1
|
Fasina YO, Obanla TO, Ekunseitan DA, Dosu G, Richardson J, Apalowo OO. Role of trefoil factors in maintaining gut health in food animals. Front Vet Sci 2024; 11:1434509. [PMID: 39628866 PMCID: PMC11612906 DOI: 10.3389/fvets.2024.1434509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
It is imperative to preserve the integrity of the gastrointestinal system in spite of the persistent existence of harmful chemicals and microbial flora in the gut. This is made possible by essential healing initiators called Trefoil factors which helps in mucosal reconstitution and tissue development on the gastrointestinal surface. The trefoil factors are a class of abundant secreted proteins that are essential for epithelial continuity (TFFs). Trefoil factor family (TFF) proteins are biologically active peptides that play significant role in safeguarding, restoring and continuity of the gastrointestinal tract (GIT) epithelium, through collaborative modulations with mucins in the mucosal layer. These peptides are readily produced in reaction to epithelial damage in the digestive tract, thereby contributing to the healing and restituting of the epithelial layers of the intestine. In addition, considerable evidence indicated that TFF peptides trigger proliferation, migration and angiogenesis, all which are crucial processes for wound healing. There is also increasing evidence that TFF peptides modulate the mucosal immune system. These protective properties, suggest that dietary manipulation strategies targeted at enhancing the expression and synthesis of TFF peptides at optimal levels in the GIT epithelium, may constitute a plausible alternative strategy to the use of in-feed antibiotic growth promoters to maintain epithelial integrity and promote resistance to enteric pathogens. This review describes TFF peptides, with importance to their biological functions and involvement in gastrointestinal mucosal protection and repair in food animals.
Collapse
Affiliation(s)
- Yewande O. Fasina
- Department of Animal Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | | | | | | | | | | |
Collapse
|
2
|
Lin Z, Wan X, Zhang T, Huo H, Zhang X, Li K, Bei W, Guo J, Yang Y. Trefoil factor 3: New highlights in chronic kidney disease research. Cell Signal 2022; 100:110470. [PMID: 36122885 DOI: 10.1016/j.cellsig.2022.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
Trefoil factor 3 (TFF3, also known as intestinal trefoil factor) is a small-molecule peptide containing a typical trefoil structure. TFF3 has several biological effects, such as wound healing, immune regulation, neuroprotection, and cell migration and proliferation promotion. Although TFF3 binding sites were identified in rat kidneys more than a decade ago, the specific effects of this small-molecule peptide on kidneys remain unclear. Until recently, much of the research on TFF3 in the kidney field has focused exclusively on its role as a biomarker. Notably, a large prospective randomized study of patients with 29 common clinical diseases revealed that chronic kidney disease (CKD) was associated with the highest serum TFF3 levels, which were 3-fold higher than in acute gastroenteritis, which had the second-highest levels. Examination of each stage of CKD revealed that urine and serum TFF3 levels significantly increased with the progression of CKD. These results suggest that the role of TFF3 in CKD needs further research. The present review summarizes the renal physiological expression, biological functions, and downstream signaling of TFF3, as well as the upstream events that lead to high expression of TFF3 in CKD.
Collapse
Affiliation(s)
- Ziyang Lin
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xiaofen Wan
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Tao Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Hongyan Huo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Xiaoyu Zhang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Kunping Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Weijian Bei
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Jiao Guo
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China
| | - Yiqi Yang
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Science and Technology Building, 280 Waihuan East Road, Guangzhou Higher Education Mega, Guangzhou, China.
