in addition to eliminating the tumor cells. The purpose of this review is to give an in-depth introduction to the electroporation-induced immune response and the local and peripheral immune systems, and to describe the various studies investigating the combination of electroporation and immunotherapy. The review may help guide and inspire the design of future clinical trials investigating the potential synergy of electroporation and immunotherapy in cancer treatment. Abstract The discovery of electroporation in 1968 has led to the development of electrochemotherapy (ECT) and irreversible electroporation (IRE). ECT and IRE have been established as treatments of cutaneous and subcutaneous tumors and locally advanced pancreatic cancer, respectively. Interestingly, the treatment modalities have been shown to elicit immunogenic cell death, which in turn can induce an immune response towards the tumor cells. With the dawn of the immunotherapy era, the potential of combining ECT and IRE with immunotherapy has led to the launch of numerous studies. Data from the first clinical trials are promising, and new combination regimes might change the way we treat tumors characterized by low immunogenicity and high levels of immunosuppression, such as melanoma and pancreatic cancer. In this review we will give an introduction to ECT and IRE and discuss the impact on the immune system. Additionally, we will present the results of clinical and preclinical trials, investigating the combination of electroporation modalities and immunotherapy.
Collapse
Affiliation(s)
- Tobias Freyberg Justesen
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
- Correspondence:
| | - Adile Orhan
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
| | - Hans Raskov
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
| | - Christian Nolsoe
- Center for Surgical Ultrasound, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark;
- Copenhagen Academy for Medical Education and Simulation (CAMES), University of Copenhagen and the Capital Region of Denmark, Ryesgade 53B, 2100 Copenhagen, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Zealand University Hospital, Lykkebækvej 1, 4600 Køge, Denmark; (A.O.); (H.R.); (I.G.)
- Department of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Sugrue A, Maor E, Del-Carpio Munoz F, Killu AM, Asirvatham SJ. Cardiac ablation with pulsed electric fields: principles and biophysics. Europace 2022; 24:1213-1222. [PMID: 35426908 DOI: 10.1093/europace/euac033] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/24/2022] [Indexed: 01/04/2023] Open
Abstract
Pulsed electric fields (PEFs) have emerged as an ideal cardiac ablation modality. At present numerous clinical trials in humans are exploring PEF as an ablation strategy for both atrial and ventricular arrhythmias, with early data showing significant promise. As this is a relatively new technology there is limited understanding of its principles and biophysics. Importantly, PEF biophysics and principles are starkly different to current energy modalities (radiofrequency and cryoballoon). Given the relatively novel nature of PEFs, this review aims to provide an understanding of the principles and biophysics of PEF ablation. The goal is to enhance academic research and ultimately enable optimization of ablation parameters to maximize procedure success and minimize risk.
Collapse
Affiliation(s)
- Alan Sugrue
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Cardiovascular Medicine, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elad Maor
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
- Chaim Sheba Medical Center and Sackler School of Medicine, Tel Aviv University, Israel
| | - Freddy Del-Carpio Munoz
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ammar M Killu
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Samuel J Asirvatham
- Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Evaluation of electroporated area using 2,3,5-triphenyltetrazolium chloride in a potato model. Sci Rep 2021; 11:20431. [PMID: 34650212 PMCID: PMC8516888 DOI: 10.1038/s41598-021-99987-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
Irreversible electroporation (IRE) is a tissue ablation method, uses short high electric pulses and results in cell death in target tissue by irreversibly permeabilizing the cell membrane. Potato is commonly used as a tissue model for electroporation experiments. The blackened area that forms 12 h after electric pulsing is regarded as an IRE-ablated area caused by melanin accumulation. Here, the 2,3,5-triphenyltetrazolium chloride (TTC) was used as a dye to assess the IRE-ablated area 3 h after potato model ablation. Comparison between the blackened area and TTC-unstained white area in various voltage conditions showed that TTC staining well delineated the IRE-ablated area. Moreover, whether the ablated area was consistent over time and at different staining times was investigated. In addition, the presumed reversible electroporation (RE) area was formed surrounding the IRE-ablated area. Overall, TTC staining can provide a more rapid and accurate electroporated area evaluation.
Collapse
|
11
|
Perera-Bel E, Mercadal B, Garcia-Sanchez T, Gonzalez Ballester MA, Ivorra A. Modeling methods for treatment planning in overlapping electroporation treatments. IEEE Trans Biomed Eng 2021; 69:1318-1327. [PMID: 34559631 DOI: 10.1109/tbme.2021.3115029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Irreversible electroporation (IRE) is a non thermal tissue ablation therapy which is induced by applying high voltage waveforms across electrode pairs. When multiple electrode pairs are sequentially used, the treatment volume (TV) is typically computed as the geometric union of the TVs of individual pairs. However, this method neglects that some regions are exposed to overlapping treatments. Recently, a model describing cell survival probability was introduced which effectively predicted TV with overlapping fields in vivo. However, treatment overlap has yet to be quantified. This study characterizes TV overlap in a controlled in vitro setup with the two existing methods which are compared to an adapted logistic model proposed here. METHODS CHO cells were immobilized in agarose gel. Initially, we characterized the electric field threshold and the cell survival probability for overlapping treatments. Subsequently, we created a 2D setup where we compared and validated the accuracy of the different methods in predicting the TV. RESULTS Overlap can reduce the electric field threshold required to induce cell death, particularly for treatments with low pulse number. However, it does not have a major impact on TV in the models assayed here, and all the studied methods predict TV with similar accuracy. CONCLUSION Treatment overlap has a minor influence in the TV for typical protocols found in IRE therapies. SIGNIFICANCE This study provides evidence that the modeling method used in most pre-clinical and clinical studies seems adequate.
Collapse
|
12
|
Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100978. [PMID: 34292672 PMCID: PMC8456216 DOI: 10.1002/advs.202100978] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Indexed: 05/08/2023]
Abstract
Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.
Collapse
Affiliation(s)
- Elise P. W. Jenkins
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Alina Finch
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - Magda Gerigk
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Iasonas F. Triantis
- Department of Electrical and Electronic EngineeringCity, University of LondonLondonEC1V 0HBUK
| | - Colin Watts
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - George G. Malliaras
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
13
|
Lopez-Ichikawa M, Vu NK, Nijagal A, Rubinsky B, Chang TT. Neutrophils are important for the development of pro-reparative macrophages after irreversible electroporation of the liver in mice. Sci Rep 2021; 11:14986. [PMID: 34294763 PMCID: PMC8298444 DOI: 10.1038/s41598-021-94016-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
Irreversible electroporation (IRE) is a non-thermal tissue ablative technology that has emerging applications in surgical oncology and regenerative surgery. To advance its therapeutic usefulness, it is important to understand the mechanisms through which IRE induces cell death and the role of the innate immune system in mediating subsequent regenerative repair. Through intravital imaging of the liver in mice, we show that IRE produces distinctive tissue injury features, including delayed yet robust recruitment of neutrophils, consistent with programmed necrosis. IRE treatment converts the monocyte/macrophage balance from pro-inflammatory to pro-reparative populations, and depletion of neutrophils inhibits this conversion. Reduced generation of pro-reparative Ly6CloF4/80hi macrophages correlates with lower numbers of SOX9+ hepatic progenitor cells in areas of macrophage clusters within the IRE injury zone. Our findings suggest that neutrophils play an important role in promoting the development of pro-reparative Ly6Clo monocytes/macrophages at the site of IRE injury, thus establishing conditions of regenerative repair.
