1
|
Nezhad NG, Rahman RNZRA, Normi YM, Oslan SN, Shariff FM, Leow TC. Thermostability engineering of industrial enzymes through structure modification. Appl Microbiol Biotechnol 2022; 106:4845-4866. [PMID: 35804158 DOI: 10.1007/s00253-022-12067-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 01/14/2023]
Abstract
Thermostability is an essential requirement of enzymes in the industrial processes to catalyze the reactions at high temperatures; thus, enzyme engineering through directed evolution, semi-rational design and rational design are commonly employed to construct desired thermostable mutants. Several strategies are implemented to fulfill enzymes' thermostability demand including decreasing the entropy of the unfolded state through substitutions Gly → Xxx or Xxx → Pro, hydrogen bond, salt bridge, introducing two different simultaneous interactions through single mutant, hydrophobic interaction, filling the hydrophobic cavity core, decreasing surface hydrophobicity, truncating loop, aromatic-aromatic interaction and introducing positively charged residues to enzyme surface. In the current review, horizons about compatibility between secondary structures and substitutions at preferable structural positions to generate the most desirable thermostability in industrial enzymes are broadened. KEY POINTS: • Protein engineering is a powerful tool for generating thermostable industrial enzymes. • Directed evolution and rational design are practical approaches in enzyme engineering. • Substitutions in preferable structural positions can increase thermostability.
Collapse
Affiliation(s)
- Nima Ghahremani Nezhad
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Siti Nurbaya Oslan
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Thermostable lipases and their dynamics of improved enzymatic properties. Appl Microbiol Biotechnol 2021; 105:7069-7094. [PMID: 34487207 DOI: 10.1007/s00253-021-11520-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Thermal stability is one of the most desirable characteristics in the search for novel lipases. The search for thermophilic microorganisms for synthesising functional enzyme biocatalysts with the ability to withstand high temperature, and capacity to maintain their native state in extreme conditions opens up new opportunities for their biotechnological applications. Thermophilic organisms are one of the most favoured organisms, whose distinctive characteristics are extremely related to their cellular constituent particularly biologically active proteins. Modifications on the enzyme structure are critical in optimizing the stability of enzyme to thermophilic conditions. Thermostable lipases are one of the most favourable enzymes used in food industries, pharmaceutical field, and actively been studied as potential biocatalyst in biodiesel production and other biotechnology application. Particularly, there is a trade-off between the use of enzymes in high concentration of organic solvents and product generation. Enhancement of the enzyme stability needs to be achieved for them to maintain their enzymatic activity regardless the environment. Various approaches on protein modification applied since decades ago conveyed a better understanding on how to improve the enzymatic properties in thermophilic bacteria. In fact, preliminary approach using advanced computational analysis is practically conducted before any modification is being performed experimentally. Apart from that, isolation of novel extremozymes from various microorganisms are offering great frontier in explaining the crucial native interaction within the molecules which could help in protein engineering. In this review, the thermostability prospect of lipases and the utility of protein engineering insights into achieving functional industrial usefulness at their high temperature habitat are highlighted. Similarly, the underlying thermodynamic and structural basis that defines the forces that stabilize these thermostable lipase is discussed. KEY POINTS: • The dynamics of lipases contributes to their non-covalent interactions and structural stability. • Thermostability can be enhanced by well-established genetic tools for improved kinetic efficiency. • Molecular dynamics greatly provides structure-function insights on thermodynamics of lipase.
