1
|
Gidlöf O. Toward a New Paradigm for Targeted Natriuretic Peptide Enhancement in Heart Failure. Front Physiol 2021; 12:650124. [PMID: 34721050 PMCID: PMC8548580 DOI: 10.3389/fphys.2021.650124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
The natriuretic peptide system (NPS) plays a fundamental role in maintaining cardiorenal homeostasis, and its potent filling pressure-regulated diuretic and vasodilatory effects constitute a beneficial compensatory mechanism in heart failure (HF). Leveraging the NPS for therapeutic benefit in HF has been the subject of intense investigation during the last three decades and has ultimately reached widespread clinical use in the form of angiotensin receptor-neprilysin inhibition (ARNi). NPS enhancement via ARNi confers beneficial effects on mortality and hospitalization in HF, but inhibition of neprilysin leads to the accumulation of a number of other vasoactive peptides in the circulation, often resulting in hypotension and raising potential concerns over long-term adverse effects. Moreover, ARNi is less effective in the large group of HF patients with preserved ejection fraction. Alternative approaches for therapeutic augmentation of the NPS with increased specificity and efficacy are therefore warranted, and are now becoming feasible particularly with recent development of RNA therapeutics. In this review, the current state-of-the-art in terms of experimental and clinical strategies for NPS augmentation and their implementation will be reviewed and discussed.
Collapse
Affiliation(s)
- Olof Gidlöf
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
2
|
Xu M, Liu X, Li P, Yang Y, Zhang W, Zhao S, Zeng Y, Zhou X, Zeng LH, Yang G. Modified Natriuretic Peptides and their Potential Role in Cancer Treatment. Biomed J 2021; 45:118-131. [PMID: 34237455 PMCID: PMC9133251 DOI: 10.1016/j.bj.2021.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/07/2021] [Accepted: 06/28/2021] [Indexed: 01/20/2023] Open
Abstract
The natriuretic peptide family (NPs) is a group of natural endocrine hormones, containing a 17-amino acid ring structure connected by disulfide bonds of two cysteines. In this review, the members of the natriuretic peptide family and their corresponding receptors as well as the anti-cancer effects are introduced. Four cardiac hormones of NPs (ANP, VD, KP and LANP) can effectively inhibit the growth of human small cell lung cancer, breast cancer and other tumors and significantly reduce tumor volume in vivo. The in vitro experiments also show that cardiac hormones, CNP and urodilatin can effectively inhibit the growth of most tumor cells. We then further summarized the anti-cancer mechanism of natriuretic peptides. Finally, we introduce several methods that modify natriuretic peptides, leading to enhance their stability and prolong the biological effects of these peptides, which might be helpful for the clinical application in the future. Peptide therapy is a very promising field for cancer treatments since they can induce the death of cancer cells without dramatically affecting normal cells. The synthesis of a useful and stable natriuretic peptide can enhance the effect of cancer treatments and significantly reduce drug resistance and toxicity.
Collapse
Affiliation(s)
- Mengjiao Xu
- School of Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China; Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Xingzhu Liu
- School of Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Ping Li
- School of Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Yadong Yang
- School of Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenyuan Zhang
- School of Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Siyu Zhao
- School of Bioengineering, Hangzhou Medical College, Hangzhou, 310013, China
| | - Ying Zeng
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Xile Zhou
- Department of Pathology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310006, China
| | - Ling-Hui Zeng
- Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, 310015, China
| | - Geng Yang
- Department of Pharmacology, School of Medicine, Zhejiang University City College, Hangzhou, 310015, China.
| |
Collapse
|
3
|
Wang J, Chen W, Zhong H, Luo Y, Zhang L, He L, Wu C, Li L. Identify of promising isoquinolone JNK1 inhibitors by combined application of 3D-QSAR, molecular docking and molecular dynamics simulation approaches. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Lerner Y, Hanout W, Ben-Uliel SF, Gani S, Leshem MP, Qvit N. Natriuretic Peptides as the Basis of Peptide Drug Discovery for Cardiovascular Diseases. Curr Top Med Chem 2020; 20:2904-2921. [PMID: 33050863 DOI: 10.2174/1568026620666201013154326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 01/14/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading global cause of death, accounting for more than 17.6 million deaths per year in 2016, a number that is expected to grow to more than 23.6 million by 2030. While many technologies are currently under investigation to improve the therapeutic outcome of CVD complications, only a few medications have been approved. Therefore, new approaches to treat CVD are urgently required. Peptides regulate numerous physiological processes, mainly by binding to specific receptors and inducing a series of signals, neurotransmissions or the release of growth factors. Importantly, peptides have also been shown to play an important role in the circulatory system both in physiological and pathological conditions. Peptides, such as angiotensin II, endothelin, urotensin-II, urocortins, adrenomedullin and natriuretic peptides have been implicated in the control of vascular tone and blood pressure as well as in CVDs such as congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Hence it is not surprising that peptides are becoming important therapeutic leads in CVDs. This article will review the current knowledge on peptides and their role in the circulatory system, focusing on the physiological roles of natriuretic peptides in the cardiovascular system and their implications in CVDs.
