1
|
Sadek H, Elbehery H, Mohamed S, El-wahab TA. Evaluation of Insecticidal activity and Genetic Expressions of some Essential Oil and Methomyl Lannate 90% against Spodoptera frugiperda [J.E. Smith]; (Lepidoptera: Noctuidae).. [DOI: 10.21203/rs.3.rs-3156489/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Fall Armyworm (FAW) Spodoptera frugiperda [J.E. Smith] (Lepidoptera: Noctuidae) is regarded as a major pest of various economic crops, their caterpillars are a highly destructive and have a wide host range. This study's goal was to assess the insecticide potency of essential oils [rosemary (Rosmarinus officinalis L.), lemongrass (Cymbopogon citratus) and Cinnamon (Cinnamomum zeylanicum)] and Methomyl Lannate 90% commerial Insecticide to control FAW and their effected on Expression of caspase-8 and Inhibitor of Apoptosis Protein (IAP) genes and Expression of Acetylcholinesterase (AChE) gene in FAW. The insecticidal activity against 2nd larval instar was evaluated with five concentrations (2.5%, 2%, 1.0%, 0.5% and 0.25%) for essential oil and four concentrations 0.4%, 0.2%,0.15% and 0.05% for Methomyl Lannate 90%. The findings indicated that raising both essential oil concentrations and Methomyl Lannate 90%, resulted in increased the larval mortality at high concentration. Lemongrass and Cinnamon oil produced about to the same estimated LC50, whereas Methomyl Lannate 90% was (0.3%). Cymbopogon citratus (1.68%) had higher Caspase-8 gene expression levels compared to the control, but at a lower level than Rosmarinus officinalis L. (2.59%) and Cinnamomum zeylanicum (1.67%). The expression levels of Ache gene in the treated by low concentration of Methomyl Lannate were increased (by 313%) significant compared with the control but without significant differences. FAW death as a result of treatment with the tested oils having an effect on the genes that the pest uses to express critical processes. As a result, using the tested essential oils as a substitute for conventional management of FAW is a brilliance option.
Collapse
|
2
|
Li K, Dong Z, Dong F, Hu Z, Huang L, Wang J, Chen P, Lu C, Pan M. Transcriptome analysis reveals that knocking out BmNPV iap2 induces apoptosis by inhibiting the oxidative phosphorylation pathway. Int J Biol Macromol 2023; 233:123482. [PMID: 36736521 DOI: 10.1016/j.ijbiomac.2023.123482] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/30/2022] [Accepted: 01/26/2023] [Indexed: 02/03/2023]
Abstract
Apoptosis is essential for the normal growth, development, and immunity defense of living organisms, and its function and mechanisms have been intensively studied. When viral infection occurs, apoptosis is triggered, causing programmed death of the infected cells. Meanwhile, viruses have also evolved countermeasures to inhibit apoptosis in host cells. We previously constructed a transgenic silkworm line with significantly improved resistance to Bombyx mori nucleopolyhedrovirus (BmNPV) by knocking out the BmNPV inhibitor of apoptosis 2 (iap2) gene. However, the mechanism of how IAP2 induces apoptosis still needs to be further investigated. Here, the transcriptomes of Cas9(-)/sgiap2 (-) and Cas9(+)/sgiap2(+) strains were analyzed at 48 h after BmNPV infection, and a total of 709 differential genes were obtained. A KEGG analysis revealed that the differentially expressed genes were enriched in the oxidative phosphorylation, proteasome, and ribosome pathways. In the oxidative phosphorylation pathway, 41 differentially expressed genes were downregulated, and 12 of these genes were verified by qRT-PCR. More importantly, the knockout of BmNPV iap2 led to the inhibition of the oxidative phosphorylation pathway, followed by activated oxidative stress triggered apoptosis, thereby inhibiting the replication of BmNPV in vitro and vivo. The results provide a basis for the analysis of the initiation of apoptosis that can inhibit virus proliferation, and the study presents new ideas for the subsequent creation of resistant material.
