1
|
Eptaminitaki GC, Zaravinos A, Stellas D, Panagopoulou M, Karaliota S, Baltsavia I, Iliopoulos I, Chatzaki E, Iliopoulos D, Baritaki S. Genome-Wide Analysis of lncRNA-mRNA Co-Expression Networks in CD133+/CD44+ Stem-like PDAC Cells. Cancers (Basel) 2023; 15:cancers15041053. [PMID: 36831395 PMCID: PMC9954787 DOI: 10.3390/cancers15041053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the second most prevalent gastrointestinal malignancy and the most common type of pancreatic cancer is linked with poor prognosis and, eventually, with high mortality rates. Early detection is seldom, while tumor heterogeneity and microarchitectural alterations benefit PDAC resistance to conventional therapeutics. Although emerging evidence suggest the core role of cancer stem cells (CSCs) in PDAC aggressiveness, unique stem signatures are poorly available, thus limiting the efforts of anti-CSC-targeted therapy. Herein, we report the findings of the first genome-wide analyses of mRNA/lncRNA transcriptome profiling and co-expression networks in PDAC cell line-derived CD133+/CD44+ cells, which were shown to bear a CSC-like phenotype in vitro and in vivo. Compared to CD133-/CD44- cells, the CD133+/CD44+ population demonstrated significant expression differences in both transcript pools. Using emerging bioinformatic tools, we performed lncRNA target coding gene prediction analysis, which revealed significant Gene Ontology (GO), pathway, and network enrichments in many dyregulated lncRNA nearby (cis or trans) mRNAs, with reported involvement in the regulation of CSC phenotype and functions. In this context, the construction of lncRNA/mRNA networks by ingenuity platforms identified the lncRNAs ATF2, CHEK1, DCAF8, and PAX8 to interact with "hub" SC-associated mRNAs. In addition, the expressions of the above lncRNAs retrieved by TCGA-normalized RNAseq gene expression data of PAAD were significantly correlated with clinicopathological features of PDAC, including tumor grade and stage, nodal metastasis, and overall survival. Overall, our findings shed light on the identification of CSC-specific lncRNA signatures with potential prognostic and therapeutic significance in PDAC.
Collapse
Affiliation(s)
- Giasemi C. Eptaminitaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Apostolos Zaravinos
- Basic and Translational Cancer Research Center (BTCRC), Genomics and Systems Biology Laboratory, Cancer Genetics, Nicosia 1516, Cyprus
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Dimitris Stellas
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Maria Panagopoulou
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | - Sevasti Karaliota
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ismini Baltsavia
- Laboratory of Computational Biology, Division of Basic Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ioannis Iliopoulos
- Laboratory of Computational Biology, Division of Basic Sciences, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Institute of Agri-Food and Life Sciences, Hellenic Mediterranean University Research Centre, 71410 Heraklion, Greece
| | | | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71003 Heraklion, Greece
- Correspondence: ; Tel.: +30-281-039-4727
| |
Collapse
|
2
|
Chen Y, Qiang R, Zhang Y, Cao W, Wu L, Jiang P, Ai J, Ma X, Dong Y, Gao X, Li H, Lu L, Zhang S, Chai R. The Expression and Roles of the Super Elongation Complex in Mouse Cochlear Lgr5+ Progenitor Cells. Front Cell Neurosci 2021; 15:735723. [PMID: 34658793 PMCID: PMC8519586 DOI: 10.3389/fncel.2021.735723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/14/2021] [Indexed: 12/04/2022] Open
Abstract
The super elongation complex (SEC) has been reported to play a key role in the proliferation and differentiation of mouse embryonic stem cells. However, the expression pattern and function of the SEC in the inner ear has not been investigated. Here, we studied the inner ear expression pattern of three key SEC components, AFF1, AFF4, and ELL3, and found that these three proteins are all expressed in both cochlear hair cells (HCs)and supporting cells (SCs). We also cultured Lgr5+ inner ear progenitors in vitro for sphere-forming assays and differentiation assays in the presence of the SEC inhibitor flavopiridol. We found that flavopiridol treatment decreased the proliferation ability of Lgr5+ progenitors, while the differentiation ability of Lgr5+ progenitors was not affected. Our results suggest that the SEC might play important roles in regulating inner ear progenitors and thus regulating HC regeneration. Therefore, it will be very meaningful to further investigate the detailed roles of the SEC signaling pathway in the inner ear in vivo in order to develop effective treatments for sensorineural hearing loss.