Collapse
|
3
|
Facile One-Pot Immobilization of a Novel Esterase and Its Application in Cinnamyl Acetate Synthesis. Catal Letters 2020. [DOI: 10.1007/s10562-020-03168-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Kumar R, Goomber S, Kaur J. Engineering lipases for temperature adaptation: Structure function correlation. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:140261. [PMID: 31401312 DOI: 10.1016/j.bbapap.2019.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/13/2023]
Abstract
Bacillus lipases are industrially attractive enzymes due to their broad substrate specificity and optimum alkaline pH. However, narrow temperature range of action and low thermostability restrain their optimal use and thus, necessitate attention. Several laboratories are engaged in protein engineering of Bacillus lipases to generate variants with improved attributes for decades using techniques such as directed evolution or rational design. This review summarizes the effect of mutations on the conformational changes through in silico modeling and their manifestation with respect to various biochemical parameters. Various studies have been put together to develop a perspective on the molecular basis of biocatalysis of lipases holding industrial importance.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Biotechnology, Panjab University, Chandigarh 160014, India; Department of Microbiology and Cell Biology, Indian Institute Of Science, Bangalore, Karnataka 560012, India
| | - Shelly Goomber
- Department of Biotechnology, Panjab University, Chandigarh 160014, India; National Institute of Malaria Research, Dwarka, New Delhi, Delhi 110077, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
5
|
Ranjan R, Yadav MK, Suneja G, Sharma R. Discovery of a diverse set of esterases from hot spring microbial mat and sea sediment metagenomes. Int J Biol Macromol 2018; 119:572-581. [PMID: 30059741 DOI: 10.1016/j.ijbiomac.2018.07.170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 11/18/2022]
Abstract
Esterases are an important group of biocatalysts for synthetic organic chemistry. Functional metagenomics allows discovery of novel biocatalysts by providing access to the gene pool of the microbial community of a habitat. Two metagenomic libraries representing the gene pool of sea sediment and hot spring microbial mat were constructed. Functional screening of these libraries resulted in the isolation of total 8 clones with tributyrin hydrolytic activity. Sequence analysis revealed 10 putative lipolytic proteins with 42-99% homology to the protein sequences in the databases, nine of which represented six known esterase families. Four of the encoded proteins represented Family V and amongst others, one each represented the Family VIII, pectin acetylesterase, enterobactin esterase, G-D-S-L family and OsmC domain containing esterase. One unusual lipolytic protein possessed poly-(3-hydroxybutyrate) depolymerase domain fused to lipase/esterase domain. Two phylogenetically related esterases (MLC3 and SLC5) belonging to family V were expressed and purified to homogeneity. The enzymes exhibited environment-adapted temperature optimum and thermostability. MLC3 was able to stereoselectively hydrolyze R-methyl mandelate to produce R-mandelic acid, an important chiral building block, which suggests MLC3 has potential commercial application.
Collapse
Affiliation(s)
- Ravi Ranjan
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mathura Road, New Delhi 110025, India
| | - Manish Kumar Yadav
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Mathura Road, New Delhi 110025, India
| | - Garima Suneja
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Mathura Road, New Delhi 110025, India
| | - Rakesh Sharma
- CSIR-Institute of Genomics and Integrative Biology, Council of Scientific and Industrial Research, Mathura Road, New Delhi 110025, India; Academy of Scientific and Innovative Research (AcSIR), Mathura Road, New Delhi 110025, India.
| |
Collapse
|
6
|
Chownk M, Kaur J, Singh K, Kaur J. mbtJ: an iron stress-induced acetyl hydrolase/esterase of Mycobacterium tuberculosis helps bacteria to survive during iron stress. Future Microbiol 2018. [PMID: 29519132 DOI: 10.2217/fmb-2017-0194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
AIM mbtJ from Mycobacterium tuberculosis H37Rv is a member of mbt A-J operon required for mycobactin biogenesis. MATERIALS & METHODS The esterase/acetyl-hydrolase activity of mbtJ was determined by pNP-esters/native-PAGE and expression under iron stress by quantitative-PCR. Effect of gene on growth/survival of Mycobacterium was studied using antisense. Its effect on morphology, growth/infection was studied in Mycobacterium smegmatis. RESULTS It showed acetyl hydrolase/esterase activity at pH 8.0 and 50°C with pNP-butyrate. Its expression was upregulated under iron stress. The antisense inhibited the survival of bacterium during iron stress. Expression of mbtJ changed colony morphology and enhanced the growth/infection in M. smegmatis. CONCLUSION mbtJ, an acetyl-hydrolase/esterase, enhanced the survival of M. tuberculosis under iron stress, affected the growth/infection efficiency in M. smegmatis, suggesting its pivotal role in the intracellular survival of bacterium.
