1
|
Lian Y, Jia YJ, Wong J, Zhou XF, Song W, Guo J, Masters CL, Wang YJ. Clarity on the blazing trail: clearing the way for amyloid-removing therapies for Alzheimer's disease. Mol Psychiatry 2024; 29:297-305. [PMID: 38001337 DOI: 10.1038/s41380-023-02324-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a complex pathogenesis. Senile plaques composed of the amyloid-β (Aβ) peptide in the brain are the core hallmarks of AD and a promising target for the development of disease-modifying therapies. However, over the past 20 years, the failures of clinical trials directed at Aβ clearance have fueled a debate as to whether Aβ is the principal pathogenic factor in AD and a valid therapeutic target. The success of the recent phase 3 trials of lecanemab (Clarity AD) and donanemab (Trailblazer Alz2), and lessons from previous Aβ clearance trials provide critical evidence to support the role of Aβ in AD pathogenesis and suggest that targeting Aβ clearance is heading in the right direction for AD treatment. Here, we analyze key questions relating to the efficacy of Aβ targeting therapies, and provide perspectives on early intervention, adequate Aβ removal, sufficient treatment period, and combinatory therapeutics, which may be required to achieve the best cognitive benefits in future trials in the real world.
Collapse
Affiliation(s)
- Yan Lian
- Department of Prevention and Health Care, Daping Hospital, Third Military Medical University, Chongqing, China
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
- Key Laboratory of Ageing and Brain Disease, Chongqing, China
| | - Yu-Juan Jia
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Joelyn Wong
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences and Sansom Institute, Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Weihong Song
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province. Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Junhong Guo
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, China.
| | - Colin L Masters
- The Florey Institute, The University of Melbourne, Parkville, VIC, Australia.
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China.
- Key Laboratory of Ageing and Brain Disease, Chongqing, China.
| |
Collapse
|
2
|
Izuo N, Shimizu T, Murakami K, Irie K. [Development of a Novel Alzheimer's Disease Model Based on the Theory of the Toxic-conformer of Amyloid β]. YAKUGAKU ZASSHI 2021; 141:843-849. [PMID: 34078792 DOI: 10.1248/yakushi.20-00251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Development of therapeutics for Alzheimer's disease (AD) is an urgent research task. Amyloid β (Aβ) is one of the causative proteins of AD. Irie et al. identified a toxic conformer among the various structures of 42-mer Aβ (Aβ42). This conformer, which possesses a turn structure at the positions Glu22-Asp23, exhibits rapid oligomerization and potent neurotoxicity. By the generation of conformationally-specific antibodies against this toxic conformer of Aβ, elevation of the toxic conformer in the AD brain was strongly suggested. To investigate the pathogenic role of the toxic conformer in AD, passive immunization experiments against conventional AD model mice were conducted. Specific antibody administration improved the behavioral abnormalities observed in AD model mice without affecting senile plaque pathology. Next, knock-in mice exclusively producing the toxic conformer of Aβ were generated. These mice exhibited cognitive dysfunction and oligomerization of Aβ, which preceded the onset of the plaque deposition. Taken together, the toxic conformer of Aβ is confirmed to be involved in the pathogenesis of AD, and our knock-in mice could be useful in analyzing the Aβ oligomer-related pathology of AD.
Collapse
Affiliation(s)
- Naotaka Izuo
- The Graduate School of Medicine, Chiba University
| | | | - Kazuma Murakami
- The Graduate School of Agricultural Sciences, Kyoto University
| | - Kazuhiro Irie
- The Graduate School of Agricultural Sciences, Kyoto University
| |
Collapse
|
3
|
Aggregation Mechanism of Alzheimer's Amyloid β-Peptide Mediated by α-Strand/α-Sheet Structure. Int J Mol Sci 2020; 21:ijms21031094. [PMID: 32046006 PMCID: PMC7038184 DOI: 10.3390/ijms21031094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and a widespread form of dementia. Aggregated forms of the amyloid β-peptide (Aβ) are identified as a toxic species responsible for neuronal damage in AD. Extensive research has been conducted to reveal the aggregation mechanism of Aβ. However, the structure of pathological aggregates and the mechanism of aggregation are not well understood. Recently, experimental studies have confirmed that the α-sheet structure in Aβ drives aggregation and toxicity in AD. However, how the α-sheet structure is formed in Aβ and how it contributes to Aβ aggregation remains elusive. In the present study, molecular dynamics simulations suggest that Aβ adopts the α-strand conformation by peptide-plane flipping. Multiple α-strands interact through hydrogen bonding to form α-sheets. This structure acts as a nucleus that initiates and promotes aggregation and fibrillation of Aβ. Our findings are supported by previous experimental as well as theoretical studies. This study provides valuable structural insights for the design of anti-AD drugs exploiting the α-strand/α-sheet structure.