| |
Collapse
|
3
|
Inhibition of TFF3 Enhances Sensitivity-and Overcomes Acquired Resistance-to Doxorubicin in Estrogen Receptor-Positive Mammary Carcinoma. Cancers (Basel) 2019; 11:cancers11101528. [PMID: 31658702 PMCID: PMC6826976 DOI: 10.3390/cancers11101528] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/01/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
Dose-dependent toxicity and acquired resistance are two major challenges limiting the efficacious treatment of mammary carcinoma (MC) with doxorubicin. Herein, we investigated the function of Trefoil Factor 3 (TFF3) in the sensitivity and acquired resistance of estrogen receptor positive (ER+) MC cells to doxorubicin. Doxorubicin treatment of ER+MC cells increased TFF3 expression. The depletion of TFF3 by siRNA or inhibition with a small molecule TFF3 inhibitor (AMPC) synergistically enhanced the efficacy of doxorubicin in ER+MC through the suppression of doxorubicin-induced AKT activation and enhancement of doxorubicin-induced apoptosis. Elevated expression of TFF3 and increased activation of AKT were also observed using a model of acquired doxorubicin resistance in ER+MC cells. AMPC partially re-sensitized the doxorubicin resistant cells to doxorubicin-induced apoptosis. Indeed, doxorubicin resistant ER + MC cells exhibited increased sensitivity to AMPC as a single agent compared to doxorubicin sensitive cells. In vivo, AMPC attenuated growth of doxorubicin sensitive ER+MC xenografts whereas it produced regression of xenografts generated by doxorubicin resistant ER+MC cells. Hence, TFF3 inhibition may improve the efficacy and reduce required doses of doxorubicin in ER+MC. Moreover, inhibition of TFF3 may also be an effective therapeutic strategy to eradicate doxorubicin resistant ER+MC.
Collapse
|
4
|
Krüger K, Schmid S, Paulsen F, Ignatius A, Klinger P, Hotfiel T, Swoboda B, Gelse K. Trefoil Factor 3 (TFF3) Is Involved in Cell Migration for Skeletal Repair. Int J Mol Sci 2019; 20:ijms20174277. [PMID: 31480518 PMCID: PMC6747154 DOI: 10.3390/ijms20174277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 12/25/2022] Open
Abstract
The aim of the study was to explore the possible role of Trefoil Factor Family peptide 3 (TFF3) for skeletal repair. The expression of TFF3 was analyzed in human joint tissues as well as in a murine bone fracture model. Serum levels of TFF3 following a defined skeletal trauma in humans were determined by ELISA. The mRNA expression of TFF3 was analyzed under normoxia and hypoxia. Expression analysis after stimulation of human mesenchymal progenitor cells (MPCs) with TFF3 was performed by RT2 Profiler PCR Array. The effect of recombinant human (rh)TFF3 on MPCs was analysed by different migration and chemotaxis assays. The effect on cell motility was also visualized by fluorescence staining of F-Actin. TFF3 was absent in human articular cartilage, but strongly expressed in the subchondral bone and periosteum of adult joints. Strong TFF3 immunoreactivity was also detected in murine fracture callus. Serum levels of TFF3 were significantly increased after skeletal trauma in humans. Expression analysis demonstrated that rhTFF3 significantly decreased mRNA of ROCK1. Wound healing assays showed increased cell migration of MPCs by rhTFF3. The F-Actin cytoskeleton was markedly influenced by rhTFF3. Cell proliferation was not increased by rhTFF3. The data demonstrate elevated expression of TFF3 after skeletal trauma. The stimulatory effects on cell motility and migration of MPCs suggest a role of TFF3 in skeletal repair.
Collapse
Affiliation(s)
- Katharina Krüger
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Sebastian Schmid
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
- Institute of Functional and Clinical Anatomy, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Patricia Klinger
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
- Institute of Functional and Clinical Anatomy, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - Thilo Hotfiel
- Division of Orthopaedic Rheumatology, Department of Orthopaedics, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - Bernd Swoboda
- Division of Orthopaedic Rheumatology, Department of Orthopaedics, University of Erlangen-Nuernberg, 91054 Erlangen, Germany
| | - Kolja Gelse
- Department of Orthopaedic Trauma Surgery, University Hospital Erlangen, 91054 Erlangen, Germany.