Collapse
Affiliation(s)
- Maya Lopez-Ichikawa
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Ngan K Vu
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Amar Nijagal
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA
| | - Boris Rubinsky
- Department of Mechanical Engineering, University of California, Berkeley, 6124 Etcheverry Hall, Berkeley, CA, 94720, USA
| | - Tammy T Chang
- Department of Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA, 94143, USA.
| |
Collapse
|
14
|
Batista Napotnik T, Polajžer T, Miklavčič D. Cell death due to electroporation - A review. Bioelectrochemistry 2021; 141:107871. [PMID: 34147013 DOI: 10.1016/j.bioelechem.2021.107871] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/12/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Exposure of cells to high voltage electric pulses increases transiently membrane permeability through membrane electroporation. Electroporation can be reversible and is used in gene transfer and enhanced drug delivery but can also lead to cell death. Electroporation resulting in cell death (termed as irreversible electroporation) has been successfully used as a new non-thermal ablation method of soft tissue such as tumours or arrhythmogenic heart tissue. Even though the mechanisms of cell death can influence the outcome of electroporation-based treatments due to use of different electric pulse parameters and conditions, these are not elucidated yet. We review the mechanisms of cell death after electroporation reported in literature, cell injuries that may lead to cell death after electroporation and membrane repair mechanisms involved. The knowledge of membrane repair and cell death mechanisms after cell exposure to electric pulses, targets of electric field in cells need to be identified to optimize existing and develop of new electroporation-based techniques used in medicine, biotechnology, and food technology.
Collapse
Affiliation(s)
- Tina Batista Napotnik
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Tamara Polajžer
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia
| | - Damijan Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, 1000 Ljubljana, Slovenia.
| |
Collapse
|
15
|
Jung EM, Engel M, Wiggermann P, Schicho A, Lerchbaumer M, Stroszczynski C, Fischer T, Wiesinger I. Contrast enhanced ultrasound (CEUS) with parametric imaging after irreversible electroporation (IRE) of the prostate to assess the success of prostate cancer treatment. Clin Hemorheol Microcirc 2021; 77:303-310. [PMID: 33337354 DOI: 10.3233/ch-201000] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM The aim of this study was to assess the success of irreversible electroporation (IRE) in prostate cancer and to differentiate between reactive changes and tumor. MATERIAL AND METHODS This is a retrospective pilot study of 50 patients after irreversible electroporation (IRE) in prostate cancer between 50-79 years (mean age 65 years). Each patient received a transabdominal sonography using a 1-6 MHz convex matrix probe. Contrast-enhanced ultrasound (CEUS) was performed after i.v. bolus injection of 2.0 ml sulphur hexafluoride microbubbles. DICOM loops were continuously stored up to one minute. Parametric images were calculated by integrated perfusion analysis software. A comparison was drawn to a follow-up MRI six months after ablation. RESULTS While 13 patients showed local recurrence, 37 patients were successfully treated, meaning no local recurrence within six months after ablation. 18 patients showed signs of prostatitis after IRE. Tumorous changes were visually characterized by dynamic early nodular hypervascularization with fast and high wash-in. Correspondingly, nodular red and yellow shades were seen in parametric imaging. All patients with remaining tumor were correctly identified with CEUS and parametric imaging. After IRE there is a relevant decrease in tumor microcirculation in all patients, as seen in more purple shades of the prostate. The sensitivity for detecting residual tumor with CEUS compared to MRI was 76%, the specificity was 81%. The corresponding positive predictive value (PPV) was 73% and the negative predictive value (NPV) was 83%. CONCLUSION CEUS and parametric imaging enable a critical analysis of post-ablation defects after IRE for prostate cancer even with a transabdominal approach. Remaining tumor can be detected with the help of pseudo-colors.
Collapse
Affiliation(s)
- Ernst Michael Jung
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Martin Engel
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | - Philipp Wiggermann
- Department of Radiology and Nuclear Medicine, Klinikum Braunschweig, Braunschweig, Germany
| | - Andreas Schicho
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany
| | | | | | - Thomas Fischer
- Deparment of Radiology, Charité University Medicine, Berlin, Germany
| | - Isabel Wiesinger
- Department of Neuroradiology, medbo Bezirksklinikum Regensburg, Regensburg, Germany
| |
Collapse
|
16
|
Sun S, Liu Y, He C, Hu W, Liu W, Huang X, Wu J, Xie F, Chen C, Wang J, Lin Y, Zhu W, Yan G, Cai J, Li S. Combining NanoKnife with M1 oncolytic virus enhances anticancer activity in pancreatic cancer. Cancer Lett 2021; 502:9-24. [PMID: 33444691 DOI: 10.1016/j.canlet.2020.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/26/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023]
Abstract
NanoKnife, a nonthermal ablation technique also termed irreversible electroporation (IRE), has been adopted in locally advanced pancreatic cancer (LAPC) treatment. However, reversible electroporation (RE) caused by heterogeneous electric field magnitude leads to inadequate ablation and tumor recurrence. Alphavirus M1 has been identified as a novel natural oncolytic virus which is nonpathogenic and with high tumor selectivity. This study evaluated improvements to therapeutic efficacy through combination therapy incorporating NanoKnife and M1 virus. We showed that IRE triggered reactive oxygen species (ROS)-dependent apoptosis in pancreatic cancer cells (PCCs) mediated by phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) pathway suppression. When NanoKnife was combined with M1 virus, the therapeutic efficacy was synergistically enhanced. The combinatorial treatment further inhibited tumor proliferation and prolonged the survival of orthotopic pancreatic cancer (PC)-bearing immunocompetent mice. In depth, NanoKnife enhanced the oncolytic effect of M1 by promoting its infection. The combination turned immune-silent tumors into immune-inflamed tumors characterized by T cell activation. Clinicopathologic analysis of specific M1 oncolytic biomarkers indicated the potential of the combination regimen. The combinatorial therapy represents a promising therapeutic efficacy and may ultimately improve the prognosis of patients with LAPC.
