1
|
Yang G, Shi W, He W, Wu J, Huang S, Mo L, Zhang J, Wang H, Zhou X. The mitochondrial protein Bcs1A regulates antifungal drug tolerance by affecting efflux pump expression in the filamentous pathogenic fungus Aspergillus fumigatus. Microbiol Spectr 2024; 12:e0117224. [PMID: 39162512 PMCID: PMC11448404 DOI: 10.1128/spectrum.01172-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/20/2024] [Indexed: 08/21/2024] Open
Abstract
Aspergillus fumigatus is the predominant pathogen responsible for aspergillosis infections, with emerging drug-resistant strains complicating treatment strategies. The role of mitochondrial functionality in fungal resistance to antifungal agents is well-documented yet not fully understood. In this study, the mitochondrial protein Bcs1A, a homolog of yeast Bcs1, was found to regulate colony growth, ion homeostasis, and the response to antifungal drugs in A. fumigatus. Microscopic observations revealed substantial colocalization of Bcs1A-GFP fusion protein fluorescence with mitochondria. Bcs1A deletion compromised colony growth and the utilization of non-fermentable carbon sources, alongside causing abnormal mitochondrial membrane potential and reduced reactive oxygen species production. These findings underscore Bcs1A's vital role in maintaining mitochondrial integrity. Phenotypic analysis and determinations of minimum inhibitory concentrations indicated that the Δbcs1A mutant was more resistant to various antifungal agents, such as azoles, terbinafine, and simvastatin, compared to wild-type strain. RNA sequencing and RT-qPCR analysis highlighted an upregulation of multiple efflux pumps in the Δbcs1A mutant. Furthermore, loss of the principal drug efflux pump, mdr1, decreased azole tolerance in the Δbcs1A mutant, suggesting that Bcs1A's modulated of azoles response via efflux pump expression. Collectively, these results establish Bcs1A as essential for growth and antifungal drug responsiveness in A. fumigatus mediated through mitochondrial regulation.IMPORTANCEDrug resistance presents a formidable obstacle in the clinical management of aspergillosis. Mitochondria are integral to various biochemical pathways, including those involved in fungi drug response, making mitochondrial proteins promising therapeutic targets for drug therapy. This study confirms that Bcs1A, a mitochondrial respiratory chain protein, is indispensable for mitochondrial functionality and multidrug tolerance in Aspergillus fumigatus. Mutation of Bcs1A not only leads to a series of drug efflux pumps upregulated but also shows that loss of the primary efflux pump, mdr1, partial reduction in drug tolerance in the Bcs1A mutant, highlighting that Bcs1A's significant influence on mitochondria-mediated drug resistance.
Collapse
Affiliation(s)
- Guorong Yang
- Anhui Key Laboratory of Infection and Immunity, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Weiwei Shi
- Departments of Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Wenlin He
- Anhui Key Laboratory of Infection and Immunity, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Jing Wu
- Anhui Key Laboratory of Infection and Immunity, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| | - Sutao Huang
- School of Life Sciences, Bengbu Medical University, Bengbu, China
| | - Li Mo
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical University, Bengbu, China
| | - Huaxue Wang
- Departments of Critical Care Medicine, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Xiaogang Zhou
- Anhui Key Laboratory of Infection and Immunity, School of Basic Medicine, Bengbu Medical University, Bengbu, China
| |
Collapse
|
2
|
Fan J, Zhang H, Shi Y, Li Y, He Y, Wang Q, Liu S, Yao Y, Zhou X, Liao J, Huang Y, Wang Z. Systematic identification and characterization of microRNAs with target genes involved in high night temperature stress at the filling stage of rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14305. [PMID: 38659134 DOI: 10.1111/ppl.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
High night temperature stress is one of the main environmental factors affecting rice yield and quality. More and more evidence shows that microRNA (miRNA) plays an important role in various abiotic stresses. However, the molecular network of miRNA regulation on rice tolerance to high night temperatures remains unclear. Here, small RNA, transcriptome and degradome sequencing were integrated to identify differentially expressed miRNAs, genes, and key miRNA-target gene pairs in rice heat-sensitive and heat-tolerant lines at the filling stage suffering from high night temperature stress. It was discovered that there were notable differences in the relative expression of 102 miRNAs between the two rice lines under stress. Meanwhile, 5263 and 5405 mRNAs were differentially expressed in the heat-sensitive line and heat-tolerant line, and functional enrichment analysis revealed that these genes were involved in heat-related processes and pathways. The miRNAs-mRNAs target relationship was further verified by degradome sequencing. Eventually, 49 miRNAs-222 mRNAs target pairs with reverse expression patterns showed significant relative expression changes between the heat-tolerant and the heat-sensitive line, being suggested to be responsible for the heat tolerance difference of these two rice lines. Functional analysis of these 222 mRNA transcripts showed that high night temperature-responsive miRNAs targeted these mRNAs involved in many heat-related biological processes, such as transcription regulation, chloroplast regulation, mitochondrion regulation, protein folding, hormone regulation and redox process. This study identified possible miRNA-mRNA regulation relationships in response to high night temperature stress in rice and potentially contributed to heat resistance breeding of rice in the future.