Collapse
Affiliation(s)
- Yin Chen
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Ruiying Qiang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Yuan Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Wei Cao
- Department of Otorhinolaryngology, Head and Neck Surgery, The Second Hospital of Anhui Medical University, Hefei, China
| | - Leilei Wu
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Pei Jiang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Jingru Ai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Xiangyu Ma
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Ying Dong
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Xia Gao
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - He Li
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ling Lu
- Jiangsu Provincial Key Medical Discipline (Laboratory), Department of Otolaryngology Head and Neck Surgery, Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Shasha Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, School of Life Sciences and Technology, Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
3
|
Chesnokov MS, Khan I, Park Y, Ezell J, Mehta G, Yousif A, Hong LJ, Buckanovich RJ, Takahashi A, Chefetz I. The MEK1/2 Pathway as a Therapeutic Target in High-Grade Serous Ovarian Carcinoma. Cancers (Basel) 2021; 13:1369. [PMID: 33803586 PMCID: PMC8003094 DOI: 10.3390/cancers13061369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 02/02/2023] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the deadliest of gynecological cancers due to its high recurrence rate and acquired chemoresistance. RAS/MEK/ERK pathway activation is linked to cell proliferation and therapeutic resistance, but the role of MEK1/2-ERK1/2 pathway in HGSOC is poorly investigated. We evaluated MEK1/2 pathway activity in clinical HGSOC samples and ovarian cancer cell lines using immunohistochemistry, immunoblotting, and RT-qPCR. HGSOC cell lines were used to assess immediate and lasting effects of MEK1/2 inhibition with trametinib in vitro. Trametinib effect on tumor growth in vivo was investigated using mouse xenografts. MEK1/2 pathway is hyperactivated in HGSOC and is further stimulated by cisplatin treatment. Trametinib treatment causes cell cycle arrest in G1/0-phase and reduces tumor growth rate in vivo but does not induce cell death or reduce fraction of CD133+ stem-like cells, while increasing expression of stemness-associated genes instead. Transient trametinib treatment causes long-term increase in a subpopulation of cells with high aldehyde dehydrogenase (ALDH)1 activity that can survive and grow in non-adherent conditions. We conclude that MEK1/2 inhibition may be a promising approach to suppress ovarian cancer growth as a maintenance therapy. Promotion of stem-like properties upon MEK1/2 inhibition suggests a possible mechanism of resistance, so a combination with CSC-targeting drugs should be considered.
Collapse
Affiliation(s)
- Mikhail S. Chesnokov
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
| | - Imran Khan
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
| | - Yeonjung Park
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (Y.P.); (J.E.); (R.J.B.)
| | - Jessica Ezell
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (Y.P.); (J.E.); (R.J.B.)
| | - Geeta Mehta
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Abdelrahman Yousif
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
| | - Linda J. Hong
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA;
| | - Ronald J. Buckanovich
- Division of Hematology Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA; (Y.P.); (J.E.); (R.J.B.)
- Division of Hematology Oncology, Department of Internal Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Akimasa Takahashi
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, Otsu, Shiga 5202152, Japan
| | - Ilana Chefetz
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA; (M.S.C.); (I.K.); (A.Y.); (A.T.)
- Masonic Cancer Center, Minneapolis, MN 55455, USA
- Stem Cell Institute, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Zhao J, Zhang H, Lei T, Liu J, Zhang S, Wu N, Sun B, Wang M. Drug resistance gene expression and chemotherapy sensitivity detection in Chinese women with different molecular subtypes of breast cancer. Cancer Biol Med 2020; 17:1014-1025. [PMID: 33299650 PMCID: PMC7721095 DOI: 10.20892/j.issn.2095-3941.2020.0157] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023] Open
Abstract
Objective The aim of the study was to identify specific chemosensitivity drugs for various molecular subtypes of breast tumors in Chinese women, by detecting the expression of drug resistance genes and by using the drug sensitivity test on different molecular subtypes of breast cancers. Methods The expression of drug resistance genes including Topo II, GST-π, P-gp, LRP, and CD133 were detected with immunohistochemistry in a tissue microarray. Drug sensitivity tests included those for paclitaxel, epirubicin, carboplatin, vinorelbine, and fluorouracil and were conducted on primary cancer tissue cells and cell lines, including the T47D, BT-474, and MDA-MB-231 cells and human breast cancer xenografts in nude mice. Results The different drug resistant genes Topo II, GST-π, P-gp, and LRP were differentially expressed among different molecular subtypes of breast cancers (P < 0.05). Positive expression of CD133 was highest in basal-like breast cancer (P < 0.05). Kaplan-Meier survival analysis showed that positive expressions of Topo II and CD133 both correlated with shorter disease-free survival (DFS) (P < 0.05) and overall survival (P < 0.05), and positive expression of LRP correlated only with shorter DFS (P < 0.05). BT-474 showed chemosensitivity to paclitaxel and epirubicin, while MDA-MB-231 showed chemosensitivities to paclitaxel, epirubicin, carboplatin, and fluorouracil (T/C ≤ 50%). The basal-like and HER2+ breast cancer primary cells showed chemosensitivities to paclitaxel and epirubicin with significant differences compared with luminal breast cancer primary cells (P < 0.05). Conclusions The differential expression of drug resistance genes and the differential chemosensitivities of drugs in different molecular subtype of breast cancers suggested that individual treatment should be given for each type of breast cancer.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Hailian Zhang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Ting Lei
- Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Juntian Liu
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shichao Zhang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Nan Wu
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Bo Sun
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Meng Wang
- Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
5
|
Salaroglio IC, Mungo E, Gazzano E, Kopecka J, Riganti C. ERK is a Pivotal Player of Chemo-Immune-Resistance in Cancer. Int J Mol Sci 2019; 20:ijms20102505. [PMID: 31117237 PMCID: PMC6566596 DOI: 10.3390/ijms20102505] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/08/2019] [Accepted: 05/18/2019] [Indexed: 12/16/2022] Open
Abstract
The extracellular signal-related kinases (ERKs) act as pleiotropic molecules in tumors, where they activate pro-survival pathways leading to cell proliferation and migration, as well as modulate apoptosis, differentiation, and senescence. Given its central role as sensor of extracellular signals, ERK transduction system is widely exploited by cancer cells subjected to environmental stresses, such as chemotherapy and anti-tumor activity of the host immune system. Aggressive tumors have a tremendous ability to adapt and survive in stressing and unfavorable conditions. The simultaneous resistance to chemotherapy and immune system responses is common, and ERK signaling plays a key role in both types of resistance. In this review, we dissect the main ERK-dependent mechanisms and feedback circuitries that simultaneously determine chemoresistance and immune-resistance/immune-escape in cancer cells. We discuss the pros and cons of targeting ERK signaling to induce chemo-immune-sensitization in refractory tumors.
