1
|
Tang X, Xiong K. Epidermal growth factor activates EGFR/AMPK signalling to up-regulate the expression of SGLT1 and GLUT2 to promote intestinal glucose absorption in lipopolysaccharide challenged IPEC-J2 cells and piglets. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2073832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Kangning Xiong
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| |
Collapse
|
2
|
Tang X, Liu X, Liu H. Mechanisms of Epidermal Growth Factor Effect on Animal Intestinal Phosphate Absorption: A Review. Front Vet Sci 2021; 8:670140. [PMID: 34195248 PMCID: PMC8236626 DOI: 10.3389/fvets.2021.670140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/03/2021] [Indexed: 01/15/2023] Open
Abstract
Phosphorus is one of the essential mineral elements of animals that plays an important role in animal growth and development, bone formation, energy metabolism, nucleic acid synthesis, cell signal transduction, and blood acid–base balance. It has been established that the Type IIb sodium-dependent phosphate cotransporters (NaPi-IIb) protein is the major sodium-dependent phosphate (Pi) transporter, which plays an important role in Pi uptake across the apical membrane of epithelial cells in the small intestine. Previous studies have demonstrated that epidermal growth factor (EGF) is involved in regulating intestinal Pi absorption. Here we summarize the effects of EGF on active Pi transport of NaPi-IIb under different conditions. Under normal conditions, EGF inhibits the active transport of Pi by inhibiting the expression of NaPi-IIb, while, under intestinal injury condition, EGF promotes the active absorption of Pi through upregulating the expression of NaPi-IIb. This review provides a reference for information about EGF-regulatory functions in Pi absorption in the animal intestine.
Collapse
Affiliation(s)
- Xiaopeng Tang
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Xuguang Liu
- State Engineering Technology Institute for Karst Desertfication Control, School of Karst Science, Guizhou Normal University, Guiyang, China
| | - Hu Liu
- State Key Laboratory of Grassland Agro-Ecosystems, International Centre for Tibetan Plateau Ecosystem Management, Engineering Research Center of Arid Agriculture and Ecological Remediation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Pietropaolo G, Pugliese D, Armuzzi A, Guidi L, Gasbarrini A, Rapaccini GL, Wolf FI, Trapani V. Magnesium Absorption in Intestinal Cells: Evidence of Cross-Talk between EGF and TRPM6 and Novel Implications for Cetuximab Therapy. Nutrients 2020; 12:nu12113277. [PMID: 33114586 PMCID: PMC7692710 DOI: 10.3390/nu12113277] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Hypomagnesemia is very commonly observed in cancer patients, most frequently in association with therapy with cetuximab (CTX), a monoclonal antibody targeting the epithelial growth factor receptor (EGFR). CTX-induced hypomagnesemia has been ascribed to renal magnesium (Mg) wasting. Here, we sought to clarify whether CTX may also influence intestinal Mg absorption and if Mg supplementation may interfere with CTX activity. We used human colon carcinoma CaCo-2 cells as an in vitro model to study the mechanisms underlying Mg transport and CTX activity. Our findings demonstrate that TRPM6 is the key channel that mediates Mg influx in intestinal cells and that EGF stimulates such influx; consequently, CTX downregulates TRPM6-mediated Mg influx by interfering with EGF signaling. Moreover, we show that Mg supplementation does not modify either the CTX IC50 or CTX-dependent inhibition of ERK1/2 phosphorylation. Our results suggest that reduced Mg absorption in the intestine may contribute to the severe hypomagnesemia that occurs in CTX-treated patients, and Mg supplementation may represent a safe and effective nutritional intervention to restore Mg status without impairing the CTX efficacy.
Collapse
Affiliation(s)
- Giuseppe Pietropaolo
- Sezione di Patologia Generale, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Daniela Pugliese
- UOC Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (A.A.); (L.G.); (A.G.); (G.L.R.)
| | - Alessandro Armuzzi
- UOC Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (A.A.); (L.G.); (A.G.); (G.L.R.)
| | - Luisa Guidi
- UOC Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (A.A.); (L.G.); (A.G.); (G.L.R.)
| | - Antonio Gasbarrini
- UOC Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (A.A.); (L.G.); (A.G.); (G.L.R.)
| | - Gian Lodovico Rapaccini
- UOC Medicina Interna e Gastroenterologia, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (D.P.); (A.A.); (L.G.); (A.G.); (G.L.R.)