Collapse
|
4
|
Kim J, Funayama S, Izuo N, Shimizu T. Dietary supplementation of a high-temperature-processed green tea extract attenuates cognitive impairment in PS2 and Tg2576 mice. Biosci Biotechnol Biochem 2019; 83:2364-2371. [PMID: 31462168 DOI: 10.1080/09168451.2019.1659721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Green tea intake is generally recognized as an effective supplement that promotes mental clarity and cognitive function. These health benefits of green tea have been attributed mainly to its effective component, epigallocatechin gallate (EGCG). Because various catechin derivatives potently enhance these health benefits, we manipulated the extraction process with a high-temperature intervention. High-temperature-processed green tea extract (HTP-GTE) showed an elevated proportion of gallocatechin gallate (GCG) content. To investigate the preventive effects of HTP-GTE on cognitive decline, we found its neuroprotective effects against amyloid β (Aβ)-induced neurotoxicity in neurons and clarified that GCG significantly inhibited Aβ aggregation in vitro. Moreover, we showed that HTP-GTE intake attenuated several cognitive-decline phenotypes in a model mouse of Alzheimer's disease. These beneficial effects of HTP-GTE against cognitive decline were due to the distinctive composition of the extract and suggest the possibility that HTP-GTE supplementation could attenuate cognitive decline of Alzheimer's disease.
Collapse
Affiliation(s)
- Juewon Kim
- Department of Endocrinolog, Hematology, and Geriatrics, Chiba University Graduate School of Medicine, Chiba, Japan.,Vital Beautie Research Division, Amorepacific R&D Center, Gyeonggi-do, Republic of Korea
| | - Shinichiro Funayama
- Department of Endocrinolog, Hematology, and Geriatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Naotaka Izuo
- Department of Endocrinolog, Hematology, and Geriatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Takahiko Shimizu
- Department of Endocrinolog, Hematology, and Geriatrics, Chiba University Graduate School of Medicine, Chiba, Japan.,Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
5
|
Izuo N, Murakami K, Fujihara Y, Maeda M, Saito T, Saido TC, Irie K, Shimizu T. An App knock-in mouse inducing the formation of a toxic conformer of Aβ as a model for evaluating only oligomer-induced cognitive decline in Alzheimer's disease. Biochem Biophys Res Commun 2019; 515:462-467. [PMID: 31164199 DOI: 10.1016/j.bbrc.2019.05.131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 05/19/2019] [Indexed: 12/27/2022]
Abstract
Irie and colleagues identified a "toxic conformer", which possesses a turn structure at positions 22-23, among various conformations of Aβ and have been reporting its potent oligomeric capacity and neurotoxicity. This toxic conformer was detected in the brains of AD patients and AD model mice (Tg2576 line), and passive immunization targeting this conformer ameliorated the cognitive dysfunction in an AD model. In this study, we developed a novel AD mouse model (AppNL-P-F/NL-P-F) with Swedish mutation (NL), Iberian mutation (F), and mutation (P) overproducing E22P-Aβ, a mimic of the toxic conformer, utilizing the knock-in technique that well recapitulates the Aβ pathology of AD patients in mice and avoids the artificial phenotype observed in transgenic-type model mice. We confirmed that AppNL-P-F/NL-P-F mice produce Aβ by ELISA and accumulate senile plaques by immunohistochemistry at eight months of age. In WB, we observed a potential trimer band and high molecular-weight oligomer bands without a monomeric band in the TBS-soluble fraction of AppNL-P-F/NL-P-F mice at six months of age. In the novel object recognition test, cognitive impairment was observed at six months of age in these mice. These findings suggest that the toxic conformer of Aβ induces cognitive dysfunction mediated by its oligomer formation in this mouse brain. AppNL-P-F/NL-P-F mice may be a useful model for evaluating Aβ oligomer-induced cognitive impairment in AD and will aid in exploring therapeutic targets for AD pathology.
