1
|
Mangini M, Limatola N, Ferrara MA, Coppola G, Chun JT, De Luca AC, Santella L. Application of Raman spectroscopy to the evaluation of F-actin changes in sea urchin eggs at fertilization. ZYGOTE 2024; 32:38-48. [PMID: 38050697 DOI: 10.1017/s0967199423000552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
The actin filaments on the surface of echinoderm oocytes and eggs readily undergo massive reorganization during meiotic maturation and fertilization. In sea urchin eggs, the actin cytoskeletal response to the fertilizing sperm is fast enough to accompany Ca2+ signals and to guide sperm's entry into the egg. Although recent work using live cell imaging technology confirmed changes in the actin polymerization status in fertilized eggs, as was previously shown using light and electron microscopy, it failed to provide experimental evidence of F-actin depolymerization a few seconds after insemination, which is concurrent with the sperm-induced Ca2+ release. In the present study, we applied Raman microspectroscopy to tackle this issue by examining the spectral profiles of the egg's subplasmalemmal regions before and after treating the eggs with actin drugs or fertilizing sperm. At both early (15 s) and late (15 min) time points after fertilization, specific peak shifts in the Raman spectra revealed change in the actin structure, and Raman imaging detected the cytoskeletal changes corresponding to the F-actin reorganization visualized with LifeAct-GFP in confocal microscopy. Our observation suggests that the application of Raman spectroscopy, which does not require microinjection of fluorescent probes and exogenous gene expression, may serve as an alternative or even advantageous method in disclosing rapid subtle changes in the subplasmalemmal actin cytoskeleton that are difficult to resolve.
Collapse
Affiliation(s)
- Maria Mangini
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore', Second Unit, National Research Council, 80131Naples, Italy
| | - Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121Naples, Italy
| | - Maria Antonietta Ferrara
- Institute of Applied Sciences and Intelligent Systems 'E. Caianiello', Unit of Naples, National Research Council, 80131Naples, Italy
| | - Giuseppe Coppola
- Institute of Applied Sciences and Intelligent Systems 'E. Caianiello', Unit of Naples, National Research Council, 80131Naples, Italy
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121Naples, Italy
| | - Anna Chiara De Luca
- Institute of Experimental Endocrinology and Oncology 'G. Salvatore', Second Unit, National Research Council, 80131Naples, Italy
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121Naples, Italy
| |
Collapse
|
2
|
Santella L, Chun JT. Structural actin dynamics during oocyte maturation and fertilization. Biochem Biophys Res Commun 2022; 633:13-16. [DOI: 10.1016/j.bbrc.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/06/2022]
|
3
|
Limatola N, Chun JT, Cherraben S, Schmitt JL, Lehn JM, Santella L. Effects of Dithiothreitol on Fertilization and Early Development in Sea Urchin. Cells 2021; 10:3573. [PMID: 34944081 PMCID: PMC8700669 DOI: 10.3390/cells10123573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 01/20/2023] Open
Abstract
The vitelline layer (VL) of a sea urchin egg is an intricate meshwork of glycoproteins that intimately ensheathes the plasma membrane. During fertilization, the VL plays important roles. Firstly, the receptors for sperm reside on the VL. Secondly, following cortical granule exocytosis, the VL is elevated and transformed into the fertilization envelope (FE), owing to the assembly and crosslinking of the extruded materials. As these two crucial stages involve the VL, its alteration was expected to affect the fertilization process. In the present study, we addressed this question by mildly treating the eggs with a reducing agent, dithiothreitol (DTT). A brief pretreatment with DTT resulted in partial disruption of the VL, as judged by electron microscopy and by a novel fluorescent polyamine probe that selectively labelled the VL. The DTT-pretreated eggs did not elevate the FE but were mostly monospermic at fertilization. These eggs also manifested certain anomalies at fertilization: (i) compromised Ca2+ signaling, (ii) blocked translocation of cortical actin filaments, and (iii) impaired cleavage. Some of these phenotypic changes were reversed by restoring the DTT-exposed eggs in normal seawater prior to fertilization. Our findings suggest that the FE is not the decisive factor preventing polyspermy and that the integrity of the VL is nonetheless crucial to the egg's fertilization response.