| | - Federica I. Wolf
- Sezione di Patologia Generale, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Correspondence: (F.I.W.); (V.T.)
| | - Valentina Trapani
- Sezione di Patologia Generale, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS—Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Correspondence: (F.I.W.); (V.T.)
| |
Collapse
|
4
|
Zou ZG, Rios FJ, Montezano AC, Touyz RM. TRPM7, Magnesium, and Signaling. Int J Mol Sci 2019; 20:E1877. [PMID: 30995736 PMCID: PMC6515203 DOI: 10.3390/ijms20081877] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/12/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed chanzyme that possesses an ion channel permeable to the divalent cations Mg2+, Ca2+, and Zn2+, and an α-kinase that phosphorylates downstream substrates. TRPM7 and its homologue TRPM6 have been implicated in a variety of cellular functions and is critically associated with intracellular signaling, including receptor tyrosine kinase (RTK)-mediated pathways. Emerging evidence indicates that growth factors, such as EGF and VEGF, signal through their RTKs, which regulate activity of TRPM6 and TRPM7. TRPM6 is primarily an epithelial-associated channel, while TRPM7 is more ubiquitous. In this review we focus on TRPM7 and its association with growth factors, RTKs, and downstream kinase signaling. We also highlight how interplay between TRPM7, Mg2+ and signaling kinases influences cell function in physiological and pathological conditions, such as cancer and preeclampsia.
Collapse
Affiliation(s)
- Zhi-Guo Zou
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
5
|
TRPM6 is Essential for Magnesium Uptake and Epithelial Cell Function in the Colon. Nutrients 2018; 10:nu10060784. [PMID: 29912157 PMCID: PMC6024373 DOI: 10.3390/nu10060784] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 11/24/2022] Open
Abstract
Intestinal magnesium (Mg) uptake is essential for systemic Mg homeostasis. Colon cells express the two highly homologous transient receptor potential melastatin type (TRPM) 6 and 7 Mg2+ channels, but their precise function and the consequences of their mutual interaction are not clear. To explore the functional role of TRPM6 and TRPM7 in the colon, we used human colon cell lines that innately express both channels and analyzed the functional consequences of genetic knocking-down, by RNA interference, or pharmacological inhibition, by NS8593, of either channel. TRPM7 silencing caused an increase in Mg2+ influx, and correspondingly enhanced cell proliferation and migration, while downregulation of TRPM6 did not affect significantly either Mg2+ influx or cell proliferation. Exposure to the specific TRPM6/7 inhibitor NS8593 reduced Mg2+ influx, and consequently cell proliferation and migration, but Mg supplementation rescued the inhibition. We propose a model whereby in colon cells the functional Mg2+ channel at the plasma membrane may consist of both TRPM7 homomers and TRPM6/7 heteromers. A different expression ratio between the two proteins may result in different functional properties. Altogether, our findings confirm that TRPM6 cannot be replaced by TRPM7, and that TRPM6/7 complexes and TRPM6/7-mediated Mg2+ influx are indispensable in human epithelial colon cells.
Collapse
|
6
|
Castiglioni S, Cazzaniga A, Trapani V, Cappadone C, Farruggia G, Merolle L, Wolf FI, Iotti S, Maier JAM. Magnesium homeostasis in colon carcinoma LoVo cells sensitive or resistant to doxorubicin. Sci Rep 2015; 5:16538. [PMID: 26563869 PMCID: PMC4643312 DOI: 10.1038/srep16538] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 10/15/2015] [Indexed: 11/12/2022] Open
Abstract
Neoplastic cells accumulate magnesium, an event which provides selective advantages and is frequently associated with TRPM7 overexpression. Little is known about magnesium homeostasis in drug-resistant cancer cells. Therefore, we used the colon cancer LoVo cell model and compared doxorubicin-resistant to sensitive cells. In resistant cells the concentration of total magnesium is higher while its influx capacity is lower than in sensitive cells. Accordingly, resistant cells express lower amounts of the TRPM6 and 7, both involved in magnesium transport. While decreased TRPM6 levels are due to transcriptional regulation, post-transcriptional events are involved in reducing the amounts of TRPM7. Indeed, the calpain inhibitor calpeptin markedly increases the levels of TRPM7 in resistant cells. In doxorubicin-sensitive cells, silencing TRPM7 shifts the phenotype to one more similar to resistant cells, since in these cells silencing TRPM7 significantly decreases the influx of magnesium, increases its intracellular concentration and increases resistance to doxorubicin. On the other hand, calpain inhibition upregulates TRPM7, decreases intracellular magnesium and enhances the sensitivity to doxorubicin of resistant LoVo cells. We conclude that in LoVo cells drug resistance is associated with alteration of magnesium homeostasis through modulation of TRPM7. Our data suggest that TRPM7 expression may be an additional undisclosed player in chemoresistance.
