1
|
Locatelli C, Lemonidis K, Salaun C, Tomkinson NCO, Chamberlain LH. Identification of key features required for efficient S-acylation and plasma membrane targeting of sprouty-2. J Cell Sci 2020; 133:jcs249664. [PMID: 33037124 PMCID: PMC7657471 DOI: 10.1242/jcs.249664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/30/2020] [Indexed: 11/24/2022] Open
Abstract
Sprouty-2 is an important regulator of growth factor signalling and a tumour suppressor protein. The defining feature of this protein is a cysteine-rich domain (CRD) that contains twenty-six cysteine residues and is modified by S-acylation. In this study, we show that the CRD of sprouty-2 is differentially modified by S-acyltransferase enzymes. The high specificity/low activity zDHHC17 enzyme mediated restricted S-acylation of sprouty-2, and cysteine-265 and -268 were identified as key targets of this enzyme. In contrast, the low specificity/high activity zDHHC3 and zDHHC7 enzymes mediated more expansive modification of the sprouty-2 CRD. Nevertheless, S-acylation by all enzymes enhanced sprouty-2 expression, suggesting that S-acylation stabilises this protein. In addition, we identified two charged residues (aspartate-214 and lysine-223), present on opposite faces of a predicted α-helix in the CRD, which are essential for S-acylation of sprouty-2. Interestingly, mutations that perturbed S-acylation also led to a loss of plasma membrane localisation of sprouty-2 in PC12 cells. This study provides insight into the mechanisms and outcomes of sprouty-2 S-acylation, and highlights distinct patterns of S-acylation mediated by different classes of zDHHC enzymes.
Collapse
Affiliation(s)
- Carolina Locatelli
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Kimon Lemonidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Christine Salaun
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Nicholas C O Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
2
|
Hausott B, Park JW, Valovka T, Offterdinger M, Hess MW, Geley S, Klimaschewski L. Subcellular Localization of Sprouty2 in Human Glioma Cells. Front Mol Neurosci 2019; 12:73. [PMID: 30983969 PMCID: PMC6449699 DOI: 10.3389/fnmol.2019.00073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/08/2019] [Indexed: 11/17/2022] Open
Abstract
Sprouty proteins act ubiquitously as signaling integrators and inhibitors of receptor tyrosine kinase (RTK) activated pathways. Among the four Sprouty isoforms, Sprouty2 is a key regulator of growth factor signaling in several neurological disorders. High protein levels correlate with reduced survival of glioma patients. We recently demonstrated that abrogating its function inhibits tumor growth by overstimulation of ERK and induction of DNA replication stress. The important role of Sprouty2 in the proliferation of malignant glioma cells prompted us to investigate its subcellular localization applying super-resolution fluorescence and immunoelectron microscopy. We found that cytoplasmic Sprouty2 is not homogenously distributed but localized to small spots (<100 nm) partly attached to vimentin filaments and co-localized with activated ERK. The protein is associated with early, late and recycling endosomes in response to but also independently of growth factor stimulation. The subcellular localization of Sprouty2 in all areas exhibiting strong RTK activities may reflect a protective response of glioma cells to limit excessive ERK activation and to prevent cellular senescence and apoptosis.
Collapse
Affiliation(s)
- Barbara Hausott
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Jong-Whi Park
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Taras Valovka
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University Innsbruck, Innsbruck, Austria
| | - Martin Offterdinger
- Biocenter, Division of Neurobiochemistry-Biooptics, Medical University Innsbruck, Innsbruck, Austria
| | - Michael W Hess
- Department of Anatomy, Histology and Embryology, Division of Histology, Medical University Innsbruck, Innsbruck, Austria
| | - Stephan Geley
- Biocenter, Division of Molecular Pathophysiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lars Klimaschewski
- Department of Anatomy, Histology and Embryology, Division of Neuroanatomy, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Wang SH, Liou GG, Liu SH, Chang JS, Hsiao JR, Yen YC, Chen YL, Wu WL, Chang JY, Chen YW. Laminin γ2-enriched extracellular vesicles of oral squamous cell carcinoma cells enhance in vitro lymphangiogenesis via integrin α3-dependent uptake by lymphatic endothelial cells. Int J Cancer 2019; 144:2795-2810. [PMID: 30485433 DOI: 10.1002/ijc.32027] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022]
Abstract
Oral squamous cell carcinoma (OSCC) LN1-1 cells previously showed greater capacities for lymphangiogenesis and lymph node metastasis compared to their parental OEC-M1 cells, in addition to an ability to enhance the migration and tube formation of lymphatic endothelial cells (LECs). Purified by a series of differential centrifugations and characterized using electron microscopy, dynamic light scattering and western blot, LN1-1 cell-derived extracellular vesicles (LN1-1 EVs) were shown to promote LEC migration, tube formation and uptake by LECs more effectively than did OEC-M1 cell-derived EVs (OEC-M1 EVs). Using stable isotope labeling with amino acids in cell culture/liquid chromatography-tandem mass spectrometry-based proteomic platform, the laminin-332 proteins, including laminin α3, β3 and γ2, were validated as highly expressed proteins in LN1-1 EVs. Clinically, a higher level of laminin-332 was detected in plasma EVs from OSCC patients with lymph node metastasis than in both healthy controls and OSCC patients without lymphatic metastasis, suggesting EV-borne laminin-332 as a novel and noninvasive biomarker for the detection of lymph node metastasis in OSCC. The knockdown of laminin γ2 and inhibition by anti-laminin-332 neutralizing antibodies impaired LN1-1 EV-mediated LEC migration, tube formation and uptake by LECs. Importantly, laminin γ2-deficient EVs showed a reduced ability to drain into lymph nodes in comparison with the control EVs. In addition, the laminin 332/γ2-mediated EV uptake was dependent on integrin α3 but not β1, β4 or α6. Collectively, the uptake of laminin γ2-enriched EVs by LECs enhanced in vitro lymphangiogenesis and EV-borne laminin-332 is thus a viable biomarker for OSCC.