| |
Collapse
|
5
|
Yusufu A, Shayimu P, Tuerdi R, Fang C, Wang F, Wang H. TFF3 and TFF1 expression levels are elevated in colorectal cancer and promote the malignant behavior of colon cancer by activating the EMT process. Int J Oncol 2019; 55:789-804. [PMID: 31432157 PMCID: PMC6741840 DOI: 10.3892/ijo.2019.4854] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022] Open
Abstract
Reports on the roles of the secreted trefoil factor (TFF)1 and 3 in colorectal cancer (CRC) and their underlying mechanisms of action in tumorigenesis are not common and are controversial. In the present study, the mRNA expression and promoter methylation of TFF1 and TFF3 in cancer and adjacent normal tissues were investigated, and their association with other clinical factors and patient prognosis were evaluated. Moreover, the association between TFF3 and epithelial mesenchymal transition (EMT) was explored by overexpressing or inhibiting TFF3 expression. The results revealed that the mRNA level of TFF1 and TFF3 in the cancer tissues was significantly higher than that in the matched adjacent normal tissues (P=0.034 and P=0.007, respectively), and a higher expression of TFF3, but not TFF1, was predominantly associated with clinicopathological factors and a poorer prognosis. No correlation was observed between promoter methylation and the expression of TFF1 or TFF3. The overexpression of TFF3 promoted the proliferation, migration and invasiveness of HT29 cells, and induced an increase in the expression of Twist1, Snail and Vimentin, while causing a decrease in E-cadherin expression. On the contrary, the knockdown of TFF3 resulted in opposite effects in the LoVo cells. On the whole, the findings of this study indicate that TFF3 may be a promising new factor for the estimation of the survival of patients with CRC, and may promote the malignant progression of CRC by activating the EMT process. Therefore, TFF3 may be a future potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Aikeremu Yusufu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Paerhati Shayimu
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Rousidan Tuerdi
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Cheng Fang
- Department of Gastrointestinal Surgery, Xi Jing Digestive Disease Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fei Wang
- Department of Gastrointestinal Surgery, Xi Jing Digestive Disease Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Haijiang Wang
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital, Xin Jiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| |
Collapse
|
6
|
Wang Y, Liang K, Kong W. Intestinal Trefoil Factor 3 Alleviates the Intestinal Barrier Function Through Reducing the Expression of TLR4 in Rats with Nonalcoholic Steatohepatitis. Arch Med Res 2019; 50:2-9. [PMID: 31101239 DOI: 10.1016/j.arcmed.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/08/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Previous studies have reported that nonalcoholic steatohepatitis (NASH) is relevant to intestinal mucosal barrier dysfunction. AIM OF THE STUDY To investigate the effects of intestinal trefoil factor 3 (TFF3) on intestinal barrier function and endotoxin/toll-like receptor 4(TLR4) expression in NASH rats. METHODS Sixty NASH rats were divided into control, NASH and NASH-TFF3 treated group. Intestinal permeability, serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), endotoxin (ET), diamine oxidase (DAO) and liver index were examined. HE and PAS staining were performed to observe the histopathology of liver and terminal ileum. Expression of TFF3 and occludin were detected by immunohistochemical staining. mRNA and protein expression of TLR4, nuclear factor-κB (NF-κB), Mucin-2(Muc2) were detected by RT-qPCR and Western Blot. Interleukin (IL) -1β and IL-10 levels in the ileum were measured by ELISA. RESULTS In NASH group, levels of AST, ALT, ET, DAO, NAS, liver index and intestinal permeability were higher while occludin expressions were lower than control and NASH-TFF3 treated groups (p <0.05). Histopathology examination showed pathological damages of liver and ileum were alleviated in NASH-TFF3 treated group. NASH-TFF3 treated group had decreased expression levels of TLR4 and NF-κB and increased expression levels of Muc2 than NASH group. Besides, NASH group showed increased IL-1β and IL-10 levels compared with control group. NASH-TFF3 treated group showed decreased IL-1β level however increased IL-10 level compared with NASH group. CONCLUSION Recombinant human TFF3 (rhTFF3) can reduce the expression of TLR4, reduce intestinal permeability, alleviate liver damage and thus may play a therapeutic role in the treatment of NASH rats.