Collapse
Affiliation(s)
- Yana Lerner
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Wessal Hanout
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Shulamit Fluss Ben-Uliel
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Samar Gani
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Michal Pellach Leshem
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Henrietta Szold St. 8, P.O. Box 1589, Safed, Israel
| |
Collapse
|
5
|
Shi Z, Fu F, Yu L, Xing W, Su F, Liang X, Tie R, Ji L, Zhu M, Yu J, Zhang H. Vasonatrin peptide attenuates myocardial ischemia-reperfusion injury in diabetic rats and underlying mechanisms. Am J Physiol Heart Circ Physiol 2014; 308:H281-90. [PMID: 25485902 DOI: 10.1152/ajpheart.00666.2014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus increases morbidity/mortality of ischemic heart disease. Although atrial natriuretic peptide and C-type natriuretic peptide reduce the myocardial ischemia-reperfusion damage in nondiabetic rats, whether vasonatrin peptide (VNP), the artificial synthetic chimera of atrial natriuretic peptide and C-type natriuretic peptide, confers cardioprotective effects against ischemia-reperfusion injury, especially in diabetic patients, is still unclear. This study was designed to investigate the effects of VNP on ischemia-reperfusion injury in diabetic rats and to further elucidate its mechanisms. The high-fat diet-fed streptozotocin-induced diabetic Sprague-Dawley rats were subjected to ischemia-reperfusion operation. VNP treatment (100 μg/kg iv, 10 min before reperfusion) significantly improved the instantaneous first derivation of left ventricle pressure (±LV dP/dtmax) and LV systolic pressure and reduced LV end-diastolic pressure, apoptosis index, caspase-3 activity, plasma creatine kinase (CK), and lactate dehydrogenase (LDH) activities. Moreover, VNP inhibited endoplasmic reticulum (ER) stress by suppressing glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP). These effects were mimicked by 8-bromine-cyclic guanosinemonophosphate (8-Br-cGMP), a cGMP analog, whereas they were inhibited by KT-5823, the selective inhibitor of PKG. In addition, pretreatment with tauroursodeoxycholic acid (TUDCA), a specific inhibitor of ER stress, could not further promote the VNP's cardioprotective effect in diabetic rats. In vitro H9c2 cardiomyocytes were subjected to hypoxia/reoxygenation and incubated with or without VNP (10(-8) mol/l). Gene knockdown of PKG1α with siRNA blunted VNP inhibition of ER stress and apoptosis, while overexpression of PKG1α resulted in significant decreased ER stress and apoptosis. VNP protects the diabetic heart against ischemia-reperfusion injury by inhibiting ER stress via the cGMP-PKG signaling pathway. These results suggest that VNP may have potential therapeutic value for the diabetic patients with ischemic heart disease.
Collapse
Affiliation(s)
- Zhenwei Shi
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Feng Fu
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Liming Yu
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Wenjuan Xing
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Feifei Su
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China; and
| | - Xiangyan Liang
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Ru Tie
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Lele Ji
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China
| | - Miaozhang Zhu
- Department of Physiology, Fourth Military Medical University, Xi'an, China
| | - Jun Yu
- Experimental Center, The Second Affiliated Hospital, School of Medicine, Xi'an Medical University, Xi'an, China
| | - Haifeng Zhang
- Experiment Teaching Center, Fourth Military Medical University, Xi'an, China;
| |
Collapse
|
6
|
Atrial natriuretic peptide and renal dopaminergic system: a positive friendly relationship? BIOMED RESEARCH INTERNATIONAL 2014; 2014:710781. [PMID: 25013796 PMCID: PMC4075025 DOI: 10.1155/2014/710781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/12/2014] [Accepted: 05/12/2014] [Indexed: 01/11/2023]
Abstract
Sodium metabolism by the kidney is accomplished by an intricate interaction between signals from extrarenal and intrarenal sources and between antinatriuretic and natriuretic factors. Renal dopamine plays a central role in this interactive network. The natriuretic hormones, such as the atrial natriuretic peptide, mediate some of their effects by affecting the renal dopaminergic system. Renal dopaminergic tonus can be modulated at different steps of dopamine metabolism (synthesis, uptake, release, catabolism, and receptor sensitization) which can be regulated by the atrial natriuretic peptide. At tubular level, dopamine and atrial natriuretic peptide act together in a concerted manner to promote sodium excretion, especially through the overinhibition of Na+, K+-ATPase activity. In this way, different pathological scenarios where renal sodium excretion is dysregulated, as in nephrotic syndrome or hypertension, are associated with impaired action of renal dopamine and/or atrial natriuretic peptide, or as a result of impaired interaction between these two natriuretic systems. The aim of this review is to update and comment on the most recent evidences demonstrating how the renal dopaminergic system interacts with atrial natriuretic peptide to control renal physiology and blood pressure through different regulatory pathways.
Collapse
|