Collapse
Affiliation(s)
- Iris C Salaroglio
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Eleonora Mungo
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Elena Gazzano
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Joanna Kopecka
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| | - Chiara Riganti
- Department of Oncology, University of Torino, via Santena 5/bis, 10126 Torino, Italy.
| |
Collapse
|
6
|
Li H, Chen R, Cai J, Cui X, Huang N, Kan H. Short-term exposure to fine particulate air pollution and genome-wide DNA methylation: A randomized, double-blind, crossover trial. ENVIRONMENT INTERNATIONAL 2018; 120:130-136. [PMID: 30081103 DOI: 10.1016/j.envint.2018.07.041] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/16/2018] [Accepted: 07/27/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Previous studies have associated fine particulate (PM2.5) exposure with changes in gene-specific DNA methylation. However, the evidence was still limited and inconsistent in genome-wide DNA methylation. OBJECTIVE To examine the impact of short-term PM2.5 exposure on genome-wide DNA methylation. METHODS We designed a randomized, double-blind, crossover trial among 36 healthy young adults in Shanghai, China. A two-stage intervention with alternative use of real and sham air purifiers in dormitory rooms for consecutive 9 days were conducted to create natural low and high exposure scenarios of PM2.5. Blood genome-wide DNA methylation was analyzed using the Illumina Infinium Human Methylation EPIC BeadChip (850k). Mixed-effect models were used to evaluate the impacts of changes in PM2.5 levels on genome-wide DNA methylation. RESULTS There was a drastic contrast for PM2.5 exposure levels in the two scenarios (24-h averages: 53.1 and 24.3 μg/m3). Between the high and low exposure groups, methylation levels were changed significantly with a false discovery rate < 0.01 at 49 CpG loci, of which 31 CpG sites were annotated to the specific genes. DNA methylation of these annotated genes were elevated in response to increased PM2.5 exposure, which were implicated in insulin resistance, glucose and lipid metabolism, inflammation, oxidative stress, platelet activation, and cell survival and apoptosis. CONCLUSIONS Our results provided novel biological pathways linking ambient PM2.5 exposure to systemic adverse response through variations in DNA methylation and reinforced the hypothesized role of epigenetics in the development of cardiometabolic diseases induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Huichu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Xiao Cui
- Unilever Research and Development Centre, Shanghai, Shanghai 200335, China
| | - Nan Huang
- Unilever Research and Development Centre, Shanghai, Shanghai 200335, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and Key Lab of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China; Key Laboratory of Reproduction Regulation of National Population and Family Planning Commission, Shanghai Institute of Planned Parenthood Research, Institute of Reproduction and Development, Fudan University, Shanghai 200032, China.
| |
Collapse
|
7
|
Xu F, Lu C, Wu Q, Chen J, Gu W, Du W, You M. Study on antitumor molecular mechanism of Alisols based on p53DNA. Int J Biol Macromol 2018; 116:1163-1174. [PMID: 29800662 DOI: 10.1016/j.ijbiomac.2018.05.158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/22/2018] [Accepted: 05/22/2018] [Indexed: 11/17/2022]
Abstract
Methyl thiazolyl tetrazolium (MTT) assay, UV-vis absorption spectroscopy, fluorescence spectroscopy and molecular simulation were used to investigate the antitumor activity of alisol A, alisol B and an 1:1 mixture of both compounds, the mechanism of its interaction with anti-cancer target p53DNA and explored the antitumor mechanism of alisols. MTT assay showed that the order of antitumor activity was:alisol B > alisol A > alisol A-alisol B(1:1). Spectroscopic experiments and molecular simulation suggested that alisol A, alisol B and their mixture interact with p53DNA in by partial insertion and the strength of binding affinity was consistent with the MTT assay. The Ksv of alisol A was 9.35 × 104 L·mol-1, Kq was 9.35 × 1012 L·mol-1·s-1 and the Ksv and Kq of alisol B were 11.61 × 104 L·mol-1 and 11.61 × 1012 L·mol-1·s-1. The molecular simulation revealed that competitive antagonism was observed in the interaction between the alisol mixture and p53DNA. The critical groups and significant binding sites for the interaction between alisol monomers and p53DNA include C19-OH and C22-OH of the alisols; N2 and H21 of the guanine deoxynucleotide (DG8), N2-H21 of the DG7, O4' of the DG9 in the f-chain of p53DNA; and C2-O2 of the cytosine deoxynucleotide (DC16) in the e-chain of p53DNA. Also, the C-22 and C23- of the alisols and the DA18-DT5 base pairs of p53DNA were key factors in the interaction of the mixture with p53DNA.