Collapse
Affiliation(s)
- Yingchun Wang
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China.
| | - Kai Liang
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Weizong Kong
- Department of Gastroenterology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
7
|
Zheng Q, Diao S, Wang Q, Zhu C, Sun X, Yin B, Zhang X, Meng X, Wang B. IL-17A promotes cell migration and invasion of glioblastoma cells via activation of PI3K/AKT signalling pathway. J Cell Mol Med 2018; 23:357-369. [PMID: 30353649 PMCID: PMC6307791 DOI: 10.1111/jcmm.13938] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/06/2018] [Indexed: 12/17/2022] Open
Abstract
Glioblastomas (GBMs) are the most common of both benign and malignant primary brain tumours, in which the inflammatory and immunologic abnormalities are involved. Interleukin-17A (IL-17A) plays an important role in various inflammatory diseases and cancers. Several recent studies revealed that the expression of IL-17A was overexpressed in human GBMs tissue. However, the accurate role of IL-17A in GBMs remains unclear. In this study, we aimed to explore the effect of IL-17A on cell migration and invasion of GBMs and the mechanism by which the effects occurred. We found that exogenous IL-17A promoted significantly cell migration and invasion abilities in two GBMs cell lines (U87MG and U251) in a time-dependent manner. In addition, the protein expressions of PI3K, Akt and MMP-2/9 were increased in the GBMs cells challenged by IL-17A. Furthermore, a tight junction protein ZO-1 was down-regulated but Twist and Bmi1 were up-regulated. Treatment with a PI3K inhibitor (LY294002) significantly reduced the abilities of both migration and invasion in U87MG and U251 cells. LY294002 treatment also attenuated the IL-17A causing increases of protein levels of PI3K, AKT, MMP-2/9, Twist and the decreases of protein level of ZO-1 in the U87MG and U251 cells. Taken together, we concluded that IL-17A promotes the GBM cells migration and invasion via PI3K/AKT signalling pathway. IL-17A and its related signalling pathways may be potential therapeutic targets for GBM.
Collapse
Affiliation(s)
- Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Shuo Diao
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qi Wang
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chen Zhu
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xun Sun
- Department of Immunology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Bo Yin
- Department of Urology, ShengJing Hospital of China Medical University, Shenyang, China
| | - Xinwen Zhang
- Center of Implant Dentistry, School & Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Diao S, Zheng Q, Gao J, Yao Y, Ren S, Liu Y, Xu Y. Trefoil factor 3 contributes to the malignancy of glioma via regulating HIF-1α. Oncotarget 2017; 8:76770-76782. [PMID: 29100347 PMCID: PMC5652741 DOI: 10.18632/oncotarget.20010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022] Open
Abstract
Trefoil factor 3 (TFF3) plays significant roles in several solid tumors. However, the expression pattern and function of TFF3 in glioblastoma (GBM) have not been reported. Here, we report that expression level of TFF3 significantly elevated in glioma and correlated with the prognosis of glioma patients. Then we found TFF3 promotes proliferation, invasion, and migration and inhibits apoptosis of glioma cells in vitro, and delayed tumor progression in subcutaneous xenograft nude mice, and prolonged the median survival time in orthotopic xenograft mice. Moreover, knockdown of TFF3 reduced the expression of HIF-1α through a hypoxia-independent manner. These findings suggest that targeting TFF3 may offer a novel strategy for therapeutic intervention of malignant gliomas.