Collapse
Affiliation(s)
- Shuxin Sun
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Yang Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Chaobin He
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Wanming Hu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China; Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Wenfeng Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Xin Huang
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Jiali Wu
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Fengxiao Xie
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Chen Chen
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jun Wang
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, PR China.
| | - Shengping Li
- Department of Pancreatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, PR China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, PR China.
| |
Collapse
|
17
|
Analysis of damage-associated molecular pattern molecules due to electroporation of cells in vitro. Radiol Oncol 2020; 54:317-328. [PMID: 32726295 PMCID: PMC7409611 DOI: 10.2478/raon-2020-0047] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 07/07/2020] [Indexed: 01/10/2023] Open
Abstract
Background Tumor cells can die via immunogenic cell death pathway, in which damage-associated molecular pattern molecules (DAMPs) are released from the cells. These molecules activate cells involved in the immune response. Both innate and adaptive immune response can be activated, causing a destruction of the remaining infected cells. Activation of immune response is also an important component of tumor treatment with electrochemotherapy (ECT) and irreversible electroporation (IRE). We thus explored, if and when specific DAMPs are released as a consequence of electroporation in vitro. Materials and methods In this in vitro study, 100 μs long electric pulses were applied to a suspension of Chinese hamster ovary cells. The release of DAMPs - specifically: adenosine triphosphate (ATP), calreticulin, nucleic acids and uric acid was investigated at different time points after exposing the cells to electric pulses of different amplitudes. The release of DAMPs was statistically correlated with cell permeabilization and cell survival, e.g. reversible and irreversible electroporation. Results In general, the release of DAMPs increases with increasing pulse amplitude. Concentration of DAMPs depend on the time interval between exposure of the cells to pulses and the analysis. Concentrations of most DAMPs correlate strongly with cell death. However, we detected no uric acid in the investigated samples. Conclusions Release of DAMPs can serve as a marker for prediction of cell death. Since the stability of certain DAMPs is time dependent, this should be considered when designing protocols for detecting DAMPs after electric pulse treatment.
Collapse
|
18
|
Dynamics of Cell Death After Conventional IRE and H-FIRE Treatments. Ann Biomed Eng 2020; 48:1451-1462. [PMID: 32026232 PMCID: PMC7154019 DOI: 10.1007/s10439-020-02462-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/20/2020] [Indexed: 12/18/2022]
Abstract
High-frequency irreversible electroporation (H-FIRE) has emerged as an alternative to conventional irreversible electroporation (IRE) to overcome the issues associated with neuromuscular electrical stimulation that appear in IRE treatments. In H-FIRE, the monopolar pulses typically used in IRE are replaced with bursts of short bipolar pulses. Currently, very little is known regarding how the use of a different waveform affects the cell death dynamics and mechanisms. In this study, human pancreatic adenocarcinoma cells were treated with a typical IRE protocol and various H-FIRE schemes with the same energized time. Cell viability, membrane integrity and Caspase 3/7 activity were assessed at different times after the treatment. In both treatments, we identified two different death dynamics (immediate and delayed) and we quantified the electric field ranges that lead to each of them. While in the typical IRE protocol, the electric field range leading to a delayed cell death is very narrow, this range is wider in H-FIRE and can be increased by reducing the pulse length. Membrane integrity in cells suffering a delayed cell death shows a similar time evolution in all treatments, however, Caspase 3/7 expression was only observed in cells treated with H-FIRE.
Collapse
|
19
|
Lyu C, Lopez-Ichikawa M, Rubinsky B, Chang TT. Normal and fibrotic liver parenchyma respond differently to irreversible electroporation. HPB (Oxford) 2019; 21:1344-1353. [PMID: 30879992 PMCID: PMC7170179 DOI: 10.1016/j.hpb.2019.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/30/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The safety and efficacy of irreversible electroporation (IRE) in treating hepatic, biliary, and pancreatic malignancies are active areas of clinical investigation. In addition, recent studies have shown that IRE may enable regenerative surgery and in vivo tissue engineering. To use IRE effectively in these clinical applications, it is important to understand how different tissue microenvironments impact the response to IRE. In this study, we characterize the electrical and histological properties of non-fibrotic and fibrotic liver parenchyma before and after IRE treatment. METHODS Electrical resistivity and histology of fibrotic liver from C57BL/6 mice fed a 0.1% 3,5-diethylcarbonyl-1,4-dihydrocollidine (DDC) diet were compared to those of non-fibrotic liver from matched control mice before and after IRE treatment. RESULTS At baseline, the electrical resistivity of fibrotic liver was lower than that of non-fibrotic liver. Post-IRE, resistivity of non-fibrotic liver declined and then recovered back to baseline with time, correlating with hepatocyte repopulation of the ablated parenchyma without deposition of fibrotic scar. In contrast, resistivity of fibrotic liver remained depressed after IRE treatment, correlating with persistent inflammation. CONCLUSION Non-fibrotic and fibrotic liver respond to IRE differently. The underlying tissue microenvironment is an important modifying factor to consider when designing IRE protocols for tissue ablation.
Collapse
Affiliation(s)
- Chenang Lyu
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720
| | | | - Boris Rubinsky
- Department of Mechanical Engineering, University of California, Berkeley, CA 94720
| | - Tammy T. Chang
- Department of Surgery, University of California, San Francisco, CA 94143
| |
Collapse
|
20
|
Niessen C, Beyer L, Haimerl M, Schicho A, Stroszczynski C, Wiggermann P, Jung E. Percutaneous irreversible electroporation of hepatocellular carcinoma: Contrast-enhanced ultrasound-findings during 1-year follow-up. Clin Hemorheol Microcirc 2019; 72:85-93. [DOI: 10.3233/ch-180449] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- C. Niessen
- Institute for Radiology, University Hospital Regensburg, Regensburg, Germany
| | - L.P. Beyer
- Institute for Radiology, University Hospital Regensburg, Regensburg, Germany
| | - M. Haimerl
- Institute for Radiology, University Hospital Regensburg, Regensburg, Germany
| | - A. Schicho
- Institute for Radiology, University Hospital Regensburg, Regensburg, Germany
| | - C. Stroszczynski
- Institute for Radiology, University Hospital Regensburg, Regensburg, Germany
| | - P. Wiggermann
- Institute for Radiology, University Hospital Regensburg, Regensburg, Germany
| | - E.M. Jung
- Institute for Radiology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
21
|
Pasquet L, Bellard E, Chabot S, Markelc B, Rols MP, Teissie J, Golzio M. Pre-clinical investigation of the synergy effect of interleukin-12 gene-electro-transfer during partially irreversible electropermeabilization against melanoma. J Immunother Cancer 2019; 7:161. [PMID: 31242938 PMCID: PMC6595571 DOI: 10.1186/s40425-019-0638-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Melanoma is a very aggressive skin tumor that can be cured when diagnosed and treated in its early stages. However, at the time of identification, the tumor is frequently in a metastatic stage. Intensive research is currently ongoing to improve the efficacy of the immune system in eliminating cancer cells. One approach is to boost the activation of cytotoxic T cells by IL-12 cytokine that plays a central role in the activation of the immune system. In parallel, physical methods such as electropermeabilization-based treatments are currently under investigation and show promising results. METHODS In this study, we set electrical parameters to induce a partial-irreversible electropermeabilization (pIRE) of melanoma to induce a sufficient cell death and potential release of tumor antigens able to activate immune cells. This protocol mimics the situation where irreversible electropermeabilization is not fully completed. Then, a peritumoral plasmid IL-12 electrotransfer was combined with pIRE treatment. Evaluation of the tumor growth and survival was performed in mouse strains having a different immunological background (C57Bl/6 (WT), nude and C57Bl6 (TLR9-/-)). RESULTS pIRE treatment induced apoptotic cell death and a temporary tumor growth delay in all mouse strains. In C57Bl/6 mice, we showed that peritumoral plasmid IL-12 electrotransfer combined with tumor pIRE treatment induced tumor regression correlating with a local secretion of IL-12 and IFN-γ. This combined treatment induced a growth delay of distant tumors and prevented the emergence of a second tumor in 50% of immunocompetent mice. CONCLUSIONS The combination of pIL-12 GET and pIRE not only enhanced survival but could bring a curative effect in wild type mice. This two-step treatment, named Immune-Gene Electro-Therapy (IGET), led to a systemic activation of the adaptive immune system and the development of an anti-tumor immune memory.