Collapse
Affiliation(s)
- Sara Castiglioni
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Via G.B. Grassi 74, Milano I-20157
| | - Alessandra Cazzaniga
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Via G.B. Grassi 74, Milano I-20157
| | - Valentina Trapani
- Istituto di Patologia Generale, Facoltà di Medicina, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma I-00168
| | - Concettina Cappadone
- Dipartimento di Farmacia e Biotecnologie, Università Alma Mater di Bologna, Via San Donato 19/2, Bologna I-40127
| | - Giovanna Farruggia
- Dipartimento di Farmacia e Biotecnologie, Università Alma Mater di Bologna, Via San Donato 19/2, Bologna I-40127
- Istituto Nazionale Biostrutture e Biosistemi, Viale delle Medaglie d’oro 305, Roma I-00136
| | - Lucia Merolle
- Dipartimento di Farmacia e Biotecnologie, Università Alma Mater di Bologna, Via San Donato 19/2, Bologna I-40127
| | - Federica I. Wolf
- Istituto di Patologia Generale, Facoltà di Medicina, Università Cattolica del Sacro Cuore, Largo F. Vito 1, Roma I-00168
| | - Stefano Iotti
- Dipartimento di Farmacia e Biotecnologie, Università Alma Mater di Bologna, Via San Donato 19/2, Bologna I-40127
- Istituto Nazionale Biostrutture e Biosistemi, Viale delle Medaglie d’oro 305, Roma I-00136
| | - Jeanette A M Maier
- Dipartimento di Scienze Biomediche e Cliniche L. Sacco, Università di Milano, Via G.B. Grassi 74, Milano I-20157
| |
Collapse
|
7
|
Su C, Fan M, Lu L, Li P. Role of epidermal growth factor in pathogenesis of uterine leiomyomas. ASIAN PAC J TROP MED 2015; 8:378-81. [PMID: 26003597 DOI: 10.1016/s1995-7645(14)60347-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the role of epidermal growth factor (EGF) in the pathogenesis of uterine leiomyomas. METHODS Human myometrial smooth muscle cells (HM-SMCs) and smooth muscle cells of human uterine leiomyomas (HL-SMCs) were separated from patients' specimens and cultured. After processed by EGF or PD98059 (inhibitor of MKK/MEK) +EGF, the proliferation rate of both SMCs was detected by BrdU method and the phosphorylation level of p44/42 mitogen-activated protein kinase (MAPK) was determined by Western-blot. After different processing time by EGF, the phosphorylation levels of p44/42 MAPK and AKT and p27 expression level in both SMCs were detected by Western-blot. RESULTS EGF could significantly promote HL-SMCs proliferation and PD98059 could inhibit this effect (P<0.05); besides, PD98059 could inhibit the increase of the phosphorylation level of p44/42 MAPK in both SMCs induced by EGF. When the processing time by EGF was over 15min, the phosphorylation levels of p44/42 MAPK and AKT in both SMCs decreased sharply and were close to zero; p27 expression in HM-SMCs raised significantly while the upregulation in HL-SMCs was little. CONCLUSIONS EGF could not cause activation of EGFR because of the dephosphorylation of p44/42 MAPK and AKT in HL-SMCs, which caused p27 expression insufficiently and cell cycle dysregulation.
Collapse
Affiliation(s)
- Chun Su
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Zhengzhou University, Kangfu Qian Street No. 3, 450052, Zhengzhou, China
| | - Mei Fan
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Jianshe Dong Street No.1, 450052, Zhengzhou, China
| | - Lin Lu
- Department of Ultrasound, The Third Affiliated Hospital of Zhengzhou University, Kangfu Qian Street No. 7, 450052, Zhengzhou, China
| | - Pei Li
- Department of Pathophysiology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|