Collapse
Affiliation(s)
- Nunzia Limatola
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| | - Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy
| | - Sawsen Cherraben
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS—Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France; (S.C.); (J.-L.S.); (J.-M.L.)
| | - Jean-Louis Schmitt
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS—Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France; (S.C.); (J.-L.S.); (J.-M.L.)
| | - Jean-Marie Lehn
- Laboratory of Supramolecular Chemistry, Institut de Science et d’Ingénierie Supramoléculaires ISIS—Université de Strasbourg, 8 allée Gaspard Monge, 67000 Strasbourg, France; (S.C.); (J.-L.S.); (J.-M.L.)
| | - Luigia Santella
- Department of Research Infrastructures for Marine Biological Resources, Stazione Zoologica Anton Dohrn, 80121 Napoli, Italy;
| |
Collapse
|
4
|
Limatola N, Chun JT, Santella L. Effects of Salinity and pH of Seawater on the Reproduction of the Sea Urchin Paracentrotus lividus. THE BIOLOGICAL BULLETIN 2020; 239:13-23. [PMID: 32812816 DOI: 10.1086/710126] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
AbstractFertilization and early development are usually the most vulnerable stages in the life of marine animals, and the biological processes during this period are highly sensitive to the environment. In nature, sea urchin gametes are shed in seawater, where they undergo external fertilization and embryonic development. In a laboratory, it is possible to follow the exact morphological and biochemical changes taking place in the fertilized eggs and the developing embryos. Thus, observation of successful fertilization and the subsequent embryonic development of sea urchin eggs can be used as a convenient biosensor to assess the quality of the marine environment. In this paper, we have examined how salinity and pH changes affect the normal fertilization process and the following development of Paracentrotus lividus. The results of our studies using confocal microscopy, scanning and transmission electron microscopy, and time-lapse Ca2+ image recording indicated that both dilution and acidification of seawater have subtle but detrimental effects on many aspects of the fertilization process. They include Ca2+ signaling and coordinated actin cytoskeletal changes, leading to a significantly reduced rate of successful fertilization and, eventually, to abnormal or delayed embryonic development.
Collapse
|
5
|
Nicotine Induces Polyspermy in Sea Urchin Eggs through a Non-Cholinergic Pathway Modulating Actin Dynamics. Cells 2019; 9:cells9010063. [PMID: 31881774 PMCID: PMC7016604 DOI: 10.3390/cells9010063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/02/2019] [Accepted: 12/21/2019] [Indexed: 01/02/2023] Open
Abstract
While alkaloids often exert unique pharmacological effects on animal cells, exposure of sea urchin eggs to nicotine causes polyspermy at fertilization in a dose-dependent manner. Here, we studied molecular mechanisms underlying the phenomenon. Although nicotine is an agonist of ionotropic acetylcholine receptors, we found that nicotine-induced polyspermy was neither mimicked by acetylcholine and carbachol nor inhibited by specific antagonists of nicotinic acetylcholine receptors. Unlike acetylcholine and carbachol, nicotine uniquely induced drastic rearrangement of egg cortical microfilaments in a dose-dependent way. Such cytoskeletal changes appeared to render the eggs more receptive to sperm, as judged by the significant alleviation of polyspermy by latrunculin-A and mycalolide-B. In addition, our fluorimetric assay provided the first evidence that nicotine directly accelerates polymerization kinetics of G-actin and attenuates depolymerization of preassembled F-actin. Furthermore, nicotine inhibited cofilin-induced disassembly of F-actin. Unexpectedly, our results suggest that effects of nicotine can also be mediated in some non-cholinergic pathways.