Collapse
Affiliation(s)
- Shuo Diao
- Department of Neurosurgery, First Affiliated Hospital, Dalian Medical University, Dalian, People's Republic of China
| | - Qianqian Zheng
- Department of Pathophysiology, Basic Medical College, China Medical University, Shenyang, People's Republic of China
| | - Jian Gao
- Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, People's Republic of China
| | - Yiqun Yao
- Department of Neurosurgery, First Affiliated Hospital, Dalian Medical University, Dalian, People's Republic of China
| | - Siyang Ren
- Department of Neurosurgery, First Affiliated Hospital, Dalian Medical University, Dalian, People's Republic of China
| | - Yongjian Liu
- Department of Interventional Therapy, First Affiliated Hospital, Dalian Medical University, Dalian, People's Republic of China
| | - Yinghui Xu
- Department of Neurosurgery, First Affiliated Hospital, Dalian Medical University, Dalian, People's Republic of China
| |
Collapse
|
9
|
Yuan Z, Chen D, Chen X, Yang H, Wei Y. Overexpression of trefoil factor 3 (TFF3) contributes to the malignant progression in cervical cancer cells. Cancer Cell Int 2017; 17:7. [PMID: 28070169 PMCID: PMC5216547 DOI: 10.1186/s12935-016-0379-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/25/2016] [Indexed: 01/19/2023] Open
Abstract
Background There remains a great need for effective therapies for cervical cancers, the majority of which are aggressive leaving patients with poor prognosis. Methods and results Here, we identify a novel candidate therapeutic target, trefoil factor 3 (TFF3) which overexpressed in cervical cancer cells and was associated with reduced postoperative survival. Functional studies demonstrated that TFF3 overexpression promoted the proliferation and invasion of cervical cancer cells, and inhibited the apoptosis by inducing the mRNA changes in SiHa and Hela cell lines. Conversely, TFF3 silencing disrupted the proliferation and invasion of cervical cancer cells, and induced the apoptosis via Click-iT EdU test, flow cytometry analysis and two-dimensional Matrigel Transwell analysis. Western blot analysis showed that overexpression of TFF3 repressed E-cadherin (CDH1) expression to promote the invasion of cervical cancer cells. Furthermore, down-regulated CDH1 via overexpression of TFF3 was significantly up-regulated by virtue of inhibitor of p-STAT3. Conclusions These results suggested that TFF3 stimulated the invasion of cervical cancer cells probably by activating the STAT3/CDH1 signaling pathway. Furthermore, overexpression of TFF3 decreased the sensitivity of cervical cancer cells to etoposide by increasing P-glycoprotein (P-gp) functional activity. Overall, our work provides a preclinical proof that TFF3 not only contributes to the malignant progression of cervical cancers and but also is a potential therapeutic target. Electronic supplementary material The online version of this article (doi:10.1186/s12935-016-0379-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhaohu Yuan
- Department of Blood Transfusion, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong Province China
| | - Dandan Chen
- Department of Radiology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180 China
| | - Xiaojie Chen
- Department of Blood Transfusion, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong Province China
| | - Huikuan Yang
- Department of Blood Transfusion, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong Province China
| | - Yaming Wei
- Department of Blood Transfusion, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180 Guangdong Province China
| |
Collapse
|
10
|
Le J, Zhang DY, Zhao Y, Qiu W, Wang P, Sun Y. ITF promotes migration of intestinal epithelial cells through crosstalk between the ERK and JAK/STAT3 pathways. Sci Rep 2016; 6:33014. [PMID: 27616044 PMCID: PMC5018822 DOI: 10.1038/srep33014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/18/2016] [Indexed: 12/25/2022] Open
Abstract
Intestinal trefoil factor (ITF), a member of the trefoil factor family, is a “Super-protective factor” for intestinal mucosal protection. This study was designed to explore the mechanism by which ITF promotes intestinal epithelial cell migration. Intestinal epithelial cells were treated with the human ITF (hITF). Phospho-ERK, phospho-STAT3 Tyr705, and phospho-STAT3 Ser727 levels were detected at different time points by western blot. To assess the potential crosstalk between the ERK and JAK/STAT3 pathways, HT-29 cells were treated with the MEK-inhibitor, U0126, and phosphor-STAT3 levels were evaluated. Conversely, cells were treated with the JAK-inhibitor, AG490, and ERK-activity was evaluated. Transwell assay was performed to investigate the effect of the crosstalk on the cell motility. MMP-2 and MMP-9 transcription was analyzed by quantitative real-time PCR. E-cadherin degradation was detected by immunofluorescence. Our results indicate that hITF simultaneously activated the ERK and JAK/STAT3 pathways and a crosstalk was detected between the two pathways. hITF increased cell migration. This effect was abolished by U0126 and AG490 treatment. hITF increased MMP2 and MMP9 mRNA levels and E-cadherin degradation and U0126 and AG490 abolished this effect of hITF. In conclusion, the hITF-induced crosstalk between the ERK and JAK/STAT3 pathways is associated with intestinal epithelial cell migration.