Collapse
Affiliation(s)
- Naotaka Izuo
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan; Vascular Neurodegeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, Melbourne University, VIC, Australia
| | - Kazuma Murakami
- Division of Food Science & Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan; Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Masahiro Maeda
- Immuno-Biological Laboratories Co, Ltd, Fujioka-shi, Gumma, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Saitama, Japan
| | - Kazuhiro Irie
- Division of Food Science & Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takahiko Shimizu
- Department of Endocrinology, Hematology and Gerontology, Chiba University Graduate School of Medicine, Chiba, Japan; Department of Mechanism of Aging, National Center for Geriatrics and Gerontology, Obu, Japan.
| |
Collapse
|
6
|
Majolo F, Marinowic DR, Machado DC, Da Costa JC. Important advances in Alzheimer's disease from the use of induced pluripotent stem cells. J Biomed Sci 2019; 26:15. [PMID: 30728025 PMCID: PMC6366077 DOI: 10.1186/s12929-019-0501-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
Among the various types of dementia, Alzheimer’s disease (AD) is the most prevalent and is clinically defined as the appearance of progressive deficits in cognition and memory. Considering that AD is a central nervous system disease, getting tissue from the patient to study the disease before death is challenging. The discovery of the technique called induced pluripotent stem cells (iPSCs) allows to reprogram the patient’s somatic cells to a pluripotent state by the forced expression of a defined set of transcription factors. Many studies have shown promising results and made important conclusions beyond AD using iPSCs approach. Due to the accumulating knowledge related to this topic and the important advances obtained until now, we review, using PubMed, and present an update of all publications related to AD from the use of iPSCs. The first iPSCs generated for AD were carried out in 2011 by Yahata et al. (PLoS One 6:e25788, 2011) and Yaqi et al. (Hum Mol Genet 20:4530–9, 2011). Like other authors, both authors used iPSCs as a pre-clinical tool for screening therapeutic compounds. This approach is also essential to model AD, testing early toxicity and efficacy, and developing a platform for drug development. Considering that the iPSCs technique is relatively recent, we can consider that the AD field received valuable contributions from iPSCs models, contributing to our understanding and the treatment of this devastating disorder.
Collapse
Affiliation(s)
- Fernanda Majolo
- Brain Institute of Rio Grande do Sul (BraIns), Postgraduate Program in Medicine and Health Sciences (PUCRS), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610000, Brazil.
| | - Daniel Rodrigo Marinowic
- Brain Institute of Rio Grande do Sul (BraIns), Postgraduate Program in Medicine and Health Sciences (PUCRS), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610000, Brazil
| | - Denise Cantarelli Machado
- Brain Institute of Rio Grande do Sul (BraIns), Postgraduate Program in Medicine and Health Sciences (PUCRS), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610000, Brazil
| | - Jaderson Costa Da Costa
- Brain Institute of Rio Grande do Sul (BraIns), Postgraduate Program in Medicine and Health Sciences (PUCRS), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, 90610000, Brazil
| |
Collapse
|
7
|
Menadione sodium bisulfite inhibits the toxic aggregation of amyloid-β(1–42). Biochim Biophys Acta Gen Subj 2018; 1862:2226-2235. [DOI: 10.1016/j.bbagen.2018.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/22/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
|
8
|
Akiba C, Nakajima M, Miyajima M, Ogino I, Motoi Y, Kawamura K, Adachi S, Kondo A, Sugano H, Tokuda T, Irie K, Arai H. Change of Amyloid-β 1-42 Toxic Conformer Ratio After Cerebrospinal Fluid Diversion Predicts Long-Term Cognitive Outcome in Patients with Idiopathic Normal Pressure Hydrocephalus. J Alzheimers Dis 2018; 63:989-1002. [PMID: 29710721 PMCID: PMC6004932 DOI: 10.3233/jad-180059] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2018] [Indexed: 01/14/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) pathology in idiopathic normal pressure hydrocephalus (iNPH) contributes to poor shunt responses. Amyloid-β 1- 42 (Aβ42) toxic conformer was recently identified with features of rapid oligomerization, strong neurotoxicity and synaptotoxicity. OBJECTIVE This observational study points to Aβ42 toxic conformer as a biomarker for AD pathology and for poor postoperative prognosis in patients with iNPH. METHODS The first cohort consisted of patients with AD (n = 17) and iNPH (n = 17), and cognitively normal individuals (CN, n = 12). The second cohort, consisted of 51 patients with iNPH, was divided into two groups according to phosphorylated Tau (pTau) level (low- and high-pTau groups); the low-pTau group was further subdivided according to one-year postoperative change in Aβ42 toxic conformer ratio (%) [Aβ42 toxic conformer/Aβ42×100] (decreased- and increased-conformer subgroups). Enzyme-linked immunosorbent assay was used to measure pTau, Aβ42, and Aβ42 toxic conformer in cerebrospinal fluid. Outcomes were evaluated using neuropsychological tests one- and two-years postoperatively. RESULTS In the first cohort, Aβ42 toxic conformer ratio in the iNPH group (10.8%) was significantly higher than that in the CN group (6.3%) and significantly lower than that in the AD group (17.2%). In the second cohort, the high-pTau group showed cognitive decline two-years postoperatively compared to baseline. However, the low-pTau group showed favorable outcomes one-year postoperatively; furthermore, the increased-conformer subgroup showed cognitive decline two-years postoperatively while the decreased-conformer subgroup maintained the improvement. CONCLUSIONS Change in Aβ42 toxic conformer ratio predicts long-term cognitive outcome in iNPH, even in the low-pTau group.