Collapse
Affiliation(s)
- Kejie Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhanqi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| | - Feifan Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Zhigang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Liang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Jie Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China
| | - Minhui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, China.
| |
Collapse
|
3
|
Zhao Z, Yue D, Ye B, Li P, Li W, Wang L, Zhang B, Fan Q. Functional analyses of inhibitor of apoptosis protein 1 (IAP1) of Antheraea pernyi multinucleocapsid nucleopolyhedrovirus (AnpeNPV) in viral replication and occlusion body production. J Invertebr Pathol 2022; 194:107816. [PMID: 35964678 DOI: 10.1016/j.jip.2022.107816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/28/2022] [Accepted: 08/07/2022] [Indexed: 11/24/2022]
Abstract
Inhibitor of apoptosis protein 1 (IAP1) of Antheraea pernyi multinucleocapsid nucleopolyhedrovirus (AnpeNPV) belongs to the baculovirus IAP1 type. The function of AnpeNPV-IAP1 in viral replication and occlusion body (OB) production remains unknown. In this study, we demonstrated that AnpeNPV-iap1 is a late gene. AnpeNPV-IAP1 mainly localizes to the nuclear ring zone and exhibits dynamic distribution in the cytoplasm and the virogenic stroma during AnpeNPV infection. AnpeNPV-IAP1 impacted the expression of a variety of viral genes at the very late phase of infection in Tn-Hi5 cells. The deletion of AnpeNPV-iap1 caused decreased expression levels of polyhedrin, morphological changes to OBs and reduced OB production in A. pernyi pupae, along with a lengthening of the lethal time of A. pernyi larvae. These results suggest that AnpeNPV-iap1 is involved in regulating viral gene expression, OB production and morphogenesis in A. pernyi.
Collapse
Affiliation(s)
- Zhenjun Zhao
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Dongmei Yue
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Bo Ye
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Peipei Li
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Wenli Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin 124211, China
| | - Linmei Wang
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Bo Zhang
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China
| | - Qi Fan
- Liaoning Ocean and Fisheries Science Research Institute, Liaoning Academy of Agricultural Sciences, Dalian 116023, China.
| |
Collapse
|
4
|
Zheng H, Pan Y, Awais MM, Tian W, Li J, Sun J. Impact of Group II Baculovirus IAPs on Virus-Induced Apoptosis in Insect Cells. Genes (Basel) 2022; 13:genes13050750. [PMID: 35627135 PMCID: PMC9140827 DOI: 10.3390/genes13050750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 12/10/2022] Open
Abstract
Apoptosis plays an important role in virus-host interactions and is a major element of the insect immune response. Exploring the regulatory mechanisms of virus-induced apoptosis through the expression of apoptotic genes holds important research and application value. Functional research on the reported inhibitor of apoptosis proteins (IAPs) mainly focuses on the group I baculovirus, while the functions of the group II baculovirus IAPs remains unclear. To explore its role in the regulation of the apoptosis of insect cells, we constructed the transient expression vector (pIE1 vectors) and the recombinant baculovirus expressing Bsiap genes (from the Buzura suppressaria nucleopolyhedrovirus) of the group II baculovirus. Apoptosis gene expression results and the virus-induced apoptosis rate show that the overexpression of BsIAP1 could promote apoptosis in insect cells. However, the overexpression of BsIAP2 and BsIAP3 decreases the expression of apoptotic genes, revealing an inhibitory effect. Results on the impact of baculovirus-induced apoptosis also confirm that BsIAP1 reduces viral nucleocapsid expression and the baculovirus titer, while BsIAP2 and BsIAP3 increase them significantly. Furthermore, compared with single expression, the co-expression of BsIAP2 and BsIAP3 significantly reduces the rate of virus-induced apoptosis and improves the expression of nucleocapsids and the titer of offspring virus, indicating the synergistic effect on BsIAP2 and BsIAP3. In addition, combined expression of all three BsIAPs significantly reduced levels of intracellular apoptosis-related genes (including apoptosis and anti-apoptosis genes), as well as apoptosis rate and progeny virus titer, indicating that life activities in insect cells are also inhibited. These findings reveal the relationship between apoptosis and group II baculovirus IAP, which provide an experimental and theoretical basis for further exploration of the molecular mechanism between group II baculoviruses and insect cells.