Collapse
Affiliation(s)
- Fei Xu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Cai Lu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qinan Wu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China; National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210023, China
| | - Jun Chen
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Wei Gu
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjia Du
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min You
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
8
|
Zhao M, Li L, Zhou J, Cui X, Tian Q, Jin Y, Zhu Y. MiR-2861 Behaves as a Biomarker of Lung Cancer Stem Cells and Regulates the HDAC5-ERK System Genes. Cell Reprogram 2018; 20:99-106. [PMID: 29620443 DOI: 10.1089/cell.2017.0045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer stem cells (CSCs) are responsible for cancer initiating, recurrence, and drug resistance. Discovery of novel biomarkers for CSCs is helpful for early diagnosis and prognosis. Lung cancer stem cells (LCSCs) were closely related to the occurrence and development of lung cancer. In our study, the important role of miR-2861 in maintaining the stemness of LCSCs was investigated. The LCSC differentiation model was established through introducing serum into the medium of H460 spheres. miR-2861 expression was significantly higher in LCSCs no matter compared to the differentiation cells or normal cells. HDAC5 expression was positively correlated with miR-2861 in LCSCs, and knockdown of miR-2861 decreased the expression of HDAC5, which implied that HDAC5 may be involved in the differentiation of LCSCs mediated by miR-2861. The role of HDAC5 in the regulation of LCSC differentiation was further verified by the inhibitory effect of LMK-235 on the phosphorylation of ERK1/2, which was recognized as the regulator of CSC differentiation. Our study provided a better understanding of miR-2861 and HDAC5 axis in maintaining the stemness of LCSCs and laid a foundation for molecular targeted therapy.
Collapse
Affiliation(s)
- Mengya Zhao
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China .,2 College of Life Sciences, Shanghai University , Shanghai, China
| | - Lin Li
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China
| | - Jundong Zhou
- 3 Department of Radio Oncology, Affiliated Suzhou Hospital, Nanjing Medical University , Suzhou, China
| | - Xueyuan Cui
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China .,2 College of Life Sciences, Shanghai University , Shanghai, China
| | - Qingmei Tian
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China .,4 School of Pharmacy, Xi'an Jiaotong University , Xi'an, China
| | - Yaqing Jin
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China .,5 University of Chinese Academy of Sciences , Beijing, China
| | - Yimin Zhu
- 1 CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics , Chinese Academy of Sciences, Suzhou, China
| |
Collapse
|
9
|
Peng Q, Deng Z, Pan H, Gu L, Liu O, Tang Z. Mitogen-activated protein kinase signaling pathway in oral cancer. Oncol Lett 2017; 15:1379-1388. [PMID: 29434828 DOI: 10.3892/ol.2017.7491] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/10/2017] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway is associated with tumor cell proliferation, differentiation, apoptosis, angiogenesis, invasion and metastasis. The present review assesses the involvement of the MAPK signaling pathway in oral cancer progression and invasion based on analysis of individual sub-pathways and their mechanisms of action. The regulation of this pathway for targeted oral cancer therapy is explored and the challenges confronting this, as well as corresponding potential solutions, are discussed. Exploring this pathway with an emphasis on its components, subfamilies, sub-pathways, interactions with other pathways and clinical practice modes may improve oral cancer treatment.
Collapse
Affiliation(s)
- Qian Peng
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhiyuan Deng
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Hao Pan
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liqun Gu
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Ousheng Liu
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhangui Tang
- Xiangya Stomatological Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
10
|
Alexander LEMM, Watters J, Reusch JA, Maurin M, Nepon-Sixt BS, Vrzalikova K, Alexandrow MG, Murray PG, Wright KL. Selective expression of the transcription elongation factor ELL3 in B cells prior to ELL2 drives proliferation and survival. Mol Immunol 2017; 91:8-16. [PMID: 28858629 DOI: 10.1016/j.molimm.2017.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/07/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022]
Abstract
B cell activation is dependent on a large increase in transcriptional output followed by focused expression on secreted immunoglobulin as the cell transitions to an antibody producing plasma cell. The rapid transcriptional induction is facilitated by the release of poised RNA pol II into productive elongation through assembly of the super elongation complex (SEC). We report that a SEC component, the Eleven -nineteen Lysine-rich leukemia (ELL) family member 3 (ELL3) is dynamically up-regulated in mature and activated human B cells followed by suppression as B cells transition to plasma cells in part mediated by the transcription repressor PRDM1. Burkitt's lymphoma and a sub-set of Diffuse Large B cell lymphoma cell lines abundantly express ELL3. Depletion of ELL3 in the germinal center derived lymphomas results in severe disruption of DNA replication and cell division along with increased DNA damage and cell death. This restricted utilization and survival dependence reveal a key step in B cell activation and indicate a potential therapeutic target against B cell lymphoma's with a germinal center origin.
Collapse
Affiliation(s)
- Lou-Ella M M Alexander
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, United States; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - January Watters
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL 33612, United States; Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Jessica A Reusch
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Michelle Maurin
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Brook S Nepon-Sixt
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Katerina Vrzalikova
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark G Alexandrow
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States
| | - Paul G Murray
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Kenneth L Wright
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, United States.