Collapse
Affiliation(s)
- Chihiro Akiba
- Department of Neurosurgery, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Madoka Nakajima
- Department of Neurosurgery, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Masakazu Miyajima
- Department of Neurosurgery, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Ikuko Ogino
- Department of Neurosurgery, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Yumiko Motoi
- Department of Neurology, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Kaito Kawamura
- Department of Neurosurgery, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Satoshi Adachi
- Department of Neurosurgery, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Akihide Kondo
- Department of Neurosurgery, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Hidenori Sugano
- Department of Neurosurgery, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Takahiko Tokuda
- Department of Neurology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
- Department of Molecular Pathobiology of Brain Diseases, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hajime Arai
- Department of Neurosurgery, Juntendo University, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
9
|
A Toxic Conformer of Aβ42 with a Turn at 22-23 is a Novel Therapeutic Target for Alzheimer's Disease. Sci Rep 2017; 7:11811. [PMID: 28924167 PMCID: PMC5603611 DOI: 10.1038/s41598-017-11671-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy targeting Aβ42 is drawing attention as a possible therapeutic approach for Alzheimer’s disease (AD). Considering the significance of reported oligomerized Aβ42 species, selective targeting of the oligomer will increase the therapeutic efficacy. However, what kinds of oligomers are suitable targets for immunotherapy remains unclear. We previously identified a toxic conformer of Aβ42, which has a turn structure at 22–23 (“toxic turn”), among Aβ42 conformations. This toxic conformer of Aβ42 has been reported to show rapid oligomerization and to exhibit strong neurotoxicity and synaptotoxicity. We recently developed a monoclonal antibody against the toxic conformer (24B3), which demonstrated the increase of the toxic conformer in the cerebrospinal fluid of AD patients, indicating its accumulation in AD patients’ brains. In this study, we evaluated the therapeutic efficacy of 24B3 targeting the toxic conformer in AD model mice. The intraperitoneal administration of 24B3 for 3 months improved cognitive impairment and reduced the toxic conformer levels. Notably, this treatment did not reduce the number of senile plaques. Furthermore, the single intravenous administration of 24B3 suppressed the memory deficit in AD mice. These results suggest that the toxic conformer of Aβ42 with a turn at 22–23 represents one of the promising therapeutic targets.
Collapse
|
10
|
Liu N, Zhuang Y, Zhou Z, Zhao J, Chen Q, Zheng J. NF-κB dependent up-regulation of TRPC6 by Aβ in BV-2 microglia cells increases COX-2 expression and contributes to hippocampus neuron damage. Neurosci Lett 2017; 651:1-8. [PMID: 28458019 DOI: 10.1016/j.neulet.2017.04.056] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/15/2017] [Accepted: 04/27/2017] [Indexed: 01/26/2023]
Abstract
The deposition of amyloid β-protein (Aβ) has been involved in neurodegeneration of Alzheimer's disease (AD). Besides Aβ plaques and neuronal loss, microglia activation is also common in AD patient brains, suggesting its important role in the pathogenesis of AD. Although activation of microglia by Aβ plaques has been demonstrated, the mechanism underlying it is still largely unclear. Here, we found that TRPC6 has a crucial role in microglia activation by Aβ. Aβ up-regulates the level of TRPC6 via NF-κB in BV-2 microglia and increases the expression of pro-inflammatory factors and oxidative enzyme, COX-2. Knock-down of TRPC6 reduces the Aβ-induced expression of pro-inflammatory factors and COX-2 and the damage of hippocampus neurons. Furthermore, inhibition of COX-2 also protects hippocampus neurons from Aβ-induced inflammatory damage. Collectively, our studies suggest that Aβ increase the expression of TRPC6 via NF-κB in BV-2 microglia and promotes the production of COX-2, which induces hippocampus neuron damage.