Collapse
|
5
|
Huang L, Dong ZQ, Dong FF, Yu XB, Hu ZG, Liao NC, Chen P, Lu C, Pan MH. Gene editing the BmNPV inhibitor of apoptosis protein 2 (iap2) as an antiviral strategy in transgenic silkworm. Int J Biol Macromol 2020; 166:529-537. [PMID: 33130268 DOI: 10.1016/j.ijbiomac.2020.10.210] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/16/2022]
Abstract
Apoptosis is a cellular defense mechanism used for the elimination of host cells infected by viruses. Viruses have evolved corresponding inhibitors of apoptosis genes to promote their replication. Anti-apoptosis-related genes, involved in baculovirus proliferation, have been proposed but it is unclear whether these genes can be manipulated in gene therapy. We constructed a transgenic silkworm, using the CRISPR/Cas9 system to knock out the BmNPV inhibitor of apoptosis 2 (iap2). The sequencing results showed that all the sequences could edit the target site of BmNPV iap2 gene. There were no differences in economic traits and growth tests between the BmNPV iap2 knockout strain transgenic silkworm lines and the control groups. However, the mortality rate was significantly reduced, the median lethal dose (LD50) was about 100 times higher than the control group, and the onset time was prolonged by 1-2 days after knocking out BmNPV iap2. In addition, the expression levels of apoptotic-related genes Bmiap2, BmICE and BmDreed were significantly affected and the activity of caspase 9 was increased after BmNPV iap2 being edited in transgenic silkworm. These results demonstrated that gene editing BmNPV iap2 could significantly inhibit BmNPV replication and proliferation. This approach provides a new strategy for antiviral research.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Fei-Fang Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Xi-Bo Yu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Zhi-Gang Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Na-Chuan Liao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
6
|
Chen P, Kang TT, Bao XY, Dong ZQ, Zhu Y, Xiao WF, Pan MH, Lu C. Evolutionary and functional analyses of the interaction between the Bombyx mori inhibitor of apoptosis (IAP) and nucleopolyhedrovirus IAPs. INSECT SCIENCE 2020; 27:463-474. [PMID: 30697933 DOI: 10.1111/1744-7917.12664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 06/09/2023]
Abstract
As an important insect immune response, apoptosis plays a critical role in the interaction between baculoviruses and insect hosts. Previous reports have identified inhibitor of apoptosis (IAP) proteins in both insects and baculoviruses, but the relationship between these proteins is still not clearly understood. Here, we found that insect IAP proteins were clustered with baculovirus IAP3, suggesting that the baculovirus iap3 gene might be derived from the Lepidoptera or Diptera. We demonstrated that Bombyx mori inhibitor of apoptosis (Bmiap) gene had an inhibitory effect on apoptosis in silkworm cells. Further analysis of the effects of Bmiap genes on the proliferation of B. mori nucleopolyhedrovirus (BmNPV) showed that both the Bmiap and BmNPV iap genes increased BmNPV proliferation after BmNPV infected silkworm cells. Our results also indicated that BmNPV IAP1 and IAP2 directly interacted with BmIAP in silkworm cells, implying that the Bmiap gene might be hijacked by BmNPV iap genes during BmNPV infection. Taken together, our results provide important insights into the functional relationships of iap genes, and improve our knowledge of apoptosis in baculoviruses and insect hosts.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Tao-Tao Kang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Xi-Yan Bao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Zhan-Qi Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Yan Zhu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Wen-Fu Xiao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Min-Hui Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Cheng Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| |
Collapse
|
7
|
Shu B, Zhang J, Veeran S, Zhong G. Pro-Apoptotic Function Analysis of the Reaper Homologue IBM1 in Spodoptera frugiperda. Int J Mol Sci 2020; 21:ijms21082729. [PMID: 32326478 PMCID: PMC7215429 DOI: 10.3390/ijms21082729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 12/26/2022] Open
Abstract
As an important type of programmed cell death, apoptosis plays a critical role in lepidopteran insects in response to various internal and external stresses. It is controlled by a network of genes such as those encoding the inhibitor of apoptosis proteins. However, there are few studies on apoptosis-related genes in Spodoptera frugiperda. In this study, an orthologue to the Drosophila reaper gene, named Sf-IBM1, was identified from S. frugiperda, and a full-length sequence was obtained by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends PCR (RACE-PCR). The expression pattern of Sf-IBM1 was determined in different developmental stages and various tissues. Apoptotic stimuli including azadirachtin, camptothecin, and ultraviolet radiation (UV) induced the expression of Sf-IBM1 at both transcript and protein levels. Overexpression of Sf-IBM1 induced apoptosis in Sf9 cells, and the Sf-IBM1 protein was localized in mitochondria. The apoptosis induced by Sf-IBM1 could be blocked by the caspase universal inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (Z-VAD-FMK) and Sf-IAP1. Our results provide valuable information that should contribute to a better understanding of the molecular events that lead to apoptosis in lepidopterans.
Collapse
Affiliation(s)
- Benshui Shu
- Guangzhou City Key Laboratory of Subtropical Fruit Trees Outbreak Control, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Sethuraman Veeran
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (S.V.)