Collapse
Affiliation(s)
- Lise Pasquet
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, UMR 5089, 205 Route de Narbonne, F-31077, Toulouse Cedex, France
| | - Elisabeth Bellard
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, UMR 5089, 205 Route de Narbonne, F-31077, Toulouse Cedex, France
| | - Sophie Chabot
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, UMR 5089, 205 Route de Narbonne, F-31077, Toulouse Cedex, France
| | - Bostjan Markelc
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, UMR 5089, 205 Route de Narbonne, F-31077, Toulouse Cedex, France
| | - Marie-Pierre Rols
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, UMR 5089, 205 Route de Narbonne, F-31077, Toulouse Cedex, France
| | - Justin Teissie
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, UMR 5089, 205 Route de Narbonne, F-31077, Toulouse Cedex, France.
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, UPS, BP 64182, UMR 5089, 205 Route de Narbonne, F-31077, Toulouse Cedex, France.
| |
Collapse
|
22
|
Ringel-Scaia VM, Beitel-White N, Lorenzo MF, Brock RM, Huie KE, Coutermarsh-Ott S, Eden K, McDaniel DK, Verbridge SS, Rossmeisl JH, Oestreich KJ, Davalos RV, Allen IC. High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity. EBioMedicine 2019; 44:112-125. [PMID: 31130474 PMCID: PMC6606957 DOI: 10.1016/j.ebiom.2019.05.036] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 12/18/2022] Open
Abstract
Background Despite promising treatments for breast cancer, mortality rates remain high and treatments for metastatic disease are limited. High-frequency irreversible electroporation (H-FIRE) is a novel tumor ablation technique that utilizes high-frequency bipolar electric pulses to destabilize cancer cell membranes and induce cell death. However, there is currently a paucity of data pertaining to immune system activation following H-FIRE and other electroporation based tumor ablation techniques. Methods Here, we utilized the mouse 4T1 mammary tumor model to evaluate H-FIRE treatment parameters on cancer progression and immune system activation in vitro and in vivo. Findings H-FIRE effectively ablates the primary tumor and induces a pro-inflammatory shift in the tumor microenvironment. We further show that local treatment with H-FIRE significantly reduces 4T1 metastases. H-FIRE kills 4T1 cells through non-thermal mechanisms associated with necrosis and pyroptosis resulting in damage associated molecular pattern signaling in vitro and in vivo. Our data indicate that the level of tumor ablation correlates with increased activation of cellular immunity. Likewise, we show that the decrease in metastatic lesions is dependent on the intact immune system and H-FIRE generates 4T1 neoantigens that engage the adaptive immune system to significantly attenuate tumor progression. Interpretation Cell death and tumor ablation following H-FIRE treatment activates the local innate immune system, which shifts the tumor microenvironment from an anti-inflammatory state to a pro-inflammatory state. The non-thermal damage to the cancer cells and increased innate immune system stimulation improves antigen presentation, resulting in the engagement of the adaptive immune system and improved systemic anti-tumor immunity.
Collapse
Affiliation(s)
- Veronica M Ringel-Scaia
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Natalie Beitel-White
- Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Melvin F Lorenzo
- Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Virginia Tech - Wake Forest University, Virginia Tech, School of Biomedical Engineering & Sciences, Blacksburg, VA, USA
| | - Rebecca M Brock
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kathleen E Huie
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Dylan K McDaniel
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Scott S Verbridge
- Virginia Tech - Wake Forest University, Virginia Tech, School of Biomedical Engineering & Sciences, Blacksburg, VA, USA; Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA
| | - John H Rossmeisl
- Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA; Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Kenneth J Oestreich
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA; Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA; Virginia Tech, Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Rafael V Davalos
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Bioelectromechanical Systems Laboratory, Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Virginia Tech - Wake Forest University, Virginia Tech, School of Biomedical Engineering & Sciences, Blacksburg, VA, USA; Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA; Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA
| | - Irving C Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA, USA; Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA; Center for Engineered Health, Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, VA, USA.
| |
Collapse
|
23
|
Electric field-responsive nanoparticles and electric fields: physical, chemical, biological mechanisms and therapeutic prospects. Adv Drug Deliv Rev 2019; 138:56-67. [PMID: 30414494 DOI: 10.1016/j.addr.2018.10.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/05/2018] [Accepted: 10/31/2018] [Indexed: 12/18/2022]
Abstract
Electric fields are among physical stimuli that have revolutionized therapy. Occurring endogenously or exogenously, the electric field can be used as a trigger for controlled drug release from electroresponsive drug delivery systems, can stimulate wound healing and cell proliferation, may enhance endocytosis or guide stem cell differentiation. Electric field pulses may be applied to induce cell fusion, can increase the penetration of therapeutic agents into cells, or can be applied as a standalone therapy to ablate tumors. This review describes the main therapeutic trends and overviews the main physical, chemical and biological mechanisms underlying the actions of electric fields. Overall, the electric field can be used in therapeutic approaches in several ways. The electric field can act on drug carriers, cells and tissues. Understanding the multiple effects of this powerful tool will help harnessing its full therapeutic potential in an efficient and safe way.
Collapse
|
24
|
Schicho A, Niessen C, Haimerl M, Wiesinger I, Stroszczynski C, Beyer LP, Wiggermann P. Long-term survival after percutaneous irreversible electroporation of inoperable colorectal liver metastases. Cancer Manag Res 2018; 11:317-322. [PMID: 30643457 PMCID: PMC6312065 DOI: 10.2147/cmar.s182091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background For colorectal liver metastases (CRLM) that are not amenable to surgery or thermal ablation, irreversible electroporation (IRE) is a novel local treatment modality and additional option. Methods This study is a retrospective long-term follow-up of patients with CRLM who underwent IRE as salvage treatment. Results Of the 24 included patients, 18 (75.0%) were male, and the median age was 57 (range: 28-75) years. The mean time elapsed from diagnosis to IRE was 37.9±37.3 months. Mean overall survival was 26.5 months after IRE (range: 2.5-69.2 months) and 58.1 months after diagnosis (range: 14.8-180.1 months). One-, three-, and five-year survival rates after initial diagnosis were 100.0%, 79.2%, and 41.2%; after IRE, the respective survival rates were 79.1%, 25.0%, and 8.3%. There were no statistically significant differences detected in survival after IRE with respect to gender, age, T- or N-stage at the time of diagnosis, size of metastases subject to IRE, number of hepatic lesions, or time elapsed between IRE and diagnosis. Conclusion For nonresectable CRLM, long-term survival data emphasize the value of IRE as a new minimally invasive local therapeutic approach in multimodal palliative treatment, which is currently limited to systemic or regional therapies in this setting.