Collapse
Affiliation(s)
- Jiangmin Fan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Hongyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yan Shi
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yuewu Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yuxiang He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Qiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Siyi Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Youmin Yao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Xiaoya Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Jianglin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| |
Collapse
|
3
|
Transcriptome analysis of Botrytis cinerea in response to tea tree oil and its two characteristic components. Appl Microbiol Biotechnol 2020; 104:2163-2178. [DOI: 10.1007/s00253-020-10382-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 01/16/2020] [Indexed: 12/16/2022]
|
4
|
Barros MH, McStay GP. Modular biogenesis of mitochondrial respiratory complexes. Mitochondrion 2019; 50:94-114. [PMID: 31669617 DOI: 10.1016/j.mito.2019.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/04/2019] [Accepted: 10/10/2019] [Indexed: 11/29/2022]
Abstract
Mitochondrial function relies on the activity of oxidative phosphorylation to synthesise ATP and generate an electrochemical gradient across the inner mitochondrial membrane. These coupled processes are mediated by five multi-subunit complexes that reside in this inner membrane. These complexes are the product of both nuclear and mitochondrial gene products. Defects in the function or assembly of these complexes can lead to mitochondrial diseases due to deficits in energy production and mitochondrial functions. Appropriate biogenesis and function are mediated by a complex number of assembly factors that promote maturation of specific complex subunits to form the active oxidative phosphorylation complex. The understanding of the biogenesis of each complex has been informed by studies in both simple eukaryotes such as Saccharomyces cerevisiae and human patients with mitochondrial diseases. These studies reveal each complex assembles through a pathway using specific subunits and assembly factors to form kinetically distinct but related assembly modules. The current understanding of these complexes has embraced the revolutions in genomics and proteomics to further our knowledge on the impact of mitochondrial biology in genetics, medicine, and evolution.
Collapse
Affiliation(s)
- Mario H Barros
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, Brazil.
| | - Gavin P McStay
- Department of Biological Sciences, Staffordshire University, Stoke-on-Trent, United Kingdom.
| |
Collapse
|
5
|
Chowdhury A, Ogura T, Esaki M. Two Cdc48 cofactors Ubp3 and Ubx2 regulate mitochondrial morphology and protein turnover. J Biochem 2018; 164:349-358. [PMID: 29924334 DOI: 10.1093/jb/mvy057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022] Open
Abstract
Mitochondria continuously undergo coordinated fusion and fission during vegetative growth to keep their homogeneity and to remove damaged components. A cytosolic AAA ATPase, Cdc48, is implicated in the mitochondrial fusion event and turnover of a fusion-responsible GTPase in the mitochondrial outer membrane, Fzo1, suggesting a possible linkage of mitochondrial fusion and Fzo1 turnover. Here, we identified two Cdc48 cofactor proteins, Ubp3 and Ubx2, involving mitochondria regulation. In the absence of UBP3, mitochondrial fragmentation and aggregation were observed. The turnover of Fzo1 was not affected in Δubp3, but instead a deubiquitylase Ubp12 that removes fusion-required polyubiquitin chains from Fzo1 was stabilized. Thus, excess amount of Ubp12 may lead to mitochondrial fragmentation by removal of fusion-competent ubiquitylated Fzo1. In contrast, deletion of UBX2 perturbed disassembly of Fzo1 oligomers and their degradation without alteration of mitochondrial morphology. The UBX2 deletion led to destabilization of Ubp2 that negatively regulates Fzo1 turnover by removing degradation-signalling polyubiquitin chains, suggesting that Ubx2 would directly facilitate Fzo1 degradation. These results indicated that two different Cdc48-cofactor complexes independently regulate mitochondrial fusion and Fzo1 turnover.
