Nezu A, Morita T, Nagai T, Tanimura A. Simultaneous monitoring of Ca
2+ responses and salivary secretion in live animals reveals a threshold intracellular Ca
2+ concentration for salivation.
Exp Physiol 2018;
104:61-69. [PMID:
30367746 DOI:
10.1113/ep086868]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS
What is the central question of this study? The effects of Ca2+ responses on salivary fluid secretion have been studied indirectly by monitoring ion channel activities and other indices. Therefore, Ca2+ responses during salivary secretion remain poorly understood. What is the main finding and its importance? Herein, we developed a simultaneous monitoring system for Ca2+ responses and salivary secretion in live animals using a YC-Nano50-expressing submandibular gland and a fibre-optic pressure sensor. This new approach revealed a clear time lag between the onset of Ca2+ responses and salivary secretion. We also estimated the [Ca2+ ]i and provided direct evidence for the regulation of salivary secretion by small increases in [Ca2+ ]i in submandibular gland acinar cells.
ABSTRACT
We monitored changes in [Ca2+ ]i during salivary secretion in the rat submandibular gland in live animals using a combination of intravital Ca2+ imaging with the ultrasensitive Ca2+ indicator YC-Nano50 and a fibre-optic pressure sensor. Intravenous infusion of ACh (10-720 nmol min-1 ) increased [Ca2+ ]i and salivary flow rate in a dose-dependent manner. Repetitive stimulation with ACh induced equivalent Ca2+ responses and salivary secretion in the same individual animals. The accurate ACh stimulation experiments revealed a clear time lag between the onset of the increase in [Ca2+ ]i and salivary secretion. The time lag with the lowest dose of ACh (30 nmol min-1 ) was 106 s, which shortened to 19 s with the dose used for maximal salivary secretion (360 nmol min-1 ). This time lag might reflect the time required for [Ca2+ ]i to reach the level required to activate molecules for fluid secretion. The resting [Ca2+ ]i in submandibular gland was 37 nm, and [Ca2+ ]i at the onset of salivary secretion was 45-57 nm, irrespective of ACh dose. These results indicate that low [Ca2+ ]i is sufficient to trigger fluid secretion in the rat submandibular gland in vivo.
Collapse