Collapse
Affiliation(s)
- Andreas Schicho
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany,
| | - Christoph Niessen
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany,
| | - Michael Haimerl
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany,
| | - Isabel Wiesinger
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany,
| | | | - Lukas P Beyer
- Department of Radiology, University Hospital Regensburg, Regensburg, Germany,
| | - Philipp Wiggermann
- Department of Radiology and Nuclear Medicine, Klinikum Braunschweig, Braunschweig, Germany
| |
Collapse
|
25
|
Scheck J, Bruners P, Schindler D, Kuhl C, Isfort P. Comparison of Chronologic Change in the Size and Contrast-Enhancement of Ablation Zones on CT Images after Irreversible Electroporation and Radiofrequency Ablation. Korean J Radiol 2018; 19:560-567. [PMID: 29962862 PMCID: PMC6005936 DOI: 10.3348/kjr.2018.19.4.560] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 12/18/2017] [Indexed: 12/18/2022] Open
Abstract
Objective To compare short-, mid-, and long-term follow-up ablation zone volume alterations as well as imaging features on contrast-enhanced computed tomography (CT) after irreversible electroporation (IRE) of primary and secondary liver tumors with findings subsequent to radiofrequency ablation (RFA). Materials and Methods Volume assessment of 39 ablation zones (19 RFA, 20 IRE) after intervention was performed at four time intervals (day 0 [t1; n = 39], day 1-7 [t2; n = 25], day 8-55 [t3; n = 28], after day 55 [t4; n = 23]) on dual-phase CT. Analysis of peripheral rim enhancement was conducted. Lesion's volume decrease relative to the volume at t1 was calculated and statistically analyzed with respect to patient's sex, age, ablation modality (IRE/RFA), and history of platinum-based chemotherapy (PCT). Results No influence of patient's sex or age on ablation volume was detected. The decrease in ablation zones' volume was significantly larger (p < 0.05 for all time intervals) after IRE (arterial phase, 7.5%; venous phase, 9.7% of initial volume) compared to RFA (arterial phase, 39.6%; venous phase, 45.3% of initial volume). After RFA, significantly smaller decreases in the ablation volumes, in general, were detected in patients treated with PCT in their history (p = 0.004), which was not detected after IRE (p = 0.288). In the arterial phase, peripheral rim enhancement was frequently detected after both IRE and RFA. In the venous phase, rim-enhancement was depicted significantly more often following IRE at t1 and t2 (pt1 = 0.003, pt2 < 0.001). Conclusion As per our analysis, ablation zone volume decreased significantly in a more rapid and more profound manner after IRE. Lesion's remodeling after RFA but not IRE seems to be influenced by PCT, possibly due to the type of cell death induced by the different ablation modalities.
Collapse
Affiliation(s)
- Jonas Scheck
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, RWTH Aachen University, Aachen 52074, Germany
| | - Philipp Bruners
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, RWTH Aachen University, Aachen 52074, Germany
| | - David Schindler
- Institute of Medical Statistics, Aachen University Hospital, RWTH Aachen University, Aachen 52074, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, RWTH Aachen University, Aachen 52074, Germany
| | - Peter Isfort
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, RWTH Aachen University, Aachen 52074, Germany
| |
Collapse
|
26
|
Conductivity Rise During Irreversible Electroporation: True Permeabilization or Heat? Cardiovasc Intervent Radiol 2018; 41:1257-1266. [PMID: 29687261 PMCID: PMC6021471 DOI: 10.1007/s00270-018-1971-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
Abstract
Purpose Irreversible electroporation (IRE) induces apoptosis with high-voltage electric pulses. Although the working mechanism is non-thermal, development of secondary Joule heating occurs. This study investigated whether the observed conductivity rise during IRE is caused by increased cellular permeabilization or heat development. Methods IRE was performed in a gelatin tissue phantom, in potato tubers, and in 30 patients with unresectable colorectal liver metastases (CRLM). Continuous versus sequential pulsing protocols (10-90 vs. 10-30-30-30) were assessed. Temperature was measured using fiber-optic probes. After temperature had returned to baseline, 100 additional pulses were delivered. The primary technique efficacy of the treated CRLM was compared to the periprocedural current rise. Seven patients received ten additional pulses after a 10-min cool-down period. Results Temperature and current rise was higher for the continuous pulsing protocol (medians, gel: 13.05 vs. 9.55 °C and 9 amperes (A) vs. 7A; potato: 12.70 vs. 10.53 °C and 6.0A vs. 6.5A). After cooling-down, current returned to baseline in the gel phantom and near baseline values (Δ2A with continuous- and Δ5A with sequential pulsing) in the potato tubers. The current declined after cooling-down in all seven patients with CRLM, although baseline values were not reached. There was a positive correlation between current rise and primary technique efficacy (p = 0.02); however, the previously reported current increase threshold of 12–15A was reached in 13%. Conclusion The observed conductivity rise during IRE is caused by both cellular permeabilization and heat development. Although a correlation between current rise and efficacy exists, the current increase threshold seems unfeasible for CRLM. Electronic supplementary material The online version of this article (10.1007/s00270-018-1971-7) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Abstract
Small renal masses (SRMs) have been traditionally managed with surgical resection. Minimally invasive nephron-sparing treatment methods are preferred to avoid harmful consequences of renal insufficiency, with partial nephrectomy (PN) considered the gold standard. With increase in the incidence of the SRMs and evolution of ablative technologies, percutaneous ablation is now considered a viable treatment alternative to surgical resection with comparable oncologic outcomes and better nephron-sparing property. Traditional thermal ablative techniques suffer from unique set of challenges in treating tumors near vessels or critical structures. Irreversible electroporation (IRE), with its non-thermal nature and connective tissue-sparing properties, has shown utility where traditional ablative techniques face challenges. This review presents the role of IRE in renal tumors based on the most relevant published literature on the IRE technology, animal studies, and human experience.