| |
Collapse
|
11
|
Zhang X, Hua R, Wang X, Huang M, Gan L, Wu Z, Zhang J, Wang H, Cheng Y, Li J, Guo W. Identification of stem-like cells and clinical significance of candidate stem cell markers in gastric cancer. Oncotarget 2016; 7:9815-31. [PMID: 26769843 PMCID: PMC4891086 DOI: 10.18632/oncotarget.6890] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 12/29/2015] [Indexed: 12/14/2022] Open
Abstract
The existence of gastric cancer stem cells (CSCs) has not been definitively proven and specific cell surface markers for identifying gastric CSCs have largely not been identified. Our research aimed to isolate potential gastric CSCs and clarify their clinical significance, while defining markers for GCSC identification and verification. Here, we report that spheroid cells possess stem cell-like properties, and overexpress certain stem cell markers. CD133 or CD44-positive cells also exhibit properties of CSCs. The expression of Oct4, Sox2, Gli1, CD44, CD133, p-AKT, and p-ERK was significantly higher in metastatic lesions compared to that in primary lesions. Elevated expression of some of these proteins was correlated with a more aggressive phenotype and poorer prognosis, including Oct4, Sox2, Gli1, CD44, and p-ERK. Multivariate Cox proportional hazards model analysis showed that only CD44 is an independent factor. Knockdown of CD44 down-regulated the stem cell-like properties, which was accompanied by the down-regulation of p-ERK and Oct4. Oct4 overexpression could reverse the decreased CSCs properties induced by CD44 knockdown. Taken together, our research revealed that spheroid cell culture, and CD133 or CD44-labeled FACS methods can be used to isolate gastric CSCs. Some CSC markers have clinical significance in predicting the prognosis. CD44 is an independent prognostic factor and maintains the properties of CSCs in CD44-p-ERK-Oct4 positive feedback loop.
Collapse
Affiliation(s)
- Xiaowei Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Ruixi Hua
- Department of Medical Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaofeng Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Mingzhu Huang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Lu Gan
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Zhenhua Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Jiejun Zhang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Hongqiang Wang
- Department of Cancer Chemotherapy Center, Zhoushan Hospital, Zhejiang, China
| | - Yufan Cheng
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Jin Li
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Cancer Hospital of Fudan University, Shanghai, China
| |
Collapse
|
12
|
Chang JTH, Wang F, Chapin W, Huang RS. Identification of MicroRNAs as Breast Cancer Prognosis Markers through the Cancer Genome Atlas. PLoS One 2016; 11:e0168284. [PMID: 27959953 PMCID: PMC5154569 DOI: 10.1371/journal.pone.0168284] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is the second-most common cancer and second-leading cause of cancer mortality in American women. The dysregulation of microRNAs (miRNAs) plays a key role in almost all cancers, including breast cancer. We comprehensively analyzed miRNA expression, global gene expression, and patient survival from the Cancer Genomes Atlas (TCGA) to identify clinically relevant miRNAs and their potential gene targets in breast tumors. In our analysis, we found that increased expression of 12 mature miRNAs-hsa-miR-320a, hsa-miR-361-5p, hsa-miR-103a-3p, hsa-miR-21-5p, hsa-miR-374b-5p, hsa-miR-140-3p, hsa-miR-25-3p, hsa-miR-651-5p, hsa-miR-200c-3p, hsa-miR-30a-5p, hsa-miR-30c-5p, and hsa-let-7i-5p -each predicted improved breast cancer survival. Of the 12 miRNAs, miR-320a, miR-361-5p, miR-21-5p, miR-103a-3p were selected for further analysis. By correlating global gene expression with miRNA expression and then employing miRNA target prediction analysis, we suggest that the four miRNAs may exert protective phenotypes by targeting breast oncogenes that contribute to patient survival. We propose that miR-320a targets the survival-associated genes RAD51, RRP1B, and TDG; miR-361-5p targets ARCN1; and miR-21-5p targets MSH2, RMND5A, STAG2, and UBE2D3. The results of our stringent bioinformatics approach for identifying clinically relevant miRNAs and their targets indicate that miR-320a, miR-361-5p, and miR-21-5p may contribute to breast cancer survival.
Collapse
Affiliation(s)
- Jeremy T-H. Chang
- Biological Sciences Collegiate Division, University of Chicago, Chicago, Illinois, United States of America
| | - Fan Wang
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - William Chapin
- Pritzker School of Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - R. Stephanie Huang
- Department of Medicine, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
13
|
Ahn HJ, Kim KS, Shin KW, Lim KH, Kim JO, Lee JY, Kim J, Park JH, Yang KM, Baek KH, Ko JJ, Park KS. Ell3 stabilizes p53 following CDDP treatment via its effects on ubiquitin-dependent and -independent proteasomal degradation pathways in breast cancer cells. Oncotarget 2016; 6:44523-37. [PMID: 26540344 PMCID: PMC4792573 DOI: 10.18632/oncotarget.5972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022] Open
Abstract
The tumor suppressor protein p53 is unstable in quiescent cells and undergoes proteosomal degradation. Under conditions of cellular stress, p53 is rapidly stabilized by post-translational modification, thereby escaping degradation and translocating to the nucleus where it activates genes related to cell cycle arrest or apoptosis. Here, we report that the transcription elongation factor Ell3 sensitizes luminal type-cancer cell line, MCF7, which have wild-type p53, to the chemotherapeutic agent cis-diamminedichloroplatinum(II) (CDDP) by stabilizing p53. Overexpression of Ell3 in MCF7 cells suppressed the MDM2-mediated ubiquitin-dependent degradation pathway. In addition, Ell3 promoted binding of p53 to NADH quinone oxidoreductase 1, which is linked to the ubiquitin-independent degradation of p53. We found that Ell3 activates interleukin-20 (IL20) expression, which is linked to the ERK1/2 signaling pathway. Chemical inhibition of ERK1/2 signaling or molecular suppression of IL20 revealed that the ERK1/2 signaling pathway and IL20 are the main causes of p53 stabilization in Ell3-overexpressing MCF7 cells. These findings suggest that the ERK1/2 pathway can be targeted in the rational development of therapies to induce chemosensitization of breast cancer cells.