Collapse
Affiliation(s)
- Na Liu
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Yuansu Zhuang
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Zhikui Zhou
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Jinhua Zhao
- Department of Neurology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Qiaoyun Chen
- Department of Central Laboratory, The Affiliated People's Hospital of Jiangsu University, Zhenjiang 212000, Jiangsu, China
| | - Jinxu Zheng
- Department of Respiratory, Affiliated Hospital of Jiangsu University, 81 Jiangbin Road, Zhenjiang 212001, Jiangsu, China.
| |
Collapse
|
11
|
Barrera Guisasola EE, Andujar SA, Hubin E, Broersen K, Kraan IM, Méndez L, Delpiccolo CM, Masman MF, Rodríguez AM, Enriz RD. New mimetic peptides inhibitors of Αβ aggregation. Molecular guidance for rational drug design. Eur J Med Chem 2015; 95:136-52. [DOI: 10.1016/j.ejmech.2015.03.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
|
12
|
Murakami K. Conformation-specific antibodies to target amyloid β oligomers and their application to immunotherapy for Alzheimer's disease. Biosci Biotechnol Biochem 2015; 78:1293-305. [PMID: 25130729 DOI: 10.1080/09168451.2014.940275] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Amyloid β-protein (Aβ) oligomers, intermediates of Aβ aggregation, cause cognitive impairment and synaptotoxicity in the pathogenesis of Alzheimer's disease (AD). Immunotherapy using anti-Aβ antibody is one of the most promising approaches for AD treatment. However, most clinical trials using conventional sequence-specific antibodies have proceeded with difficulty. This is probably due to the unintended removal of the non-pathological monomer and fibrils of Aβ as well as the pathological oligomers by these antibodies that recognize Aβ sequence, which is not involved in synaptotoxicity. Several efforts have been made recently to develop conformation-specific antibodies that target the tertiary structure of Aβ oligomers. Here, we review the recent findings of Aβ oligomers and anti-Aβ antibodies including our own, and discuss their potential as therapeutic and diagnostic tools.
Collapse
Affiliation(s)
- Kazuma Murakami
- a Division of Food Science and Biotechnology , Graduate School of Agriculture, Kyoto University , Kyoto , Japan
| |
Collapse
|
13
|
Davies HA, Madine J, Middleton DA. Comparisons with amyloid-β reveal an aspartate residue that stabilizes fibrils of the aortic amyloid peptide medin. J Biol Chem 2015; 290:7791-803. [PMID: 25614623 PMCID: PMC4367279 DOI: 10.1074/jbc.m114.602177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/19/2015] [Indexed: 11/16/2022] Open
Abstract
Aortic medial amyloid (AMA) is the most common localized human amyloid, occurring in virtually all of the Caucasian population over the age of 50. The main protein component of AMA, medin, readily assembles into amyloid-like fibrils in vitro. Despite the prevalence of AMA, little is known about the self-assembly mechanism of medin or the molecular architecture of the fibrils. The amino acid sequence of medin is strikingly similar to the sequence of the Alzheimer disease (AD) amyloid-β (Aβ) polypeptides around the structural turn region of Aβ, where mutations associated with familial, early onset AD, have been identified. Asp(25) and Lys(30) of medin align with residues Asp(23) and Lys(28) of Aβ, which are known to form a stabilizing salt bridge in some fibril morphologies. Here we show that substituting Asp(25) of medin with asparagine (D25N) impedes assembly into fibrils and stabilizes non-cytotoxic oligomers. Wild-type medin, by contrast, aggregates into β-sheet-rich amyloid-like fibrils within 50 h. A structural analysis of wild-type fibrils by solid-state NMR suggests a molecular repeat unit comprising at least two extended β-strands, separated by a turn stabilized by a Asp(25)-Lys(30) salt bridge. We propose that Asp(25) drives the assembly of medin by stabilizing the fibrillar conformation of the peptide and is thus reminiscent of the influence of Asp(23) on the aggregation of Aβ. Pharmacological comparisons of wild-type medin and D25N will help to ascertain the pathological significance of this poorly understood protein.