Collapse
Affiliation(s)
- Abhijit Chowdhury
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, Japan
| | - Teru Ogura
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, Japan.,Program for Leading Graduate Schools "HIGO Program", Kumamoto University, Honjo 1-1-1, Chuo-ku, Kumamoto, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi-shi, Saitama, Japan
| | - Masatoshi Esaki
- Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Chuo-ku, Kumamoto, Japan.,Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi-shi, Saitama, Japan
| |
Collapse
|
6
|
Ndi M, Marin-Buera L, Salvatori R, Singh AP, Ott M. Biogenesis of the bc 1 Complex of the Mitochondrial Respiratory Chain. J Mol Biol 2018; 430:3892-3905. [PMID: 29733856 DOI: 10.1016/j.jmb.2018.04.036] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/16/2018] [Accepted: 04/24/2018] [Indexed: 11/26/2022]
Abstract
The oxidative phosphorylation system contains four respiratory chain complexes that connect the transport of electrons to oxygen with the establishment of an electrochemical gradient over the inner membrane for ATP synthesis. Due to the dual genetic source of the respiratory chain subunits, its assembly requires a tight coordination between nuclear and mitochondrial gene expression machineries. In addition, dedicated assembly factors support the step-by-step addition of catalytic and accessory subunits as well as the acquisition of redox cofactors. Studies in yeast have revealed the basic principles underlying the assembly pathways. In this review, we summarize work on the biogenesis of the bc1 complex or complex III, a central component of the mitochondrial energy conversion system.
Collapse
Affiliation(s)
- Mama Ndi
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Lorena Marin-Buera
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Roger Salvatori
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Abeer Prakash Singh
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Martin Ott
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
7
|
Martins MP, Gomes EV, Sanches PR, Pedersoli WR, Martinez-Rossi NM, Rossi A. mus-52 disruption and metabolic regulation in Neurospora crassa: Transcriptional responses to extracellular phosphate availability. PLoS One 2018; 13:e0195871. [PMID: 29668735 PMCID: PMC5905970 DOI: 10.1371/journal.pone.0195871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/30/2018] [Indexed: 12/01/2022] Open
Abstract
Advances in the understanding of molecular systems depend on specific tools like the disruption of genes to produce strains with the desired characteristics. The disruption of any mutagen sensitive (mus) genes in the model fungus Neurospora crassa, i.e. mus-51, mus-52, or mus-53, orthologous to the human genes KU70, KU80, and LIG4, respectively, provides efficient tools for gene targeting. Accordingly, we used RNA-sequencing and reverse transcription-quantitative polymerase chain reaction amplification techniques to evaluate the effects of mus-52 deletion in N. crassa gene transcriptional modulation, and thus, infer its influence regarding metabolic response to extracellular availability of inorganic phosphate (Pi). Notably, the absence of MUS-52 affected the transcription of a vast number of genes, highlighting the expression of those coding for transcription factors, kinases, circadian clocks, oxi-reduction balance, and membrane- and nucleolus-related proteins. These findings may provide insights toward the KU molecular mechanisms, which have been related to telomere maintenance, apoptosis, DNA replication, and gene transcription regulation, as well as associated human conditions including immune system disorders, cancer, and aging.
Collapse
Affiliation(s)
- Maíra P. Martins
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Eriston V. Gomes
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Pablo R. Sanches
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Wellington R. Pedersoli
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Nilce M. Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
8
|
Stoldt S, Wenzel D, Kehrein K, Riedel D, Ott M, Jakobs S. Spatial orchestration of mitochondrial translation and OXPHOS complex assembly. Nat Cell Biol 2018; 20:528-534. [PMID: 29662179 DOI: 10.1038/s41556-018-0090-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 03/20/2018] [Indexed: 12/11/2022]
Abstract
Oxidative phosphorylation (OXPHOS) is vital for the regeneration of the vast majority of ATP in eukaryotic cells 1 . OXPHOS is carried out by large multi-subunit protein complexes in the cristae membranes, which are invaginations of the mitochondrial inner membrane. The OXPHOS complexes are a mix of subunits encoded in the nuclear and mitochondrial genomes. Thus, the assembly of these dual-origin complexes is an enormous logistical challenge for the cell. Using super-resolution microscopy (nanoscopy) and quantitative cryo-immunogold electron microscopy, we determined where specific transcripts are translated and where distinct assembly steps of the dual-origin complexes in the yeast Saccharomyces cerevisiae occur. Our data indicate that the mitochondrially encoded proteins of complex III and complex IV are preferentially inserted in different sites of the inner membrane than those of complex V. We further demonstrate that the early, but not the late, assembly steps of complex III and complex IV occur preferentially in the inner boundary membrane. By contrast, all steps of complex V assembly occur mainly in the cristae membranes. Thus, OXPHOS complex assembly is spatially well orchestrated, probably representing an unappreciated regulatory layer in mitochondrial biogenesis.
Collapse
Affiliation(s)
- Stefan Stoldt
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dirk Wenzel
- Laboratory of Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kirsten Kehrein
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Dietmar Riedel
- Laboratory of Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Stefan Jakobs
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany. .,Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
| |
Collapse
|