Collapse
Affiliation(s)
- Hee-Jin Ahn
- Department of Biomedical Science, College of Life Science and CHA Stem Cell Institute, CHA University, Seoul, Korea
| | - Kwang-Soo Kim
- Department of Biomedical Science, College of Life Science and CHA Stem Cell Institute, CHA University, Seoul, Korea
| | - Kyung-Won Shin
- Graduate School of Biomedical Science, CHA University, Seoul, Korea
| | - Kee-Hwan Lim
- Department of Biomedical Science, College of Life Science and CHA Stem Cell Institute, CHA University, Seoul, Korea
| | - Jin-Ock Kim
- Department of Biomedical Science, College of Life Science and CHA Stem Cell Institute, CHA University, Seoul, Korea
| | - Je-Yong Lee
- Department of Biomedical Science, College of Life Science and CHA Stem Cell Institute, CHA University, Seoul, Korea
| | - Jiewan Kim
- Department of Biomedical Science, College of Life Science and CHA Stem Cell Institute, CHA University, Seoul, Korea
| | - Ji-Hoon Park
- Department of Biomedical Science, College of Life Science and CHA Stem Cell Institute, CHA University, Seoul, Korea
| | - Kyung-Min Yang
- Department of Biomedical Science, College of Life Science and CHA Cancer Institute, CHA University, Seoul, Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, College of Life Science and CHA Stem Cell Institute, CHA University, Seoul, Korea
| | - Jeong-Jae Ko
- Department of Biomedical Science, College of Life Science and CHA Stem Cell Institute, CHA University, Seoul, Korea
| | - Kyung-Soon Park
- Department of Biomedical Science, College of Life Science and CHA Stem Cell Institute, CHA University, Seoul, Korea
| |
Collapse
|
14
|
Sharma N. Regulation of RNA polymerase II-mediated transcriptional elongation: Implications in human disease. IUBMB Life 2016; 68:709-16. [DOI: 10.1002/iub.1538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/14/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Nimisha Sharma
- University School of Biotechnology, G.G.S. Indraprastha University; Dwarka New Delhi 110078 India
| |
Collapse
|
15
|
Yu S, Cai X, Wu C, Wu L, Wang Y, Liu Y, Yu Z, Qin S, Ma F, Thiery JP, Chen L. Adhesion glycoprotein CD44 functions as an upstream regulator of a network connecting ERK, AKT and Hippo-YAP pathways in cancer progression. Oncotarget 2015; 6:2951-65. [PMID: 25605020 PMCID: PMC4413630 DOI: 10.18632/oncotarget.3095] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/24/2014] [Indexed: 12/14/2022] Open
Abstract
Targeted therapies are considered to be the future of cancer treatment. However, the mechanism through which intracellular signaling pathways coordinate to modulate oncogenesis remains to be elucidated. In this study, we describe a novel crosstalk among ERK, AKT and Hippo-YAP pathways, with CD44 as an upstream regulator. High cell density leads to activation of ERK and AKT but inactivation of YAP in cancer cells. CD44 modulates cell proliferation and cell cycle but not apoptosis. The expression and activity of cell cycle genes were cooperatively regulated by ERK, AKT and Hippo-YAP signaling pathways through CD44-mediated mechanisms. In addition, CD44 depletion abrogates cancer stem cell properties of tumor initiating cells. Taken together, we described a paradigm where CD44 functions as an upstream regulator sensing the extracellular environment to modulate ERK, AKT and Hippo-YAP pathways which cooperatively control downstream gene expression to modulate cell contact inhibition of proliferation, cell cycle progression and maintenance of tumor initiating cells. Our current study provides valuable information to design targeted therapeutic strategies in cancers.
Collapse
Affiliation(s)
- Shiyi Yu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, P.R. China
| | - Xiuxiu Cai
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, P.R. China
| | - Chenxi Wu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, P.R. China
| | - Lele Wu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, P.R. China
| | - Yuzhi Wang
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, P.R. China
| | - Yan Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, P.R. China
| | - Zhenghong Yu
- Department of Medical Oncology, Jinling Hospital, Nanjing, P.R. China
| | - Sheng Qin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Jean Paul Thiery
- Cancer Science Institute, National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Liming Chen
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, Institute of Life Science, Southeast University, Nanjing, P.R. China
| |
Collapse
|
16
|
Lv J, Shim JS. Existing drugs and their application in drug discovery targeting cancer stem cells. Arch Pharm Res 2015; 38:1617-26. [PMID: 26152874 DOI: 10.1007/s12272-015-0628-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/28/2015] [Indexed: 12/18/2022]
Abstract
Despite standard cancer therapies such as chemotherapy and targeted therapy have shown some efficacies, the cancer in many cases eventually relapses and metastasizes upon stopping the treatment. There is a small subpopulation of cancer cells within tumor, with specific characters similar to those found in stem cells. This group of cancer cells is known as tumor-initiating or cancer stem cells (CSCs), which have an ability to self-renew and give rise to cancer cell progeny. CSCs are related with drug resistance, metastasis and relapse of cancer, hence emerging as a crucial drug target for eliminating cancer. Rapid advancement of CSC biology has enabled researchers to isolate and culture CSCs in vitro, making the cells amenable to high-throughput drug screening. Recently, drug repositioning, which utilizes existing drugs to develop potential new indications, has been gaining popularity as an alternative approach for the drug discovery. As existing drugs have favorable bioavailability and safety profiles, drug repositioning is now actively exploited for prompt development of therapeutics for many serious diseases, such as cancer. In this review, we will introduce latest examples of attempted drug repositioning targeting CSCs and discuss potential use of the repositioned drugs for cancer therapy.