Collapse
Affiliation(s)
- Juan Le
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China.,Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Duan Y Zhang
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China.,Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Yong Zhao
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China.,Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Wei Qiu
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China.,Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Peng Wang
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China.,Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Yong Sun
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China.,Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| |
Collapse
|
11
|
Zhu QQ, Ma C, Wang Q, Song Y, Lv T. The role of TWIST1 in epithelial-mesenchymal transition and cancers. Tumour Biol 2015; 37:185-97. [DOI: 10.1007/s13277-015-4450-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/17/2015] [Indexed: 12/25/2022] Open
|
12
|
Xiao P, Ling H, Lan G, Liu J, Hu H, Yang R. Trefoil factors: Gastrointestinal-specific proteins associated with gastric cancer. Clin Chim Acta 2015; 450:127-34. [PMID: 26265233 DOI: 10.1016/j.cca.2015.08.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/11/2022]
Abstract
Trefoil factor family (TFF), composed of TFF1, TFF2, and TFF3, is a cluster of secreted peptides characterized by trefoil domain (s) and C-terminal dimerization domain. TFF1, a gastric tumor suppressor, is a single trefoil peptide originally detected in breast cancer cell lines but expressed mainly in the stomach; TFF2, a candidate of gastric cancer suppressor with two trefoil domains, is abundant in the stomach and duodenal Brunner's glands; and TFF3 is another single trefoil peptide expressed throughout the intestine which can promote the development of gastric carcinoma. According to multiple studies, TFFs play a regulatory function in the mammals' digestive system, namely in mucosal protection and epithelial cell reconstruction, tumor suppression or promotion, signal transduction and the regulation of proliferation and apoptosis. Action mechanisms of TFFs remain unresolved, but the recent demonstration of a GKN (gastrokine) 2-TFF1 heterodimer implicates structural and functional interplay with gastrokines. This review aims to encapsulate the structural and biological characteristics of TFF.
Collapse
Affiliation(s)
- Ping Xiao
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Hui Ling
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China.
| | - Gang Lan
- Key Laboratory for Atherosclerology of Hunan Province, Cardiovascular Research Institute, University of South China, Hengyang, Hunan 421001, PR China
| | - Jiao Liu
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Haobin Hu
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| | - Ruirui Yang
- Key Laboratory of Tumor Cellular and Molecular Pathology, University of South China, College of Hunan Province, Cancer Research Institute, Hengyang, Hunan 421001, PR China; Center for Gastric Cancer Research of Hunan Province, University of South China, Hengyang, Hunan 421001, PR China
| |
Collapse
|
13
|
