1
|
WWOX and Its Binding Proteins in Neurodegeneration. Cells 2021; 10:cells10071781. [PMID: 34359949 PMCID: PMC8304785 DOI: 10.3390/cells10071781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023] Open
Abstract
WW domain-containing oxidoreductase (WWOX) is known as one of the risk factors for Alzheimer's disease (AD), a neurodegenerative disease. WWOX binds Tau via its C-terminal SDR domain and interacts with Tau phosphorylating enzymes ERK, JNK, and GSK-3β, and thereby limits AD progression. Loss of WWOX in newborns leads to severe neural diseases and early death. Gradual loss of WWOX protein in the hippocampus and cortex starting from middle age may slowly induce aggregation of a protein cascade that ultimately causes accumulation of extracellular amyloid beta plaques and intracellular tau tangles, along with reduction in inhibitory GABAergic interneurons, in AD patients over 70 years old. Age-related increases in pS14-WWOX accumulation in the brain promotes neuronal degeneration. Suppression of Ser14 phosphorylation by a small peptide Zfra leads to enhanced protein degradation, reduction in NF-κB-mediated inflammation, and restoration of memory loss in triple transgenic mice for AD. Intriguingly, tumor suppressors p53 and WWOX may counteract each other in vivo, which leads to upregulation of AD-related protein aggregation in the brain and lung. WWOX has numerous binding proteins. We reported that the stronger the binding between WWOX and its partners, the better the suppression of cancer growth and reduction in inflammation. In this regard, the stronger complex formation between WWOX and partners may provide a better blockade of AD progression. In this review, we describe whether and how WWOX and partner proteins control inflammatory response and protein aggregation and thereby limit AD progression.
Collapse
|
2
|
Angiomotin Counteracts the Negative Regulatory Effect of Host WWOX on Viral PPxY-Mediated Egress. J Virol 2021; 95:JVI.00121-21. [PMID: 33536174 PMCID: PMC8103691 DOI: 10.1128/jvi.00121-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Filoviridae family members Ebola (EBOV) and Marburg (MARV) viruses and Arenaviridae family member Lassa virus (LASV) are emerging pathogens that can cause hemorrhagic fever and high rates of mortality in humans. A better understanding of the interplay between these viruses and the host will inform about the biology of these pathogens, and may lead to the identification of new targets for therapeutic development. Notably, expression of the filovirus VP40 and LASV Z matrix proteins alone drives assembly and egress of virus-like particles (VLPs). The conserved PPxY Late (L) domain motifs in the filovirus VP40 and LASV Z proteins play a key role in the budding process by mediating interactions with select host WW-domain containing proteins that then regulate virus egress and spread. To identify the full complement of host WW-domain interactors, we utilized WT and PPxY mutant peptides from EBOV and MARV VP40 and LASV Z proteins to screen an array of GST-WW-domain fusion proteins. We identified WW domain-containing oxidoreductase (WWOX) as a novel PPxY-dependent interactor, and we went on to show that full-length WWOX physically interacts with eVP40, mVP40 and LASV Z to negatively regulate egress of VLPs and of a live VSV/Ebola recombinant virus (M40). Interestingly, WWOX is a versatile host protein that regulates multiple signaling pathways and cellular processes via modular interactions between its WW-domains and PPxY motifs of select interacting partners, including host angiomotin (AMOT). Notably, we demonstrated recently that expression of endogenous AMOT not only positively regulates egress of VLPs, but also promotes egress and spread of live EBOV and MARV. Toward the mechanism of action, we show that the competitive and modular interplay among WWOX-AMOT-VP40/Z regulates VLP and M40 virus egress. Thus, WWOX is the newest member of an emerging group of host WW-domain interactors (e.g. BAG3; YAP/TAZ) that negatively regulate viral egress. These findings further highlight the complex interplay of virus-host PPxY/WW-domain interactions and their potential impact on the biology of both the virus and the host during infection.Author Summary Filoviruses (Ebola [EBOV] and Marburg [MARV]) and arenavirus (Lassa virus; LASV) are zoonotic, emerging pathogens that cause outbreaks of severe hemorrhagic fever in humans. A fundamental understanding of the virus-host interface is critical for understanding the biology of these viruses and for developing future strategies for therapeutic intervention. Here, we identified host WW-domain containing protein WWOX as a novel interactor with VP40 and Z, and showed that WWOX inhibited budding of VP40/Z virus-like particles (VLPs) and live virus in a PPxY/WW-domain dependent manner. Our findings are important to the field as they expand the repertoire of host interactors found to regulate PPxY-mediated budding of RNA viruses, and further highlight the competitive interplay and modular virus-host interactions that impact both the virus lifecycle and the host cell.