Collapse
|
28
|
Langus J, Kranjc M, Kos B, Šuštar T, Miklavčič D. Dynamic finite-element model for efficient modelling of electric currents in electroporated tissue. Sci Rep 2016; 6:26409. [PMID: 27211822 PMCID: PMC4876422 DOI: 10.1038/srep26409] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 05/03/2016] [Indexed: 12/18/2022] Open
Abstract
In silico experiments (numerical simulations) are a valuable tool for non-invasive research of the influences of tissue properties, electrode placement and electric pulse delivery scenarios in the process of electroporation. The work described in this article was aimed at introducing time dependent effects into a finite element model developed specifically for electroporation. Reference measurements were made ex vivo on beef liver samples and experimental data were used both as an initial condition for simulation (applied pulse voltage) and as a reference value for numerical model calibration (measured pulse current). The developed numerical model is able to predict the time evolution of an electric pulse current within a 5% error over a broad range of applied pulse voltages, pulse durations and pulse repetition frequencies. Given the good agreement of the current flowing between the electrodes, we are confident that the results of our numerical model can be used both for detailed in silico research of electroporation mechanisms (giving researchers insight into time domain effects) and better treatment planning algorithms, which predict the outcome of treatment based on both spatial and temporal distributions of applied electric pulses.
Collapse
Affiliation(s)
- J Langus
- C3M d.o.o., Technology park 21, SI-1000 Ljubljana, Slovenia
| | - M Kranjc
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Biocybernetics, Tržaška 25, 1000 Ljubljana, Slovenia
| | - B Kos
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Biocybernetics, Tržaška 25, 1000 Ljubljana, Slovenia
| | - T Šuštar
- C3M d.o.o., Technology park 21, SI-1000 Ljubljana, Slovenia
| | - D Miklavčič
- University of Ljubljana, Faculty of Electrical Engineering, Laboratory of Biocybernetics, Tržaška 25, 1000 Ljubljana, Slovenia
| |
Collapse
|
29
|
Josserand V, Kéramidas M, Lavaud J, Righini C, Vollaire J, Bellard E, Rols MP, Teissié J, Coll JL, Golzio M. Electrochemotherapy guided by intraoperative fluorescence imaging for the treatment of inoperable peritoneal micro-metastases. J Control Release 2016; 233:81-7. [PMID: 27155365 DOI: 10.1016/j.jconrel.2016.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 04/25/2016] [Accepted: 05/01/2016] [Indexed: 01/15/2023]
Abstract
Surgery is often the first therapeutic indication in cancer. Patient survival essentially depends on the completeness of tumor resection. This is a major challenge, particularly in patients with peritoneal carcinomatosis (PC), where tumors are widely disseminated in the large peritoneal cavity. These small tumors can be difficult to visualize and are often positioned in delicate locations, further increasing the risk of producing serious tissue/organ damage during their ablation. We propose an innovative therapeutic approach based on intraoperative fluorescence (IF) guided electrochemotherapy (ECT) for the treatment of peritoneal micro-metastases. ECT combines the effects of tissue electro-permeabilization (EP) with the administration of an antimitotic agent (bleomycin) that has poor permeability across intact membranes. IF significantly improves the detection of small tumor lesions. ECT is clinically validated for the treatment of cutaneous tumors in animals and humans, but this is the first time that it has been used along with IF imaging for the targeted treatment of peritoneal metastases in a preclinical model. We set up a murine model of PC that develops secondarily to the resection of a distant primary tumor. Tumor growth and metastasis were finely monitored by non-invasive multimodal imaging (bioluminescence and 3D fluorescence/microCT). Once metastases were detected, mice were randomized into three groups: the ECT group (bleomycin injected intravenously followed by EP) and 2 control groups (bleomycin alone and EP alone). Twenty four hours after the intravenous injection of the tumor targeting agent Angiostamp™700, mice in all groups underwent an abdominal surgery for metastases exploration assisted by fluorescence imaging with the Fluobeam®700 portative device. EP was applied to every nodule detected by IF, except in the bleomycin control group. After surgery, the metastatic invasion was tracked by bioluminescence imaging. In mice treated with bleomycin or EP alone, the metastatic load progressed very rapidly and mice showed no significant difference in lifespan compared to non-operated mice (median lifespan: 27days vs. 25days, respectively). In contrast, the mice treated with ECT displayed a decreased metastatic load and an increased survival rate (median lifespan: 34days). These results provide evidence that IF guided ECT is an effective approach for the treatment of inoperable intraperitoneal micro-metastases.
Collapse
Affiliation(s)
- V Josserand
- INSERM U1209, Institut Albert Bonniot, F-38000 Grenoble, France; Univ. Grenoble Alpes, Institut Albert Bonniot, F-38000 Grenoble, France
| | - M Kéramidas
- INSERM U1209, Institut Albert Bonniot, F-38000 Grenoble, France; Univ. Grenoble Alpes, Institut Albert Bonniot, F-38000 Grenoble, France
| | - J Lavaud
- INSERM U1209, Institut Albert Bonniot, F-38000 Grenoble, France; Univ. Grenoble Alpes, Institut Albert Bonniot, F-38000 Grenoble, France
| | - C Righini
- INSERM U1209, Institut Albert Bonniot, F-38000 Grenoble, France; Univ. Grenoble Alpes, Institut Albert Bonniot, F-38000 Grenoble, France; CHU, Grenoble, France
| | - J Vollaire
- INSERM U1209, Institut Albert Bonniot, F-38000 Grenoble, France; Univ. Grenoble Alpes, Institut Albert Bonniot, F-38000 Grenoble, France
| | - E Bellard
- CNRS, IPBS, Toulouse, France; Université de Toulouse, UPS, IPBS, Toulouse, France
| | - M P Rols
- CNRS, IPBS, Toulouse, France; Université de Toulouse, UPS, IPBS, Toulouse, France
| | - J Teissié
- CNRS, IPBS, Toulouse, France; Université de Toulouse, UPS, IPBS, Toulouse, France
| | - J L Coll
- INSERM U1209, Institut Albert Bonniot, F-38000 Grenoble, France; Univ. Grenoble Alpes, Institut Albert Bonniot, F-38000 Grenoble, France.
| | - M Golzio
- CNRS, IPBS, Toulouse, France; Université de Toulouse, UPS, IPBS, Toulouse, France.
| |
Collapse
|
30
|
Sung CK, Kim HB, Jung JH, Baik KY, Moon KW, Kim HS, Yi JH, Chung JH. Histological and Mathematical Analysis of the Irreversibly Electroporated Liver Tissue. Technol Cancer Res Treat 2016; 16:488-496. [PMID: 27079209 DOI: 10.1177/1533034616640642] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Irreversible electroporation has clinically been used to treat various types of cancer. A plan on how to apply irreversible electroporation before practicing is very important to increase the ablation area and reduce the side effects. Several electrical models have been developed to predict the ablation area with applied electric energy. In this experiment, the static relationship between applied electric energy and ablated area was mathematically and experimentally investigated at 10 hours after applying irreversible electroporation. We performed the irreversible electroporation on the liver tissue of Sprague Dawley rats (male, 8 weeks, weighing 250-350 g). The ablated area was measured based on histological analysis and compared with the mathematical calculation from the electric energy, assuming that the tissue is homogeneous. The ablated area increased with the increase in applied electric energy. The numerically calculated contour lines of electric energy density overlapped well with the apoptotic area induced by the irreversible electroporation. The overlapped area clearly showed that the destructive threshold of apoptosis between electrodes is electric energy density level of 5.9 × 105 J/m3. The results of the present study suggested that the clinical results of the irreversible electroporation on a liver tissue could be predicted through mathematical calculation.