Collapse
Affiliation(s)
- Hannah A Davies
- From the Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom and
| | - Jillian Madine
- From the Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, United Kingdom and
| | - David A Middleton
- the Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
14
|
Cacabelos R, Cacabelos P, Torrellas C, Tellado I, Carril JC. Pharmacogenomics of Alzheimer's disease: novel therapeutic strategies for drug development. Methods Mol Biol 2014; 1175:323-556. [PMID: 25150875 DOI: 10.1007/978-1-4939-0956-8_13] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a major problem of health and disability, with a relevant economic impact on our society. Despite important advances in pathogenesis, diagnosis, and treatment, its primary causes still remain elusive, accurate biomarkers are not well characterized, and the available pharmacological treatments are not cost-effective. As a complex disorder, AD is a polygenic and multifactorial clinical entity in which hundreds of defective genes distributed across the human genome may contribute to its pathogenesis. Diverse environmental factors, cerebrovascular dysfunction, and epigenetic phenomena, together with structural and functional genomic dysfunctions, lead to amyloid deposition, neurofibrillary tangle formation, and premature neuronal death, the major neuropathological hallmarks of AD. Future perspectives for the global management of AD predict that genomics and proteomics may help in the search for reliable biomarkers. In practical terms, the therapeutic response to conventional drugs (cholinesterase inhibitors, multifactorial strategies) is genotype-specific. Genomic factors potentially involved in AD pharmacogenomics include at least five categories of gene clusters: (1) genes associated with disease pathogenesis; (2) genes associated with the mechanism of action of drugs; (3) genes associated with drug metabolism (phase I and II reactions); (4) genes associated with drug transporters; and (5) pleiotropic genes involved in multifaceted cascades and metabolic reactions. The implementation of pharmacogenomic strategies will contribute to optimize drug development and therapeutics in AD and related disorders.
Collapse
Affiliation(s)
- Ramón Cacabelos
- Chair of Genomic Medicine, Camilo José Cela University, 28692, Villanueva de la Cañada, Madrid, Spain,
| | | | | | | | | |
Collapse
|
15
|
Kobori T, Harada S, Nakamoto K, Tokuyama S. Involvement of PtdIns(4,5)P2 in the regulatory mechanism of small intestinal P-glycoprotein expression. J Pharm Sci 2013; 103:743-51. [PMID: 24311454 DOI: 10.1002/jps.23811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/07/2013] [Accepted: 11/18/2013] [Indexed: 11/11/2022]
Abstract
Previously, we reported that repeated oral administration of etoposide (ETP) activates the ezrin/radixin/moesin (ERM) scaffold proteins for P-glycoprotein (P-gp) via Ras homolog gene family member A (RhoA)/Rho-associated coiled-coil containing protein kinase (ROCK) signaling, leading to increased ileal P-gp expression. Recent studies indicate that phosphatidyl inositol 4,5-bisphosphate [PtdIns(4,5)P2] regulates the plasma-membrane localization of certain proteins, and its synthase, the type I phosphatidyl inositol 4-phosphate 5-kinase (PI4P5K), is largely controlled by RhoA/ROCK. Here, we examined whether PtdIns(4,5)P2 and PI4P5K are involved in the increased expression of ileal P-gp following the ERM activation by ETP treatment. Male ddY mice (4-week-old) were treated with ETP (10 mg/kg/day, per os, p.o.) for 5 days. Protein-expression levels were measured by either western blot or dot blot analysis and molecular interactions were assessed using immunoprecipitation assays. ETP treatment significantly increased PI4P5K, ERM, and P-gp expression in the ileal membrane. This effect was suppressed following the coadministration of ETP with rosuvastatin (a RhoA inhibitor) or fasudil (a ROCK inhibitor). Notably, the PtdIns(4,5)P2 expression in the ileal membrane, as well as both P-gp and ERM levels coimmunoprecipitated with anti-PtdIns(4,5)P2 antibody, were increased by ETP treatment. PtdIns(4,5)P2 and PI4P5K may contribute to the increase in ileal P-gp expression observed following the ETP treatment, possibly through ERM activation via the RhoA/ROCK pathway.
Collapse
Affiliation(s)
- Takuro Kobori
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Japan
| | | | | | | |
Collapse
|