Wang XN, Wang SJ, Pandey V, Chen P, Li Q, Wu ZS, Wu Q, Lobie PE. Trefoil factor 3 as a novel biomarker to distinguish between adenocarcinoma and squamous cell carcinoma. Medicine (Baltimore) 2015; 94:e860. [PMID: 25997063 PMCID: PMC4602872 DOI: 10.1097/md.0000000000000860] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In carcinoma, such as of the lung, the histological subtype is important to select an appropriate therapeutic strategy for patients. However, carcinomas with poor differentiation cannot always be distinguished on the basis of morphology alone nor on clinical findings. Hence, delineation of poorly differentiated adenocarcinoma and squamous cell carcinoma, the 2 most common epithelial-origin carcinomas, is pivotal for selection of optimum therapy. Herein, we explored the potential utility of trefoil factor 3 (TFF3) as a biomarker for primary lung adenocarcinoma and extrapulmonary adenocarcinomas derived from different organs. We observed that 90.9% of lung adenocarcinomas were TFF3-positive, whereas no expression of TFF3 was observed in squamous cell carcinomas. The subtype of lung carcinoma was confirmed by four established biomarkers, cytokeratin 7 and thyroid transcription factor 1 for adenocarcinoma and P63 and cytokeratin 5/6 for squamous cell carcinoma. Furthermore, expression of TFF3 mRNA was observed by quantitative PCR in all of 11 human lung adenocarcinoma cell lines and highly correlated with markers of the adenocarcinomatous lineage. In contrast, little or no expression of TFF3 was observed in 4 lung squamous cell carcinoma cell lines. By use of forced expression, or siRNA-mediated depletion of TFF3, we determined that TFF3 appeared to maintain rather than promote glandular differentiation of lung carcinoma cells. In addition, TFF3 expression was also determined in adenocarcinomas from colorectum, stomach, cervix, esophagus, and larynx. Among all these extrapulmonary carcinomas, 93.7% of adenocarcinomas exhibited TFF3 positivity, whereas only 2.9% of squamous cell carcinomas were TFF3-positive. Totally, 92.9% of both pulmonary and extrapulmonary adenocarcinomas exhibited TFF3 positivity, whereas only 1.5% of squamous cell carcinomas were TFF3-positive. In conclusion, TFF3 is preferentially expressed in adenocarcinoma and may function as an additional biomarker for distinguishing adenocarcinoma from squamous cell carcinoma.
Collapse
Affiliation(s)
- Xiao-Nan Wang
- From the Department of Pathology (X-NW, S-JW, PC, QL, Z-SW, QW); Laboratory of Pathogenic Microbiology and Immunology, Anhui Medical University, Hefei, Anhui, People's Republic of China (X-NW); Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore (VP, PEL); and National Cancer Institute of Singapore, National University Health System, Singapore (PEL). These authors contributed equally to this work
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Protective effects of intestinal trefoil factor (ITF) on gastric mucosal epithelium through activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Mol Cell Biochem 2015; 404:263-70. [PMID: 25776570 DOI: 10.1007/s11010-015-2386-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Accepted: 03/05/2015] [Indexed: 01/03/2023]
Abstract
The rapid repair of gastric mucosa is critical upon exposure to injurious agents. Intestinal trefoil factor (ITF) is a member of the trefoil factor family domain peptides, which play an important role in the cytoprotection of gastric epithelium. However, the underlying molecular mechanisms that are responsible for ITF-induced gastric epithelial repair remain unclear. In the present study, we demonstrate that ITF enhances the proliferation and migration of GES-1 gastric endothelial cells in a dose- and time-dependent manner through the activation of extracellular signal-regulated kinase 1/2 (ERK1/2). Furthermore, the ITF-mediated protection of GES-1 cells from a NS398 (nonsteroidal anti-inflammatory drug) was dependent on the ERK1/2 signaling pathway. Taken together, the results provide a mechanistic explanation for ITF-mediated protection of gastric epithelial mucosa cells, suggesting that activation of the ERK1/2 signaling pathway may provide a new therapeutic strategy for repairing gastric injury.