Collapse
Affiliation(s)
- Chang Kyu Sung
- 1 Department of Radiology, Seoul National University Cancer Research Institute, SNU-SMG Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hong Bae Kim
- 2 Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jong Hyun Jung
- 3 Department of Physics and Astronomy, Seoul National University, Seoul, Republic of Korea
| | - Ku Youn Baik
- 4 Department of Electrical and Biological Physics, Kwangwoon University, Seoul, Republic of Korea
| | - Kee Wook Moon
- 5 Quality Management Team, Infopia Co Ltd, Anyang-si, Republic of Korea
| | - Hyung-Sik Kim
- 6 Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University, Chungcheongbuk-do, Republic of Korea
| | - Jeong-Han Yi
- 6 Department of Biomedical Engineering, Research Institute of Biomedical Engineering, College of Biomedical & Health Science, Konkuk University, Chungcheongbuk-do, Republic of Korea
| | - Jong Hoon Chung
- 2 Department of Biosystems & Biomaterials Science and Engineering, Seoul National University, Seoul, Republic of Korea.,7 Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
31
|
Padia SA, Johnson GE, Yeung RS, Park JO, Hippe DS, Kogut MJ. Irreversible Electroporation in Patients with Hepatocellular Carcinoma: Immediate versus Delayed Findings at MR Imaging. Radiology 2015; 278:285-94. [PMID: 26523493 DOI: 10.1148/radiol.2015150031] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE To assess the postprocedure findings of irreversible electroporation (IRE) in patients with hepatocellular carcinoma (HCC) at magnetic resonance (MR) imaging. MATERIALS AND METHODS This retrospective study was Institutional Review Board approved, and informed consent was waived. Twenty patients with HCC were treated with IRE over a 2.5-year period. The median patient age was 62 years, and 75% of patients had cirrhosis with a Child-Pugh score of A. The median tumor diameter was 2.0 cm (range, 1.0-3.3 cm). Contrast material-enhanced multiphase MR imaging was performed on postprocedure days 1 and 30 and every 90 days thereafter. Ablation zone sizes and signal intensities were compared between each time point for both T1- and T2-weighted images. Trends in signal intensity and tumor dimensions over time were quantified by using generalized linear models. RESULTS MR imaging appearances of treated tumors include a zone of peripheral enhancement with centripetal filling on delayed contrast-enhanced images. Compared with postprocedure day 1, every 90 days there is a decrease of 28.9% (mean, axis) in the size of the enhancing ablation zone. Over time, there is a trend toward decreasing signal intensity in the peripheral ablation zone on both T2-weighted (P = .01) and contrast-enhanced T1-weighted (P < .08) images. Conversely, the tumor itself typically has increased signal intensity on the same sequences. CONCLUSION IRE of HCC results in a large region of enhancement on immediate postprocedure MR images that, over time, involutes and is associated with decreasing signal intensity of the peripheral ablation zone. This phenomenon may represent resolution of the reversible penumbra.
Collapse
Affiliation(s)
- Siddharth A Padia
- From the Section of Interventional Radiology (S.A.P., G.E.J., M.J.K.), Department of Surgery (R.S.Y.), and Department of Radiology (D.S.H.), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98119
| | - Guy E Johnson
- From the Section of Interventional Radiology (S.A.P., G.E.J., M.J.K.), Department of Surgery (R.S.Y.), and Department of Radiology (D.S.H.), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98119
| | - Raymond S Yeung
- From the Section of Interventional Radiology (S.A.P., G.E.J., M.J.K.), Department of Surgery (R.S.Y.), and Department of Radiology (D.S.H.), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98119
| | - James O Park
- From the Section of Interventional Radiology (S.A.P., G.E.J., M.J.K.), Department of Surgery (R.S.Y.), and Department of Radiology (D.S.H.), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98119
| | - Daniel S Hippe
- From the Section of Interventional Radiology (S.A.P., G.E.J., M.J.K.), Department of Surgery (R.S.Y.), and Department of Radiology (D.S.H.), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98119
| | - Matthew J Kogut
- From the Section of Interventional Radiology (S.A.P., G.E.J., M.J.K.), Department of Surgery (R.S.Y.), and Department of Radiology (D.S.H.), University of Washington, Box 357115, 1959 NE Pacific St, Seattle, WA 98119
| |
Collapse
|
32
|
Minimally Invasive Percutaneous Treatment of Small Renal Tumors with Irreversible Electroporation: A Single-Center Experience. J Vasc Interv Radiol 2015; 26:1465-71. [PMID: 26250855 DOI: 10.1016/j.jvir.2015.06.028] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/19/2015] [Accepted: 06/20/2015] [Indexed: 12/21/2022] Open
Abstract
PURPOSE To evaluate whether irreversible electroporation (IRE) can be used as an ablation technique for small renal tumors (T1a cancers or small benign tumors) and to describe features after ablation on computed tomography (CT) or magnetic resonance (MR) imaging. MATERIALS AND METHODS In this retrospective study, 20 patients (mean age, 65 y ± 12.8 y) underwent CT-guided IRE of T1a renal carcinoma (n = 13) or small benign or indeterminate renal masses < 4 cm in size (n = 7). Mean tumor size was 2.2 cm ± 0.7. The ablation area was verified with contrast-enhanced imaging performed immediately after the procedure to determine technical success. Imaging was performed 6 weeks (20 of 20 patients), 6 months (15 of 20), and 12 months (6 of 20) after ablation. Medical records and CT/MR imaging features of all patients were reviewed for recurrence, symptoms, and complications after treatment. RESULTS Technical success was achieved in all patients (100%); there were no major procedure-related complications. Minor complications occurred in 7 patients, including self-limiting perinephric hematomas, pain difficult to control, and urinary retention. Mean procedure time was 2.0 hours ± 0.7. At 6 weeks, 2 patients required salvage therapy because of incomplete ablation. At 6 months, all 15 patients with imaging studies available had no evidence of recurrence. At 1 year, 1 patient (1 of 6) was noted to have experienced recurrence. CT/MR imaging after IRE ablation demonstrated an area of nonenhancement in the treatment zone that involuted over ~6 months. CONCLUSIONS Renal IRE appears to be a safe treatment for small renal tumors. Tumors treated with IRE demonstrated nonenhancement in the treatment zone with involution on follow-up CT/MR imaging.