Collapse
|
6
|
Sodium-mediated fast electrical depolarization does not prevent polyspermic fertilization in Paracentrotus lividus eggs. ZYGOTE 2019; 27:241-249. [PMID: 31397235 DOI: 10.1017/s0967199419000364] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
During sea urchins fertilization, the activating spermatozoon triggers a series of physiological changes that transforms the quiescent egg into a dynamic zygote. It has been suggested that several of these egg activation events, e.g. sperm-induced plasma membrane depolarization and the Ca2+-linked cortical reaction, play additional roles to prevent the entry of supernumerary spermatozoa. In particular, the abrupt shift in egg membrane potential at fertilization, which is sustained by a Na+ influx, has been considered as a fast mechanism to block polyspermy. To test the relevance of the Na+-mediated fast electrical block to polyspermy, we fertilized sea urchin eggs in artificial seawater with a low concentration of Na+; nearly all the eggs were still monospermic, as judged by the number of Hoechst 33422-stained sperm. When fertilized in normal seawater, eggs that were pre-incubated in the low Na+ medium exhibited impaired elevation of the fertilization envelope. Nevertheless, these eggs manifested entry of a single spermatozoon, suggesting that the fertilization envelope was not the primary determinant of the block to polyspermy. Furthermore, we showed that the abnormal cleavage patterns displayed by eggs pre-incubated in low Na+, which were often considered a hallmark of polyspermy, were due to the alterations in the cortical actin filaments dynamics following fertilization, and not to the formation of multipolar spindles associated with supernumerary sperm centrosomes. Hence, our results suggested that Paracentrotus lividus eggs do not utilize Na+ to rapidly prevent additional spermatozoa from entering the egg, at variance with the hypothesis of an electrical fast block to polyspermy.
Collapse
|
7
|
Altered actin cytoskeleton in ageing eggs of starfish affects fertilization process. Exp Cell Res 2019; 381:179-190. [PMID: 31082375 DOI: 10.1016/j.yexcr.2019.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 05/03/2019] [Accepted: 05/04/2019] [Indexed: 11/21/2022]
Abstract
Integrity of oocytes is of pivotal interest in the medical and zootechnical practice of in vitro fertilization. With time, oocytes undergo deterioration in quality, and ageing oocytes often exhibit compromised competence in fertilization and the subsequent embryonic development. With ageing oocytes and eggs of starfish (Astropecten aranciacus), we addressed the issue by examining changes of the subcellular structure and their performance at fertilization. Ageing eggs were simulated in two different experimental paradigms: i) oocytes were overmatured by 6 hours stimulation with 1-methyladenine (1-MA); ii) oocytes were removed from the gonad and maintained in seawater for 24 or 48 h before applying the hormonal stimulation (1-MA, 70 min). These eggs were compared with normally matured eggs (stimulated after isolation from the gonad with 1-MA for 70 min) with respect to the sperm-induced intracellular Ca2+ signaling and the structural changes of the egg surface. The cytoskeletal and ultrastructural differences in these eggs were assessed by confocal and transmission electron microscopy, respectively. In the two categories of ageing eggs, we have found remarkable structural modifications of the actin cytoskeleton and the cortical vesicles beneath the plasma membrane. At fertilization, these ageing eggs manifested an altered pattern of intracellular Ca2+ release, aberrant actin dynamics, and increased rate of polyspermy often despite full elevation of the fertilization envelope. Taken together, our results highlight the importance of spatio-temporal regulation of the actin cytoskeleton in the cortex of the eggs, and we postulate that the status of the actin cytoskeleton is one of the major determinants of the oocyte quality that ensures successful monospermic fertilization.
