1
|
Kano T, Tsumagari R, Nakashima A, Kikkawa U, Ueda S, Yamanoue M, Takei N, Shirai Y. RalA, PLD and mTORC1 Are Required for Kinase-Independent Pathways in DGKβ-Induced Neurite Outgrowth. Biomolecules 2021; 11:1814. [PMID: 34944458 PMCID: PMC8699322 DOI: 10.3390/biom11121814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Diacylglycerol kinase β (DGKβ) is an enzyme that converts diacylglycerol to phosphatidic acid and is mainly expressed in the cerebral cortex, hippocampus and striatum. We previously reported that DGKβ induces neurite outgrowth and spinogenesis, contributing to higher brain functions, including emotion and memory. To elucidate the mechanisms involved in neuronal development by DGKβ, we investigated the importance of DGKβ activity in the induction of neurite outgrowth using human neuroblastoma SH-SY5Y cells. Interestingly, both wild-type DGKβ and the kinase-negative (KN) mutant partially induced neurite outgrowth, and these functions shared a common pathway via the activation of mammalian target of rapamycin complex 1 (mTORC1). In addition, we found that DGKβ interacted with the small GTPase RalA and that siRNA against RalA and phospholipase D (PLD) inhibitor treatments abolished DGKβKN-induced neurite outgrowth. These results indicate that binding of RalA and activation of PLD and mTORC1 are involved in DGKβKN-induced neurite outgrowth. Taken together with our previous reports, mTORC1 is a key molecule in both kinase-dependent and kinase-independent pathways of DGKβ-mediated neurite outgrowth, which is important for higher brain functions.
Collapse
Affiliation(s)
- Takuya Kano
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (T.K.); (R.T.); (S.U.); (M.Y.)
| | - Ryosuke Tsumagari
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (T.K.); (R.T.); (S.U.); (M.Y.)
| | - Akio Nakashima
- Division of Signal Functions, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan; (A.N.); (U.K.)
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Ushio Kikkawa
- Division of Signal Functions, Biosignal Research Center, Kobe University, Kobe 657-8501, Japan; (A.N.); (U.K.)
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Shuji Ueda
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (T.K.); (R.T.); (S.U.); (M.Y.)
| | - Minoru Yamanoue
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (T.K.); (R.T.); (S.U.); (M.Y.)
| | - Nobuyuki Takei
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan;
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (T.K.); (R.T.); (S.U.); (M.Y.)
| |
Collapse
|
2
|
Tsumagari R, Maruo K, Kakizawa S, Ueda S, Yamanoue M, Saito H, Suzuki N, Shirai Y. Precise Regulation of the Basal PKCγ Activity by DGKγ Is Crucial for Motor Coordination. Int J Mol Sci 2020; 21:ijms21217866. [PMID: 33114041 PMCID: PMC7660329 DOI: 10.3390/ijms21217866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/26/2023] Open
Abstract
Diacylglycerol kinase γ (DGKγ) is a lipid kinase to convert diacylglycerol (DG) to phosphatidic acid (PA) and indirectly regulates protein kinase C γ (PKCγ) activity. We previously reported that the basal PKCγ upregulation impairs cerebellar long-term depression (LTD) in the conventional DGKγ knockout (KO) mice. However, the precise mechanism in impaired cerebellar LTD by upregulated PKCγ has not been clearly understood. Therefore, we first produced Purkinje cell-specific DGKγ KO (tm1d) mice to investigate the specific function of DGKγ in Purkinje cells and confirmed that tm1d mice showed cerebellar motor dysfunction in the rotarod and beam tests, and the basal PKCγ upregulation but not PKCα in the cerebellum of tm1d mice. Then, the LTD-induced chemical stimulation, K-glu (50 mM KCl + 100 µM, did not induce phosphorylation of PKCα and dissociation of GluR2 and glutamate receptor interacting protein (GRIP) in the acute cerebellar slices of tm1d mice. Furthermore, treatment with the PKCγ inhibitor, scutellarin, rescued cerebellar LTD, with the phosphorylation of PKCα and the dissociation of GluR2 and GRIP. In addition, nonselective transient receptor potential cation channel type 3 (TRPC3) was negatively regulated by upregulated PKCγ. These results demonstrated that DGKγ contributes to cerebellar LTD by regulation of the basal PKCγ activity.
Collapse
Affiliation(s)
- Ryosuke Tsumagari
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (R.T.); (K.M.); (S.U.); (M.Y.)
| | - Kenta Maruo
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (R.T.); (K.M.); (S.U.); (M.Y.)
| | - Sho Kakizawa
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan;
| | - Shuji Ueda
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (R.T.); (K.M.); (S.U.); (M.Y.)
| | - Minoru Yamanoue
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (R.T.); (K.M.); (S.U.); (M.Y.)
| | - Hiromitsu Saito
- Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Mie University Organization for the Promotion of Regional Innovation, Tsu 514-8507, Japan; (H.S.); (N.S.)
| | - Noboru Suzuki
- Department of Animal Functional Genomics of Advanced Science Research Promotion Center, Mie University Organization for the Promotion of Regional Innovation, Tsu 514-8507, Japan; (H.S.); (N.S.)