Collapse
Affiliation(s)
- Junfang Lv
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, China
| | - Joong Sup Shim
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, SAR, 999078, China.
| |
Collapse
|
17
|
Qian J, Kong X, Deng N, Tan P, Chen H, Wang J, Li Z, Hu Y, Zou W, Xu J, Fang JY. OCT1 is a determinant of synbindin-related ERK signalling with independent prognostic significance in gastric cancer. Gut 2015; 64:37-48. [PMID: 24717932 PMCID: PMC4283676 DOI: 10.1136/gutjnl-2013-306584] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Octamer transcription factor 1 (OCT1) was found to be expressed in intestinal metaplasia and gastric cancer (GC), but the exact roles of OCT1 in GC remain unclear. The objective of this study was to determine the functional and prognostic implications of OCT1 in GC. DESIGN Expression of OCT1 was examined in paired normal and cancerous gastric tissues and the prognostic significance of OCT1 was analysed by univariate and multivariate survival analyses. The functions of OCT1 on synbindin expression and extracellular signal-regulated kinase (ERK) phosphorylation were studied in vitro and in xenograft mouse models. RESULTS The OCT1 gene is recurrently amplified and upregulated in GC. OCT1 overexpression and amplification are associated with poor survival in patients with GC and the prognostic significance was confirmed by independent patient cohorts. Combining OCT1 overexpression with American Joint Committee on Cancer staging improved the prediction of survival in patients with GC. High expression of OCT1 associates with activation of the ERK mitogen-activated protein kinase signalling pathway in GC tissues. OCT1 functions by transactivating synbindin, which binds to ERK DEF domain and facilitates ERK phosphorylation by MEK. OCT1-synbindin signalling results in the activation of ERK substrates ELK1 and RSK, leading to increased cell proliferation and invasion. Immunofluorescent study of human GC tissue samples revealed strong association between OCT1 protein level and synbindin expression/ERK phosphorylation. Upregulation of OCT1 in mouse xenograft models induced synbindin expression and ERK activation, leading to accelerated tumour growth in vivo. CONCLUSIONS OCT1 is a driver of synbindin-mediated ERK signalling and a promising marker for the prognosis and molecular subtyping of GC.
Collapse
Affiliation(s)
- Jin Qian
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xuan Kong
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Niantao Deng
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore
| | - Haoyan Chen
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jilin Wang
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhaoli Li
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ye Hu
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jie Xu
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
18
|
Wang X, Zhang N, Huo Q, Sun M, Dong L, Zhang Y, Xu G, Yang Q. Huaier aqueous extract inhibits stem-like characteristics of MCF7 breast cancer cells via inactivation of hedgehog pathway. Tumour Biol 2014; 35:10805-13. [PMID: 25077927 DOI: 10.1007/s13277-014-2390-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 07/23/2014] [Indexed: 12/11/2022] Open
Abstract
The theory of targeting cancer stem-like cells (CSCs) provides novel strategy for cancer treatment. In the present study, we examined the inhibitory effect of Huaier aqueous extract on eradicating breast cancer stem cells and explored the underlying mechanisms. Our data demonstrated that various concentrations of Huaier extract significantly decreased the viabilities, numbers, and sizes of mammospheres. After incubation with Huaier extract for 24 h, the clonogenicity of MCF7 cell line was obviously impaired, along with less holoclones. In addition, Huaier extract reduced the number of cells expressing CD44+/CD24- and decreased the level of stem cell markers (OCT-4, NESTIN, and NANOG). The hedgehog (Hh), notch, and Wnt/β-catenin pathways were essential stem cell signaling pathways involved in regulating CSC renewal and maintenance. We reported that the inhibitory effect of Huaier extract was partly depended on the inactivation of Hh pathway. These findings provided experimental evidence that Huaier extract was a promising therapeutic drug for eliminating the breast cancer stem cells.