Collapse
|
8
|
Maturation and fertilization of echinoderm eggs: Role of actin cytoskeleton dynamics. Biochem Biophys Res Commun 2018; 506:361-371. [DOI: 10.1016/j.bbrc.2018.09.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 01/31/2023]
|
9
|
Chun JT, Vasilev F, Limatola N, Santella L. Fertilization in Starfish and Sea Urchin: Roles of Actin. Results Probl Cell Differ 2018; 65:33-47. [PMID: 30083914 DOI: 10.1007/978-3-319-92486-1_3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Marine animals relying on "external fertilization" provide advantageous opportunities to study the mechanisms of gamete activation and fusion, as well as the subsequent embryonic development. Owing to the large number of eggs that are easily available and handled, starfish and sea urchins have been chosen as favorable animal models in this line of research for over 150 years. Indeed, much of our knowledge on fertilization came from studies in the echinoderms. Fertilization involves mutual stimulation between eggs and sperm, which leads to morphological, biochemical, and physiological changes on both sides to ensure successful gamete fusion. In this chapter, we review the roles of actin in the fertilization of starfish and sea urchin eggs. As fertilization is essentially an event that takes place on the egg surface, it has been predicted that suboolemmal actin filaments would make significant contributions to sperm entry. A growing body of evidence from starfish and sea urchin eggs suggests that the prompt reorganization of the actin pools around the time of fertilization plays crucial regulatory roles not only in guiding sperm entry but also in modulating intracellular Ca2+ signaling and egg activation.
Collapse
Affiliation(s)
- Jong Tai Chun
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy.
| | - Filip Vasilev
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Nunzia Limatola
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Luigia Santella
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, Italy.
| |
Collapse
|
10
|
Novel Ca2+ increases in the maturing oocytes of starfish during the germinal vesicle breakdown. Cell Calcium 2015; 58:500-10. [DOI: 10.1016/j.ceca.2015.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 11/20/2022]
|
11
|
Santella L, Limatola N, Chun JT. Calcium and actin in the saga of awakening oocytes. Biochem Biophys Res Commun 2015; 460:104-13. [PMID: 25998739 DOI: 10.1016/j.bbrc.2015.03.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/06/2015] [Indexed: 12/12/2022]
Abstract
The interaction of the spermatozoon with the egg at fertilization remains one of the most fascinating mysteries of life. Much of our scientific knowledge on fertilization comes from studies on sea urchin and starfish, which provide plenty of gametes. Large and transparent, these eggs have served as excellent model systems for studying egg activation and embryo development in seawater, a plain natural medium. Starfish oocytes allow the study of the cortical, cytoplasmic and nuclear changes during the meiotic maturation process, which can also be triggered in vitro by hormonal stimulation. These morphological and biochemical changes ensure successful fertilization of the eggs at the first metaphase. On the other hand, sea urchin eggs are fertilized after the completion of meiosis, and are particularly suitable for the study of sperm-egg interaction, early events of egg activation, and embryonic development, as a large number of mature eggs can be fertilized synchronously. Starfish and sea urchin eggs undergo abrupt changes in the cytoskeleton and ion fluxes in response to the fertilizing spermatozoon. The plasma membrane and cortex of an egg thus represent "excitable media" that quickly respond to the stimulus with the Ca(2+) swings and structural changes. In this article, we review some of the key findings on the rapid dynamic rearrangements of the actin cytoskeleton in the oocyte/egg cortex upon hormonal or sperm stimulation and their roles in the modulation of the Ca(2+) signals and in the control of monospermic fertilization.
Collapse
Affiliation(s)
- Luigia Santella
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, I-80121, Italy.
| | - Nunzia Limatola
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, I-80121, Italy
| | - Jong T Chun
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale 1, Napoli, I-80121, Italy
| |
Collapse
|
12
|
Costache V, McDougall A, Dumollard R. Cell cycle arrest and activation of development in marine invertebrate deuterostomes. Biochem Biophys Res Commun 2014; 450:1175-81. [DOI: 10.1016/j.bbrc.2014.03.155] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 11/24/2022]
|
13
|
Chun JT, Limatola N, Vasilev F, Santella L. Early events of fertilization in sea urchin eggs are sensitive to actin-binding organic molecules. Biochem Biophys Res Commun 2014; 450:1166-74. [DOI: 10.1016/j.bbrc.2014.06.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
|