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences, Kobe University, Kobe 657-8501, Japan; (R.T.); (K.M.); (S.U.); (M.Y.)
- Correspondence: ; Tel.: +81-078-803-5887
| |
Collapse
|
3
|
DGKγ Knock-Out Mice Show Impairments in Cerebellar Motor Coordination, LTD, and the Dendritic Development of Purkinje Cells through the Activation of PKCγ. eNeuro 2020; 7:ENEURO.0319-19.2020. [PMID: 32033984 PMCID: PMC7057140 DOI: 10.1523/eneuro.0319-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 01/18/2020] [Accepted: 01/23/2020] [Indexed: 12/02/2022] Open
Abstract
Diacylglycerol kinase γ (DGKγ) regulates protein kinase C (PKC) activity by converting DG to phosphatidic acid (PA). DGKγ directly interacts with PKCγ and is phosphorylated by PKCγ, resulting in the upregulation of lipid kinase activity. PKC dysfunction impairs motor coordination, indicating that the regulation of PKC activity is important for motor coordination. DGKγ and PKC are abundantly expressed in cerebellar Purkinje cells. However, the physiological role of DGKγ has not been elucidated. Therefore, we developed DGKγ knock-out (KO) mice and tested their cerebellar motor coordination. In DGKγ KO mice, cerebellar motor coordination and long-term depression (LTD) were impaired, and the dendrites of Purkinje cells from DGKγ KO mice were significantly retracted. Interestingly, treatment with the cPKC inhibitor Gö6976 (Gö) rescued the dendritic retraction of primary cultured Purkinje cells from DGKγ KO mice. In contrast, treatment with the PKC activator 12-o-tetradecanoylphorbol 13-acetate (TPA) reduced morphologic alterations in the dendrites of Purkinje cells from wild-type (WT) mice. In addition, we confirmed the upregulation of PKCγ activity in the cerebellum of DGKγ KO mice and rescued impaired LTD in DGKγ KO mice with a PKCγ-specific inhibitor. Furthermore, impairment of motor coordination observed in DGKγ KO mice was rescued in tm1c mice with DGKγ reexpression induced by the FLP-flippase recognition target (FRT) recombination system. These results indicate that DGKγ is involved in cerebellar LTD and the dendritic development of Purkinje cells through the regulation of PKCγ activity, and thus contributes to cerebellar motor coordination.
Collapse
|
4
|
Nakai H, Tsumagari R, Maruo K, Nakashima A, Kikkawa U, Ueda S, Yamanoue M, Saito N, Takei N, Shirai Y. mTORC1 is involved in DGKβ-induced neurite outgrowth and spinogenesis. Neurochem Int 2019; 134:104645. [PMID: 31891737 DOI: 10.1016/j.neuint.2019.104645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/30/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023]
Abstract
Diacylglycerol kinase β (DGKβ) is an enzyme converting DG to phosphatidic acid (PA) and is specifically expressed in neurons, especially those in the cerebral cortex, hippocampus and striatum. We previously reported that DGKβ induces neurite outgrowth and spinogenesis, contributing to higher brain function including emotion and memory, and plasma membrane localization of DGKβ via the C1 domain and a cluster of basic amino acids at the C-terminus is necessary for its function. To clarify the mechanisms involved in neuronal development by DGKβ, we investigated whether DGKβ activity induces neurite outgrowth using human neuroblastoma SH-SY5Y cells. DGKβ induced neurite outgrowth by activation of mammalian target of rapamycin complex 1 (mTORC1) through a kinase-dependent pathway. In addition, in primary cultured cortical and hippocampal neurons, inhibition of mTORC1 abolished DGKβ induced-neurite outgrowth, branching and spinogenesis. These results indicated that DGKβ induces neurite outgrowth and spinogenesis by activating mTORC1 in a kinase-dependent pathway.
Collapse
Affiliation(s)
- Hiroko Nakai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences & Faculty of Agriculture, Kobe University, Kobe, Japan.
| | - Ryosuke Tsumagari
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences & Faculty of Agriculture, Kobe University, Kobe, Japan.
| | - Kenta Maruo
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences & Faculty of Agriculture, Kobe University, Kobe, Japan.
| | - Akio Nakashima
- Laboratory of Cell Signaling, Biosignal Research Center, Kobe University, Kobe, Japan.
| | - Ushio Kikkawa
- Laboratory of Cell Signaling, Biosignal Research Center, Kobe University, Kobe, Japan.
| | - Shuji Ueda
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences & Faculty of Agriculture, Kobe University, Kobe, Japan.
| | - Minoru Yamanoue
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences & Faculty of Agriculture, Kobe University, Kobe, Japan.