Collapse
Affiliation(s)
- Xiaolong Wang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Wenhua Xi Road No. 107, Jinan, 250012, Shandong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu CC, Lin JH, Hsu TW, Su K, Li AFY, Hsu HS, Hung SC. IL-6 enriched lung cancer stem-like cell population by inhibition of cell cycle regulators via DNMT1 upregulation. Int J Cancer 2014; 136:547-59. [PMID: 24947242 DOI: 10.1002/ijc.29033] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 06/13/2014] [Indexed: 12/22/2022]
Abstract
Tumors are influenced by a microenvironment rich in inflammatory cytokines, growth factors and chemokines, which may promote tumor growth. Interleukin-6 (IL-6) is a multifunctional cytokine and known as a regulator of immune and inflammation responses. IL-6 has also been reported to be associated with tumor progression and chemoresistance in different types of cancers. In our study, we demonstrated that IL-6 enriches the properties of lung cancer stem-like cells in A549 lung cancer cells cultured in spheroid medium. IL-6 also promotes sphere formation and stem-like properties of A549 cells by enhancing cell proliferation. Methylation-specific polymerase chain reaction (PCR) was performed and revealed that IL-6 increased methylation of p53 and p21 in A549 cancer cells. Western blot analysis and quantitative real-time PCR demonstrated that IL-6 increased the expression of DNA methyltransferase 1 (DNMT1) in A549 cells cultured in spheroid medium, but not the expression of DNMT3a or DNMT3b. Knockdown of DNMT1 eliminated IL-6-mediated hypermethylation of cell cycle regulators and enrichment of lung cancer stem-like properties. In conclusion, our study, for the first time, shows that the IL-6/JAK2/STAT3 pathway upregulates DNMT1 and enhances cancer initiation and lung cancer stem cell (CSC) proliferation by downregulation of p53 and p21 resulting from DNA hypermethylation. Upon blockage of the IL-6/JAK2/STAT3 pathway and inhibition of DNMT1, the proliferation of lung CSCs was reduced and their formation of spheres and ability to initiate tumor growth were decreased. These data suggest that targeting of the IL-6/JAK2/STAT3 signaling pathway and DNMT1 may become important strategies for treating lung cancer.
Collapse
Affiliation(s)
- Chen-Chi Liu
- Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan; Department of Emergency, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
20
|
Kohn KW, Zeeberg BM, Reinhold WC, Pommier Y. Gene expression correlations in human cancer cell lines define molecular interaction networks for epithelial phenotype. PLoS One 2014; 9:e99269. [PMID: 24940735 PMCID: PMC4062414 DOI: 10.1371/journal.pone.0099269] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/01/2014] [Indexed: 12/12/2022] Open
Abstract
Using gene expression data to enhance our knowledge of control networks relevant to cancer biology and therapy is a challenging but urgent task. Based on the premise that genes that are expressed together in a variety of cell types are likely to functions together, we derived mutually correlated genes that function together in various processes in epithelial-like tumor cells. Expression-correlated genes were derived from data for the NCI-60 human tumor cell lines, as well as data from the Broad Institute's CCLE cell lines. NCI-60 cell lines that selectively expressed a mutually correlated subset of tight junction genes served as a signature for epithelial-like cancer cells. Those signature cell lines served as a seed to derive other correlated genes, many of which had various other epithelial-related functions. Literature survey yielded molecular interaction and function information about those genes, from which molecular interaction maps were assembled. Many of the genes had epithelial functions unrelated to tight junctions, demonstrating that new function categories were elicited. The most highly correlated genes were implicated in the following epithelial functions: interactions at tight junctions (CLDN7, CLDN4, CLDN3, MARVELD3, MARVELD2, TJP3, CGN, CRB3, LLGL2, EPCAM, LNX1); interactions at adherens junctions (CDH1, ADAP1, CAMSAP3); interactions at desmosomes (PPL, PKP3, JUP); transcription regulation of cell-cell junction complexes (GRHL1 and 2); epithelial RNA splicing regulators (ESRP1 and 2); epithelial vesicle traffic (RAB25, EPN3, GRHL2, EHF, ADAP1, MYO5B); epithelial Ca(+2) signaling (ATP2C2, S100A14, BSPRY); terminal differentiation of epithelial cells (OVOL1 and 2, ST14, PRSS8, SPINT1 and 2); maintenance of apico-basal polarity (RAB25, LLGL2, EPN3). The findings provide a foundation for future studies to elucidate the functions of regulatory networks specific to epithelial-like cancer cells and to probe for anti-cancer drug targets.
Collapse
Affiliation(s)
- Kurt W. Kohn
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| | - Barry M. Zeeberg
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - William C. Reinhold
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
21
|
Poling A, Sewell RG, Gallus JA, Nearchou NI. Lethality of opioid and antihistaminic combinations in mice. Oncol Lett 1985; 13:4173-4179. [PMID: 28588704 PMCID: PMC5452875 DOI: 10.3892/ol.2017.5996] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/24/2016] [Indexed: 12/22/2022] Open
Abstract
Ell3 is an RNA polymerase II transcription elongation factor that acts as a negative regulator of p53 expression, and regulates cell proliferation and survival. Recent studies by our group have demonstrated that ectopic expression of Ell3 in breast cancer cell lines enhances cell proliferation, potentiates cancer stem cell properties, and promotes 5-Fluorouracil (5-FU) resistance. In the present study, the underlying mechanism for the induction of 5-FU resistance was investigated in Ell3 over-expressing MCF-7 cells (Ell3 OE cells). By comparing the gene expression profiles of Ell3 OE cells with control cells, the present data revealed that Lipocalin2 (LCN2) and Wnt signaling activity are associated with 5-FU resistance of Ell3 OE. siRNA-mediated suppression of LCN2 reversed 5-FU resistance in Ell3 OE cells. Chemical inhibition of Wnt signaling also reversed 5-FU resistance in Ell3 OE cells. Furthermore, the expression levels of survivin, which is a direct transcriptional target of Wnt/β-catenin and an inhibitor of apoptosis, were markedly elevated when Ell3 OE cells were treated with 5-FU, as detected by western blot analysis. These findings suggest that enhanced expression of LCN2 and activation of the Wnt signaling pathway may induce 5-FU resistance in Ell3 OE cells as a means of evading apoptosis.
Collapse
|