Collapse
|
3
|
Ubiquitin Ligase SMURF2 Interacts with Filovirus VP40 and Promotes Egress of VP40 VLPs. Viruses 2021; 13:v13020288. [PMID: 33673144 PMCID: PMC7918931 DOI: 10.3390/v13020288] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 01/17/2023] Open
Abstract
Filoviruses Ebola (EBOV) and Marburg (MARV) are devastating high-priority pathogens capable of causing explosive outbreaks with high human mortality rates. The matrix proteins of EBOV and MARV, as well as eVP40 and mVP40, respectively, are the key viral proteins that drive virus assembly and egress and can bud independently from cells in the form of virus-like particles (VLPs). The matrix proteins utilize proline-rich Late (L) domain motifs (e.g., PPxY) to hijack specific host proteins that contain WW domains, such as the HECT family E3 ligases, to facilitate the last step of virus–cell separation. We identified E3 ubiquitin ligase Smad Ubiquitin Regulatory Factor 2 (SMURF2) as a novel interactor with VP40 that positively regulates VP40 VLP release. Our results show that eVP40 and mVP40 interact with the three WW domains of SMURF2 via their PPxY motifs. We provide evidence that the eVP40–SMURF2 interaction is functional as the expression of SMURF2 positively regulates VLP egress, while siRNA knockdown of endogenous SMURF2 decreases VLP budding compared to controls. In sum, our identification of novel interactor SMURF2 adds to the growing list of identified host proteins that can regulate PPxY-mediated egress of VP40 VLPs. A more comprehensive understanding of the modular interplay between filovirus VP40 and host proteins may lead to the development of new therapies to combat these deadly infections.
Collapse
|
4
|
Abstract
The WW domain is a modular protein structure that recognizes the proline-rich Pro-Pro-x-Tyr (PPxY) motif contained in specific target proteins. The compact modular nature of the WW domain makes it ideal for mediating interactions between proteins in complex networks and signaling pathways of the cell (e.g. the Hippo pathway). As a result, WW domains play key roles in a plethora of both normal and disease processes. Intriguingly, RNA and DNA viruses have evolved strategies to hijack cellular WW domain-containing proteins and thereby exploit the modular functions of these host proteins for various steps of the virus life cycle, including entry, replication, and egress. In this review, we summarize key findings in this rapidly expanding field, in which new virus-host interactions continue to be identified. Further unraveling of the molecular aspects of these crucial virus-host interactions will continue to enhance our fundamental understanding of the biology and pathogenesis of these viruses. We anticipate that additional insights into these interactions will help support strategies to develop a new class of small-molecule inhibitors of viral PPxY-host WW-domain interactions that could be used as antiviral therapeutics.
Collapse
Affiliation(s)
- Ariel Shepley-McTaggart
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hao Fan
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671.,Department of Biological Sciences (DBS), National University of Singapore, Singapore 119077.,Center for Computational Biology, DUKE-NUS Medical School, Singapore 169857
| | - Marius Sudol
- Department of Physiology, National University of Singapore, Singapore 119077.,Laboratory of Cancer Signaling and Domainopathies, Yong Loo Li School of Medicine, Block MD9, 2 Medical Drive #04-01, Singapore 117597.,Mechanobiology Institute, T-Lab, 5A Engineering Drive 1, Singapore 117411.,Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
5
|
Huang SS, Chang NS. Phosphorylation/de-phosphorylation in specific sites of tumor suppressor WWOX and control of distinct biological events. Exp Biol Med (Maywood) 2018; 243:137-147. [PMID: 29310447 DOI: 10.1177/1535370217752350] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Abnormal differentiation and growth of hematopoietic stem cells cause the development of hematopoietic diseases and hematopoietic malignancies. However, the molecular events underlying leukemia development are not well understood. In our recent study, we have demonstrated that calcium ionophore and phorbol ester force the differentiation of T lymphoblastic leukemia. The event involves a newly identified IκBα/WWOX/ERK signaling, in which WWOX is Ser14 phosphorylated. Additional evidence also reveals that pS14-WWOX is involved in enhancing cancer progression and metastasis and facilitating neurodegeneration. In this mini-review, we update the current knowledge for the functional roles of WWOX under physiological and pathological settings, and provide new insights regarding pS14-WWOX in T leukemia cell maturation, and switching the anticancer pY33-WWOX to pS14-WWOX for cancer promotion and disease progression. Impact statement WWOX was originally designated as a tumor suppressor. However, human newborns deficient in WWOX do not spontaneously develop tumors. Activated WWOX with Tyr33 phosphorylation is present in normal tissues and organs. However, when pY33-WWOX is overly induced under stress conditions, it becomes apoptotic to eliminate damaged cells. Notably, WWOX with Ser14 phosphorylation is upregulated in the lesions of cancer, as well as in the brain hippocampus and cortex with Alzheimer's disease. Suppression of pS14-WWOX by Zfra reduces cancer growth and mitigates Alzheimer's disease progression, suggesting that pS14-WWOX facilitates disease progression. pS14-WWOX can be regarded as a marker of disease progression.