Collapse
Affiliation(s)
- Ssu-Han Wang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Gunn-Guang Liou
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Szu-Heng Liu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jeffrey S Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Jenn-Ren Hsiao
- Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Chen Yen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Lin Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Wan-Ling Wu
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Jang-Yang Chang
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan.,Ph.D. Program for Aging, Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Tung SY, Wang SH, Lee SP, Tsai SP, Shen HH, Chen FJ, Wu YY, Hsiao SP, Liou GG. Modulations of SIR-nucleosome interactions of reconstructed yeast silent pre-heterochromatin by O-acetyl-ADP-ribose and magnesium. Mol Biol Cell 2016; 28:381-386. [PMID: 27932495 PMCID: PMC5341722 DOI: 10.1091/mbc.e16-06-0359] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 12/25/2022] Open
Abstract
In vitro–assembled filaments are confirmed as SIR-nucleosome pre-heterochromatin, and AAR acts as a modulator for their formation. Not only is magnesium present in the environmental buffer, but it also is chelated by the SIR-nucleosome pre-heterochromatin to promote its condensation. Yeast silent heterochromatin provides an excellent model with which to study epigenetic inheritance. Previously we developed an in vitro assembly system to demonstrate the formation of filament structures with requirements that mirror yeast epigenetic gene silencing in vivo. However, the properties of these filaments were not investigated in detail. Here we show that the assembly system requires Sir2, Sir3, Sir4, nucleosomes, and O-acetyl-ADP-ribose. We also demonstrate that all Sir proteins and nucleosomes are components of these filaments to prove that they are SIR-nucleosome filaments. Furthermore, we show that the individual localization patterns of Sir proteins on the SIR-nucleosome filament reflect those patterns on telomeres in vivo. In addition, we reveal that magnesium exists in the SIR-nucleosome filament, with a role similar to that for chromatin condensation. These results suggest that a small number of proteins and molecules are sufficient to mediate the formation of a minimal yeast silent pre-heterochromatin in vitro.
Collapse
Affiliation(s)
- Shu-Yun Tung
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Sue-Hong Wang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung 402, Taiwan
| | - Sue-Ping Lee
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Shu-Ping Tsai
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Hsiao-Hsuian Shen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Feng-Jung Chen
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Yu-Yi Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Sheng-Pin Hsiao
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| | - Gunn-Guang Liou
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan .,Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli 350, Taiwan.,Guang EM Laboratory, New Taipei 242, Taiwan
| |
Collapse
|
5
|
Chen YW, Liou GG, Pan HB, Tseng HH, Hung YT, Chou CP. Specific detection of CD133-positive tumor cells with iron oxide nanoparticles labeling using noninvasive molecular magnetic resonance imaging. Int J Nanomedicine 2015; 10:6997-7018. [PMID: 26635474 PMCID: PMC4646596 DOI: 10.2147/ijn.s86592] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The use of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles to visualize cells has been applied clinically, showing the potential for monitoring cells in vivo with magnetic resonance imaging (MRI). USPIO conjugated with anti-CD133 antibodies (USPIO-CD133 Ab) that recognize the CD133 molecule, a cancer stem cell marker in a variety of cancers, was studied as a novel and potent agent for MRI contrast enhancement of tumor cells. Materials and methods Anti-CD133 antibodies were used to conjugate with USPIO via interaction of streptavidin and biotin for in vivo labeling of CD133-positive cells in xenografted tumors and N-ethyl-N-nitrosourea (ENU)-induced brain tumors. The specific binding of USPIO-CD133 Ab to CD133-positive tumor cells was subsequently detected by Prussian blue staining and MRI with T2-weighted, gradient echo and multiple echo recombined gradient echo images. In addition, the cellular toxicity of USPIO-CD133 Ab was determined by analyzing cell proliferation, apoptosis, and reactive oxygen species production. Results USPIO-CD133 Ab specifically recognizes in vitro and labels CD133-positive cells, as validated using Prussian blue staining and MRI. The assays of cell proliferation, apoptosis, and reactive oxygen species production showed no significant differences in tumor cells with or without labeling of USPIO-CD133 Ab. In vivo imaging of CD133-positive cells was demonstrated by intravenous injection of USPIO-CD133 Ab in mice with HT29 xenografted tumors. The MRI of HT29 xenografts showed several clusters of hypotensive regions that correlated with CD133 expression and Prussian blue staining for iron. In rat, brain tumors induced by transplacental ENU mutagenesis, several clusters of hypointensive zones were observed in CD133-expressing brain tumors by MRI and intravenously administered USPIO-CD133 Ab. Conclusion Combination of USPIO-CD133 Ab and MRI is valuable in recognizing CD133-expressing tumor cells in vitro, extracellularly labeling for cell tracking and detecting CD133-expressing tumors in xenografted tumors as well as ENU-induced rat brain tumors.
Collapse
Affiliation(s)
- Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan ; Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Gunn-Guang Liou
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Huay-Ben Pan
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hui-Hwa Tseng
- School of Medicine, National Yang-Ming University, Taipei, Taiwan ; Department of Pathology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yu-Ting Hung
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chen-Pin Chou
- Department of Radiology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan ; School of Medicine, National Yang-Ming University, Taipei, Taiwan ; Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan ; School of Medicine, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|