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Sciences & Faculty of Agriculture, Kobe University, Kobe, Japan.
| |
Collapse
|
5
|
Yamaki A, Akiyama R, Murakami C, Takao S, Murakami Y, Mizuno S, Takahashi D, Kado S, Taketomi A, Shirai Y, Goto K, Sakane F. Diacylglycerol kinase α-selective inhibitors induce apoptosis and reduce viability of melanoma and several other cancer cell lines. J Cell Biochem 2018; 120:10043-10056. [PMID: 30536880 DOI: 10.1002/jcb.28288] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/24/2018] [Indexed: 02/02/2023]
Abstract
Diacylglycerol (DG) kinase (DGK), which phosphorylates DG to generate phosphatidic acid (PA), consists of ten isozymes (α-к). Recently, we identified a novel small molecule inhibitor, CU-3, that selectively inhibits the activity of the α isozyme. In addition, we newly obtained Compound A, which selectively and strongly inhibits type I DGKs (α, β, and γ). In the present study, we demonstrated that both CU-3 and Compound A induced apoptosis (caspase 3/7 activity and DNA fragmentation) and viability reduction of AKI melanoma cells. Liquid chromatography-mass spectrometry revealed that the production of 32:0- and 34:0-PA species was commonly attenuated by CU-3 and Compound A, suggesting that lower levels of these PA molecular species are involved in the apoptosis induction and viability reduction of AKI cells. We determined the effects of the DGKα inhibitors on several other cancer cell lines derived from refractory cancers. In addition to melanoma, the DGKα inhibitors enhanced caspase 3/7 activity and reduced the viability of hepatocellular carcinoma, glioblastoma, and pancreatic cancer cells, but not breast adenocarcinoma cells. Interestingly, Western blot analysis indicated that the DGKα expression levels were positively correlated with the sensitivity to the DGK inhibitors. Because both CU-3 and Compound A induced interleukin-2 production by T cells, it is believed that these two compounds can enhance cancer immunity. Taken together, our results suggest that DGKα inhibitors are promising anticancer drugs.
Collapse
Affiliation(s)
- Atsumi Yamaki
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Rino Akiyama
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Saki Takao
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Yuki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Satoru Mizuno
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Daisuke Takahashi
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Sayaka Kado
- Center for Analytical Instrumentation, Chiba University, Chiba, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yasuhito Shirai
- Department of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Kaoru Goto
- Department of Anatomy and Cell Biology, Yamagata University School of Medicine, Yamagata, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
Maeda Y, Shibata K, Akiyama R, Murakami Y, Takao S, Murakami C, Takahashi D, Sakai H, Sakane F. Diacylglycerol kinase β induces filopodium formation via its C1, catalytic and carboxy-terminal domains and interacts with the Rac1-GTPase-activating protein, β2-chimaerin. Biochem Biophys Res Commun 2018; 504:54-60. [DOI: 10.1016/j.bbrc.2018.08.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/18/2018] [Indexed: 12/16/2022]
|
7
|
Shirai Y, Saito N. Diacylglycerol kinase as a possible therapeutic target for neuronal diseases. J Biomed Sci 2014; 21:28. [PMID: 24708409 PMCID: PMC4005014 DOI: 10.1186/1423-0127-21-28] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/05/2014] [Indexed: 02/02/2023] Open
Abstract
Diacylglycerol kinase (DGK) is a lipid kinase converting diacylglycerol to phosphatidic acid, and regulates many enzymes including protein kinase C, phosphatidylinositol 4-phosphate 5-kinase, and mTOR. To date, ten mammalian DGK subtypes have been cloned and divided into five groups, and they show subtype-specific tissue distribution. Therefore, each DGK subtype is thought to be involved in respective cellular responses by regulating balance of the two lipid messengers, diacylglycerol and phosphatidic acid. Indeed, the recent researches using DGK knockout mice have clearly demonstrated the importance of DGK in the immune system and its pathophysiological roles in heart and insulin resistance in diabetes. Especially, most subtypes show high expression in brain with subtype specific regional distribution, suggesting that each subtype has important and unique functions in brain. Recently, neuronal functions of some DGK subtypes have accumulated. Here, we introduce DGKs with their structural motifs, summarize the enzymatic properties and neuronal functions, and discuss the possibility of DGKs as a therapeutic target of the neuronal diseases.
Collapse
Affiliation(s)
- Yasuhito Shirai
- Laboratory of Chemistry and Utilization of Animal Production Resources, Applied Chemistry in Bioscience Division, Graduate School of Agricultural Science, Kobe University, Rokkodai-cho 1-1, Nada-ku, 657-8501 Kobe, Japan.
| | | |
Collapse
|