Collapse
Affiliation(s)
- Shenq-Shyang Huang
- 1 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.,2 Graduate Program of Biotechnology in Medicine, Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Nan-Shan Chang
- 1 Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan, ROC.,3 Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA.,4 Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung 40402, Taiwan, ROC
| |
Collapse
|
6
|
Lee HL, Cheng HL, Liu YF, Chou MC, Yang SF, Chou YE. Functional genetic variant of WW domain-containing oxidoreductase (WWOX) gene is associated with hepatocellular carcinoma risk. PLoS One 2017; 12:e0176141. [PMID: 28426730 PMCID: PMC5398630 DOI: 10.1371/journal.pone.0176141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 04/05/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Human WW domain-containing oxidoreductase (WWOX) gene has been identified as a tumor suppressor gene in multiple cancers. We hypothesize that genetic variations in WWOX are associated with HCC risk. METHODOLOGY/PRINCIPAL FINDINGS Five single-nucleotide polymorphisms (SNPs) of the WWOX gene were evaluated from 708 normal controls and 354 patients with HCC. We identified a significant association between a WWOX single nucleotide polymorphism (SNP), rs73569323, and decreased risk of HCC. After adjustment for potential confounders, patients with at least one T allele at rs11545028 of WWOX may have a significantly smaller tumor size, reduced levels of α-fetoprotein and alanine aminotransferase (ALT). Moreover, the A allele at SNP rs12918952 in WWOX conferred higher risk of vascular invasion. Additional in silico analysis also suggests that WWOX rs12918952 polymorphism tends to affect WWOX expression, which in turn contributes to tumor vascular invasion. CONCLUSIONS In conclusion, genetic variations in WWOX may be a significant predictor of early HCC occurrence and a reliable biomarker for disease progression.
Collapse
Affiliation(s)
- Hsiang-Lin Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Deptartment of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsin-Lin Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Fan Liu
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Chih Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Deptartment of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Erh Chou
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- * E-mail:
| |
Collapse
|
7
|
Abstract
Since its discovery in 2000, WW domain-containing oxidoreductase (WWOX, FOR or WOX1) has been considered as a tumor suppressor protein. Global research focus has been aimed mainly toward this direction. In this thematic issue, updated information has been collected regarding the structure, function and signaling of WWOX, along with its critical role as a tumor suppressor and participation in metabolism, neurodegeneration, ataxia, epilepsy, neural disorders, neuronal damages, and interactions with oncogenic viruses. WWOX is not a driver of cancer initiation. Chromosomal alterations in the WWOX gene enhance cancer progression. Importantly, a homozygous nonsense mutation of WWOX gene in humans leads to neural pathologies and early death, rather than spontaneous cancer development. These findings suggest new physiological functions of WWOX in metabolism and neural diseases, and these areas require further investigation.
Collapse
Affiliation(s)
- Nan-Shan Chang
- Experimental Biology and Medicine, Institute of Molecular Medicine, National Cheng Kung University, Tainan, 70101 Taiwan; Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, NY, 13210 USA; Department of Neurochemistry, NYS Institute of Basic Research for Developmental Disabilities, Staten Island, NY, 10314 USA
| |
Collapse
|
8
|
Lin SJ, Wu SW, Chou YC, Lin JH, Huang YC, Chen MR, Ma N, Tsai CH. Novel expression and regulation of TIMP-1 in Epstein Barr virus-infected cells and its impact on cell survival. Virology 2015; 481:24-33. [PMID: 25765004 DOI: 10.1016/j.virol.2015.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/25/2015] [Accepted: 02/10/2015] [Indexed: 11/26/2022]
|
9
|
Chang Y, Lan YY, Hsiao JR, Chang NS. Strategies of oncogenic microbes to deal with WW domain-containing oxidoreductase. Exp Biol Med (Maywood) 2014; 240:329-37. [PMID: 25488911 DOI: 10.1177/1535370214561957] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
WW domain-containing oxidoreductase (WWOX) is a well-documented tumor suppressor protein that controls growth, survival, and metastasis of malignant cells. To counteract WWOX's suppressive effects, cancer cells have developed many strategies either to downregulate WWOX expression or to functionally inactivate WWOX. Relatively unknown is, in the context of those cancers associated with certain viruses or bacteria, how the oncogenic pathogens deal with WWOX. Here we review recent studies showing different strategies utilized by three cancer-associated pathogens. Helicobactor pylori reduces WWOX expression through promoter hypermethylation, an epigenetic mechanism also occurring in many other cancer cells. WWOX has a potential to block canonical NF-κB activation and tumorigenesis induced by Tax, an oncoprotein of human T-cell leukemia virus. Tax successfully overcomes the blockage by inhibiting WWOX expression through activation of the non-canonical NF-κB pathway. On the other hand, latent membrane protein 2A of Epstein-Barr virus physically interacts with WWOX and redirects its function to trigger a signaling pathway that upregulates matrix metalloproteinase 9 and cancer cell invasion. These reports may be just "the tip of the iceberg" regarding multiple interactions between WWOX and oncogenic microbes. Further studies in this direction should expand our understanding of infection-driven oncogenesis.