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-8528-0308; Fax: +86-20-8528-0203
| |
Collapse
|
8
|
[Anti-viral responses in insect cells]. Uirusu 2019; 69:47-60. [PMID: 32938894 DOI: 10.2222/jsv.69.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Hamajima R, Saito A, Makino S, Kobayashi M, Ikeda M. Antiviral immune responses of Bombyx mori cells during abortive infection with Autographa californica multiple nucleopolyhedrovirus. Virus Res 2018; 258:28-38. [PMID: 30267728 DOI: 10.1016/j.virusres.2018.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 12/24/2022]
Abstract
Lepidopteran cells rely on multiple antiviral responses to defend against baculovirus infections, including apoptosis, global protein synthesis shutdown, and rRNA degradation. Here, we characterized apoptosis and rRNA degradation in Autographa californica multiple nucleopolyhedrovirus (AcMNPV)-infected Bombyx mori cells, a system resulting in abortive infection, in relation to viral DNA replication and viral late gene expression. RNAi-mediated silencing of viral DNA replication-related genes prevented apoptosis, but not rRNA degradation, in B. mori cells infected with p35-deficient AcMNPV. Additionally, AcMNPV, but not B. mori nucleopolyhedrovirus (BmNPV), drastically reduced B. mori cellular iap1 transcript levels and p35-deficient AcMNPV induced more prominent apoptosis than did p35-deficient BmNPV. These results, together with previous results that global protein synthesis shutdown follows viral DNA replication, demonstrate that rRNA degradation is the primary antiviral response that abolishes productive AcMNPV infection of B. mori cells. Our results also demonstrate that B. mori cells induce apoptosis to a different extent depending on NPV species.
Collapse
Affiliation(s)
- Rina Hamajima
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Aya Saito
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Shizuka Makino
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Michihiro Kobayashi
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Motoko Ikeda
- Laboratory of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
10
|
Fu Y, Cao L, Wu S, Liang A. Function analysis and application of IAP1/2 of Autographa californica multiple nucleopolyhedrovirus. RSC Adv 2017. [DOI: 10.1039/c7ra03711b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We confirmed the function of Ac-IAPs and developed a useful AcMNPV-iap2-egfp, which provided theoretical foundation for using and modifying AcMNPV.
Collapse
Affiliation(s)
- Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Biotechnology
- Shanxi University
- Taiyuan 030006
- PR China
| | - Leixi Cao
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Biotechnology
- Shanxi University
- Taiyuan 030006
- PR China
| | - Shuju Wu
- School of Life Science and Technology
- Harbin Normal University
- Harbin
- PR China
| | - Aihua Liang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education
- Institute of Biotechnology
- Shanxi University
- Taiyuan 030006
- PR China
| |
Collapse
|
11
|
MERS coronavirus induces apoptosis in kidney and lung by upregulating Smad7 and FGF2. Nat Microbiol 2016; 1:16004. [PMID: 27572168 PMCID: PMC7097571 DOI: 10.1038/nmicrobiol.2016.4] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 01/12/2016] [Indexed: 12/20/2022]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) causes sporadic zoonotic disease and healthcare-associated outbreaks in human. MERS is often complicated by acute respiratory distress syndrome (ARDS) and multi-organ failure1,2. The high incidence of renal failure in MERS is a unique clinical feature not often found in other human coronavirus infections3,4. Whether MERS-CoV infects the kidney and how it triggers renal failure are not understood5,6. Here, we demonstrated renal infection and apoptotic induction by MERS-CoV in human ex vivo organ culture and a nonhuman primate model. High-throughput analysis revealed that the cellular genes most significantly perturbed by MERS-CoV have previously been implicated in renal diseases. Furthermore, MERS-CoV induced apoptosis through upregulation of Smad7 and fibroblast growth factor 2 (FGF2) expression in both kidney and lung cells. Conversely, knockdown of Smad7 effectively inhibited MERS-CoV replication and protected cells from virus-induced cytopathic effects. We further demonstrated that hyperexpression of Smad7 or FGF2 induced a strong apoptotic response in kidney cells. Common marmosets infected by MERS-CoV developed ARDS and disseminated infection in kidneys and other organs. Smad7 and FGF2 expression were elevated in the lungs and kidneys of the infected animals. Our results provide insights into the pathogenesis of MERS-CoV and host targets for treatment. Renal infection with Middle East respiratory syndrome coronavirus (MERS-CoV) leads to both the induction of apoptosis through upregulation of Smad7 and FGF2 and to renal failure.
Collapse
|
12
|
Viral IAPs, then and now. Semin Cell Dev Biol 2015; 39:72-9. [DOI: 10.1016/j.semcdb.2015.01.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 01/22/2015] [Accepted: 01/23/2015] [Indexed: 11/22/2022]
|