Collapse
Affiliation(s)
- Manisha Chownk
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Jashandeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh 160014, India
| |
Collapse
|
7
|
Structural and functional insights into thermostable and organic solvent stable variant Pro247-Ser of Bacillus lipase. Int J Biol Macromol 2017; 108:845-852. [PMID: 29101046 DOI: 10.1016/j.ijbiomac.2017.10.176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/14/2017] [Accepted: 10/30/2017] [Indexed: 12/18/2022]
Abstract
Thermostability of enzymes is an important issue in protein engineering and has been studied in detail. Still there is no hard and fast rule to define the conditions which will provide thermal stability. Understanding the various factors and mechanism responsible for thermal stability will add on new insights into our present knowledge in this area. Pro247-Ser variant was constructed based on homology modelling and rational design. It exhibited 60 fold increase in thermal stability at 60°C and+0.7M shift in C1/2 value for urea denaturation as compared to WT. Variant displayed noticeable tolerance to organic solvents. With decrease in Km, catalytic efficiency of Pro247-Ser variant was increased by 12 fold. The activity and stability assay including circular dichroism and fluorescence spectroscopy favoured increased thermal performance of variant. Hydrolytic activity of variant was found to be high in comparison to control for all p-nitrophenol esters investigated. The immobilized variant enzyme demonstrated nearly two fold enhanced conversion of methyl oleate than WT enzyme. The additional molecular interactions of variant residue might contribute to increased thermostability of lipase. The homology modeling predicted formation of additional hydrogen bonds between Ser247/O-Thr251/OG1 as well as Ser247/O-Glu250/N.
Collapse
|
8
|
Point mutation Arg153-His at surface of Bacillus lipase contributing towards increased thermostability and ester synthesis: insight into molecular network. Mol Cell Biochem 2017; 443:159-168. [DOI: 10.1007/s11010-017-3220-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/26/2017] [Indexed: 01/15/2023]
|
9
|
Li MS, Li T, Lu X, Sun LC, Chen YL, Liu H, Cao MJ, Liu GM. Site-directed mutagenesis of myofibril-bound serine proteinase from Crucian carp : possible role of Pro95, A127 and I130 on thermal stability. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Kumar R, Banoth L, Banerjee UC, Kaur J. Enantiomeric separation of pharmaceutically important drug intermediates using a Metagenomic lipase and optimization of its large scale production. Int J Biol Macromol 2017; 95:995-1003. [DOI: 10.1016/j.ijbiomac.2016.10.088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 10/20/2022]
|
11
|
Point Mutation Ile137-Met Near Surface Conferred Psychrophilic Behaviour and Improved Catalytic Efficiency to Bacillus Lipase of 1.4 Subfamily. Appl Biochem Biotechnol 2015; 178:753-65. [DOI: 10.1007/s12010-015-1907-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
|
12
|
Borrelli GM, Trono D. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. Int J Mol Sci 2015; 16:20774-840. [PMID: 26340621 PMCID: PMC4613230 DOI: 10.3390/ijms160920774] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/17/2015] [Accepted: 08/11/2015] [Indexed: 11/29/2022] Open
Abstract
Lipases and phospholipases are interfacial enzymes that hydrolyze hydrophobic ester linkages of triacylglycerols and phospholipids, respectively. In addition to their role as esterases, these enzymes catalyze a plethora of other reactions; indeed, lipases also catalyze esterification, transesterification and interesterification reactions, and phospholipases also show acyltransferase, transacylase and transphosphatidylation activities. Thus, lipases and phospholipases represent versatile biocatalysts that are widely used in various industrial applications, such as for biodiesels, food, nutraceuticals, oil degumming and detergents; minor applications also include bioremediation, agriculture, cosmetics, leather and paper industries. These enzymes are ubiquitous in most living organisms, across animals, plants, yeasts, fungi and bacteria. For their greater availability and their ease of production, microbial lipases and phospholipases are preferred to those derived from animals and plants. Nevertheless, traditional purification strategies from microbe cultures have a number of disadvantages, which include non-reproducibility and low yields. Moreover, native microbial enzymes are not always suitable for biocatalytic processes. The development of molecular techniques for the production of recombinant heterologous proteins in a host system has overcome these constraints, as this allows high-level protein expression and production of new redesigned enzymes with improved catalytic properties. These can meet the requirements of specific industrial process better than the native enzymes. The purpose of this review is to give an overview of the structural and functional features of lipases and phospholipases, to describe the recent advances in optimization of the production of recombinant lipases and phospholipases, and to summarize the information available relating to their major applications in industrial processes.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| | - Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 200-71122 Foggia, Italy.
| |
Collapse
|
13
|
Enhancing the heat stability and kinetic parameters of the maize endosperm ADP-glucose pyrophosphorylase using iterative saturation mutagenesis. Arch Biochem Biophys 2015; 568:28-37. [DOI: 10.1016/j.abb.2015.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/08/2015] [Accepted: 01/11/2015] [Indexed: 11/30/2022]
|
14
|
Madan B, Mishra P. Directed evolution of Bacillus licheniformis lipase for improvement of thermostability. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|