Collapse
|
15
|
Sun Z, Liu H, Yang Z, Shao D, Zhang W, Ren Y, Sun B, Lin J, Xu M, Nie S. Intestinal trefoil factor activates the PI3K/Akt signaling pathway to protect gastric mucosal epithelium from damage. Int J Oncol 2014; 45:1123-32. [PMID: 24990304 DOI: 10.3892/ijo.2014.2527] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/16/2014] [Indexed: 01/22/2023] Open
Abstract
Intestinal trefoil factor (ITF, also named as trefoil factor 3, TFF3) is a member of the TFF-domain peptide family, which plays an essential role in the regulation of cell survival, cell migration and maintains mucosal epithelial integrity in the gastrointestinal tract. However, the underlying mechanisms and associated molecules remain unclear. The aim of this study was to explore the protective effects of ITF on gastric mucosal epithelium injury and its possible molecular mechanisms of action. In the present study, we show that ITF was able to promote the proliferation and migration of GES-1 cells via a mechanism that involves the PI3K/Akt signaling pathway. Western blot results indicated that ITF induced a dose- and time-dependent increase in the Akt signaling pathway. ITF also plays an essential role in the restitution of GES-1 cell damage induced by lipopolysaccharide (LPS). LPS induced the apoptosis of GES-1 cells, decreased cell viability significantly (P<0.01) and led to epithelial tight junction damage, which is attenuated via ITF treatment. The protective effect of ITF on the integrity of GES-1 was abrogated by inhibition of the PI3K/Akt pathway. Taken together, our results demonstrate that ITF promotes the proliferation and migration of gastric mucosal epithelial cells and preserves gastric mucosal epithelial integrity after damage is mediated by activation of the PI3K/Akt signaling pathway. This study suggested that the PI3K/Akt pathway could act as a key intracellular pathway in the gastric mucosal epithelium that may serve as a therapeutic target to preserve epithelial integrity during injury.
Collapse
Affiliation(s)
- Zhaorui Sun
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Hongmei Liu
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Zhizhou Yang
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Danbing Shao
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Wei Zhang
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Yi Ren
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Baodi Sun
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Jinfeng Lin
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Min Xu
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| | - Shinan Nie
- Department of Emergency, Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, P.R. China
| |
Collapse
|
16
|
Sun Y, Wang L, Zhou Y, Mao X, Deng X. Cloning and characterization of the human trefoil factor 3 gene promoter. PLoS One 2014; 9:e95562. [PMID: 24743382 PMCID: PMC3990673 DOI: 10.1371/journal.pone.0095562] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/28/2014] [Indexed: 11/30/2022] Open
Abstract
Human trefoil factor 3 (hTFF3) is a small-molecule peptide with potential medicinal value. Its main pharmacological function is to alleviate gastrointestinal mucosal injuries caused by various factors and promote the repair of damaged mucosa. However, how its transcription is regulated is not yet known. The aim of this study was to clone the hTFF3 gene promoter region, identify the core promoter and any transcription factors that bind to the promoter, and begin to clarify the regulation of its expression. The 5′ flanking sequence of the hTFF3 gene was cloned from human whole blood genomic DNA by PCR. Truncated promoter fragments with different were cloned and inserted into the pGL3-Basic vector to determine the position of the core hTFF3 promoter. Transcription element maintaining basic transcriptional activity was assessed by mutation techniques. Protein-DNA interactions were analyzed by chromatin immunoprecipitation (ChIP). RNA interference and gene over-expression were performed to assay the effect of transcription factor on the hTFF3 expression. The results showed that approximately 1,826 bp of the fragment upstream of hTFF3 was successfully amplified, and its core promoter region was determined to be from −300 bp to −280 bp through analysis of truncated mutants. Mutation analysis confirmed that the sequence required to maintain basic transcriptional activity was accurately positioned from −300 bp to −296 bp. Bioinformatic analysis indicated that this area contained a Sp1 binding site. Sp1 binding to the hTFF3 promoter was confirmed by ChIP experiments. Sp1 over-expression and interference experiments showed that Sp1 enhanced the transcriptional activity of the hTFF3 promoter and increased hTFF3 expression. This study demonstrated that Sp1 plays an important role in maintaining the transcription of hTFF3.
Collapse
Affiliation(s)
- Yong Sun
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China
- Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
- * E-mail:
| | - Liangxi Wang
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China
- Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Yifang Zhou
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China
- Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Xuefei Mao
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China
- Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| | - Xiangdong Deng
- Department of Burn Surgery, Huaihai Hospital affiliated to Xuzhou Medical College, Xuzhou, Jiangsu Province, China
- Department of Burn Surgery, No. 97 Hospital of PLA, Xuzhou, Jiangsu Province, China
| |
Collapse
|