Collapse
|
33
|
Davalos RV, Bhonsle S, Neal RE. Implications and considerations of thermal effects when applying irreversible electroporation tissue ablation therapy. Prostate 2015; 75:1114-8. [PMID: 25809014 PMCID: PMC6680146 DOI: 10.1002/pros.22986] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 01/26/2015] [Indexed: 12/18/2022]
Abstract
Irreversible electroporation (IRE) describes a cellular response to electric field exposure, resulting in the formation of nanoscale defects that can lead to cell death. While this behavior occurs independently of thermally-induced processes, therapeutic ablation of targeted tissues with IRE uses a series of brief electric pulses, whose parameters result in secondary Joule heating of the tissue. Where contemporary clinical pulse protocols use aggressive energy regimes, additional evidence is supplementing original studies that assert care must be taken in clinical ablation protocols to ensure the cumulative thermal effects do not induce damage that will alter outcomes for therapies using the IRE non-thermal cell death process for tissue ablation. In this letter, we seek to clarify the nomenclature regarding IRE as a non-thermal ablation technique, as well as identify existing literature that uses experimental, clinical, and numerical results to discretely address and evaluate the thermal considerations relevant when applying IRE in clinical scenarios, including several approaches for reducing these effects. Existing evidence in the literature describes cell response to electric fields, suggesting cell death from IRE is a unique process, independent from traditional thermal damage. Numerical simulations, as well as preclinical and clinical findings demonstrate the ability to deliver therapeutic IRE ablation without occurrence of morbidity associated with thermal therapies. Clinical IRE therapy generates thermal effects, which may moderate the non-thermal aspects of IRE ablation. Appropriate protocol development, utilization, and pulse delivery devices may be implemented to restrain these effects and maintain IRE as the vastly predominant tissue death modality, reducing therapy-mitigating thermal damage. Clinical applications of IRE should consider thermal effects and employ protocols to ensure safe and effective therapy delivery.
Collapse
Affiliation(s)
- Rafael V. Davalos
- School of Biomedical Engineering and SciencesVirginia TechBlacksburgVirginia
| | - Suyashree Bhonsle
- School of Biomedical Engineering and SciencesVirginia TechBlacksburgVirginia
| | | |
Collapse
|
34
|
Planning irreversible electroporation in the porcine kidney: are numerical simulations reliable for predicting empiric ablation outcomes? Cardiovasc Intervent Radiol 2014; 38:182-90. [PMID: 24831827 DOI: 10.1007/s00270-014-0905-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 04/02/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE Numerical simulations are used for treatment planning in clinical applications of irreversible electroporation (IRE) to determine ablation size and shape. To assess the reliability of simulations for treatment planning, we compared simulation results with empiric outcomes of renal IRE using computed tomography (CT) and histology in an animal model. METHODS The ablation size and shape for six different IRE parameter sets (70-90 pulses, 2,000-2,700 V, 70-100 µs) for monopolar and bipolar electrodes was simulated using a numerical model. Employing these treatment parameters, 35 CT-guided IRE ablations were created in both kidneys of six pigs and followed up with CT immediately and after 24 h. Histopathology was analyzed from postablation day 1. RESULTS Ablation zones on CT measured 81 ± 18 % (day 0, p ≤ 0.05) and 115 ± 18 % (day 1, p ≤ 0.09) of the simulated size for monopolar electrodes, and 190 ± 33 % (day 0, p ≤ 0.001) and 234 ± 12 % (day 1, p ≤ 0.0001) for bipolar electrodes. Histopathology indicated smaller ablation zones than simulated (71 ± 41 %, p ≤ 0.047) and measured on CT (47 ± 16 %, p ≤ 0.005) with complete ablation of kidney parenchyma within the central zone and incomplete ablation in the periphery. CONCLUSION Both numerical simulations for planning renal IRE and CT measurements may overestimate the size of ablation compared to histology, and ablation effects may be incomplete in the periphery.
Collapse
|
35
|
Nanoknife and Hepatic Embolization for Colorectal Cancer Liver Metastases. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-013-0202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Silk MT, Wimmer T, Lee KS, Srimathveeravalli G, Brown KT, Kingham PT, Fong Y, Durack JC, Sofocleous CT, Solomon SB. Percutaneous ablation of peribiliary tumors with irreversible electroporation. J Vasc Interv Radiol 2013; 25:112-8. [PMID: 24262034 DOI: 10.1016/j.jvir.2013.10.012] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 10/11/2013] [Accepted: 10/11/2013] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To assess biliary complications after irreversible electroporation (IRE) ablation of hepatic tumors located < 1 cm from major bile ducts. MATERIALS AND METHODS A retrospective review was conducted of all percutaneous IRE ablations of hepatic tumors within 1 cm of the common, left, or right hepatic ducts at a single institution from January 2011 to September 2012. Computed tomography imaging performed before and after treatment was examined for evidence of bile duct dilatation, stricture, or leakage. Serum bilirubin and alkaline phosphatase levels were analyzed for evidence of biliary injury. RESULTS There were 22 hepatic metastases in 11 patients with at least one tumor within 1 cm of the common, left, or right hepatic duct that were treated with IRE ablations in 15 sessions. Median tumor size treated was 3.0 cm (mean, 2.8 cm ± 1.2, range, 1.0-4.7 cm). Laboratory values obtained after IRE were considered abnormal after four treatment sessions in three patients (bilirubin, 2.6-17.6 mg/dL; alkaline phosphatase, 130-1,035 U/L); these abnormal values were transient in two sessions. Two patients had prolonged elevation of values, and one required stent placement; both of these conditions appeared to be secondary to tumor progression rather than bile duct injury. CONCLUSIONS This clinical experience suggests that IRE may be a treatment option for centrally located liver tumors with margins adjacent to major bile ducts where thermal ablation techniques are contraindicated. Further studies with extended follow-up periods are necessary to establish the safety profile of IRE in this setting.
Collapse
Affiliation(s)
- Mikhail T Silk
- Interventional Radiology Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 444 East 68th Street, New York, NY 10065.
| | - Thomas Wimmer
- Interventional Radiology Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 444 East 68th Street, New York, NY 10065; Department of Radiology, Medical University of Graz, Graz, Austria
| | - Kyungmouk S Lee
- Interventional Radiology Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 444 East 68th Street, New York, NY 10065
| | - Govindarajan Srimathveeravalli
- Interventional Radiology Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 444 East 68th Street, New York, NY 10065
| | - Karren T Brown
- Interventional Radiology Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 444 East 68th Street, New York, NY 10065
| | - Peter T Kingham
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, 444 East 68th Street, New York, NY 10065
| | - Yuman Fong
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, 444 East 68th Street, New York, NY 10065
| | - Jeremy C Durack
- Interventional Radiology Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 444 East 68th Street, New York, NY 10065
| | - Constantinos T Sofocleous
- Interventional Radiology Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 444 East 68th Street, New York, NY 10065
| | - Stephen B Solomon
- Interventional Radiology Service, Department of Radiology, Memorial Sloan-Kettering Cancer Center, 444 East 68th Street, New York, NY 10065
| |
Collapse
|