Collapse
Affiliation(s)
- Yao Chang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70456, Taiwan Graduate Institute of Basic Medical Science, Medical College, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yu-Yan Lan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan 70456, Taiwan Graduate Institute of Basic Medical Science, Medical College, National Cheng Kung University, Tainan 70101, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, Medical College and Hospital, National Cheng Kung University, Tainan 70101, Taiwan
| | - Nan-Shan Chang
- Institute of Molecular Medicine, Medical College, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
10
|
Liu SY, Chiang MF, Chen YJ. Role of WW domain proteins WWOX in development, prognosis, and treatment response of glioma. Exp Biol Med (Maywood) 2014; 240:315-23. [PMID: 25432984 DOI: 10.1177/1535370214561588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and malignant brain tumor. Delicate microenvironment and lineage heterogeneity of GBM cells including infiltration, hypoxia, angiogenesis, and stemness make them highly resistant to current conventional therapies, with an average life expectancy for GBM patients of less than 15 months. Poor response to cytotoxic agents of GBM cells remains the major challenge of GBM treatment. Resistance of GBM to clinical treatment is a result of genomic alternation and deregulated signaling pathways, such as p53 mutation and apoptosis signaling blockage, providing cancer cells more opportunities for survival rather than cell death. WW domain-containing oxidoreductase (WWOX) is a tumor suppressor gene, commonly downregulated in various types of tumors, including GBM. It has been found that the reintroduction of WWOX induced p53-mutant GBM cells to undergo apoptosis, but not in p53 wild-type GBM cells, indicating WWOX is likely to reopen apoptosis pathways in a p53-independent manner in GBM. Identifying the crucial target modulated by WWOX deficiency provides a potential therapeutic target for GBM treatment. Here, we have reviewed the literatures about the role of WWOX in development, signaling pathway, prognosis, and treatment response in malignant glioma.
Collapse
Affiliation(s)
- Shin-Yi Liu
- Department of Medical Research, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Ming-Fu Chiang
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 104, Taiwan Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Jen Chen
- Department of Radiation Oncology, Mackay Memorial Hospital, Taipei 104, Taiwan Graduate Institute of Pharmacology, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
11
|
Role of WWOX and NF-κB in lung cancer progression. TRANSLATIONAL RESPIRATORY MEDICINE 2013; 1:15. [PMID: 27234396 PMCID: PMC4715152 DOI: 10.1186/2213-0802-1-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/04/2013] [Indexed: 01/28/2023]
Abstract
It is generally agreed that the pro-inflammatory, pro-survival transcription factor NF-κB is a tumor promoter. Tumor necrosis factor alpha (TNF-α or TNF) mediates NF-κB activation. Tumor suppressor WWOX (FOR or WOX1) is a downstream effector of the TNF signaling. Thus, activation of both WWOX (FOR or WOX1) and NF-κB may occur during TNF signaling and/or under stress conditions. Indeed, the first WW domain of WWOX induces the activation of NF-κB-responsive promoter without TNF participation. It appears that WWOX counteracts with NF-κB in regulating cell survival and death. For example, WWOX becomes activated with Tyr33 phosphorylation and relocates together with NF-κB and many transcription factors to the nucleus to cause neuronal death in sciatic nerve-transected rats. While WWOX is frequently lost in lung cancer and many other cancers, NF-κB activation-induced cancer promotion probably requires WWOX-independent signaling networks to induce expression of pro-survival factors. The antagonistic role of WWOX and NF-κB in the regulation of lung cancer progression is discussed.
Collapse
|