1
|
Du J, Liu Y, Lan G, Zhou Y, Ni Y, Liao K, Zheng F, Cheng Q, Shi G, Su X. PTRF-IL33-ZBP1 signaling mediating macrophage necroptosis contributes to HDM-induced airway inflammation. Cell Death Dis 2023; 14:432. [PMID: 37454215 PMCID: PMC10349813 DOI: 10.1038/s41419-023-05971-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Polymerase 1 and transcript release factor (PTRF, encoding by Cavin-1) regulates interleukin 33 (IL-33) release, which is implicated in asthma development. Z-DNA binding protein 1 (ZBP1)-sensing Z-RNAs induces necroptosis which causes inflammatory diseases. House dust mite (HDM) is the major source of allergen in house dust and is strongly associated with the development of asthma. Whether PTRF via IL-33 and ZBP1 mediates HDM-induced macrophage necroptosis and airway inflammation remains unclear. Here, we found that deficiency of PTRF could reduce lung IL-33, ZBP1, phosphor-receptor-interacting protein kinase 3 (p-RIPK3), and phosphor-mixed lineage kinase domain-like (p-MLKL) (necroptosis executioner), and airway inflammation in an HDM-induced asthma mouse model. In HDM-treated macrophages, ZBP1, p-RIPK3, and p-MLKL levels were markedly increased, and these changes were reversed by deletion of Cavin-1. Deletion of Il33 also reduced expression of ZBP1, p-RIPK3, and p-MLKL in HDM-challenged lungs. Moreover, IL-33 synergizing with HDM boosted expression of ZBP1, p-RIPK3, and p-MLKL in macrophages. In bronchial epithelial cells rather than macrophages and vascular endothelial cells, PTRF positively regulates IL-33 expression. Therefore, we conclude that PTRF mediates HDM-induced macrophage ZBP1/necroptosis and airway inflammation, and this effect could be boosted by bronchial epithelial cell-derived IL-33. Our findings suggest that PTRF-IL33-ZBP1 signaling pathway might be a promising target for dampening airway inflammation.
Collapse
Affiliation(s)
- Juan Du
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Yahui Liu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Gelei Lan
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Yao Zhou
- Department of Pediatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingmeng Ni
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Kai Liao
- Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qijian Cheng
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China
| | - Guochao Shi
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.
| | - Xiao Su
- Unit of Respiratory Infection and Immunity, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China.
| |
Collapse
|
2
|
Abstract
Caveolae are specialised and dynamic plasma membrane subdomains, involved in many cellular functions including endocytosis, signal transduction, mechanosensing and lipid storage, trafficking, and metabolism. Two protein families are indispensable for caveola formation and function, namely caveolins and cavins. Mutations of genes encoding these caveolar proteins cause serious pathological conditions such as cardiomyopathies, skeletal muscle diseases, and lipodystrophies. Deregulation of caveola-forming protein expression is associated with many types of cancers including prostate cancer. The distinct function of secretion of the prostatic fluid, and the unique metabolic phenotype of prostate cells relying on lipid metabolism as a main bioenergetic pathway further suggest a significant role of caveolae and caveolar proteins in prostate malignancy. Accumulating in vitro, in vivo, and clinical evidence showed the association of caveolin-1 with prostate cancer grade, stage, metastasis, and drug resistance. In contrast, cavin-1 was found to exhibit tumour suppressive roles. Studies on prostate cancer were the first to show the distinct function of the caveolar proteins depending on their localisation within the caveolar compartment or as cytoplasmic or secreted proteins. In this review, we summarise the roles of caveola-forming proteins in prostate cancer and the potential of exploiting them as therapeutic targets or biological markers.
Collapse
|
3
|
Wang L, Yang C, Wang Q, Liu Q, Wang Y, Zhou J, Li Y, Tan Y, Kang C. Homotrimer cavin1 interacts with caveolin1 to facilitate tumor growth and activate microglia through extracellular vesicles in glioma. Am J Cancer Res 2020; 10:6674-6694. [PMID: 32550897 PMCID: PMC7295042 DOI: 10.7150/thno.45688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Intercellular communication via extracellular vesicles (EVs) plays a critical role in glioma progression. However, little is known about the precise mechanism regulating EV secretion and function. Our previous study revealed that Cavin1 was positively correlated with malignancy grades of glioma patients, and that overexpressing Cavin1 in glioma cells enhanced the malignancy of nearby glioma cells via EVs. Methods: The current study used bioinformatics to design a variant Cavin1 (vCavin1) incapable of interacting with Caveolin1, and compared the effects of overexpressing Cavin1 and vCavin1 in glioma cells on EV production and function. Results: Remarkably, our results indicated that Cavin1 expression enhanced the secretion, uptake, and homing ability of glioma-derived EVs. EVs expressing Cavin1 promoted glioma growth in vitro and in vivo. In addition, Cavin1 expressing murine glioma cells recruited and activated microglia via EVs. However, vCavin1 neither was loaded onto EVs nor altered EV secretion and function. Conclusion: Our findings suggested that Cavin1-Caveolin1 interaction played a significant role in regulating production and function of glioma-EVs, and may act as a promising therapeutic target in gliomas that express high levels of Cavin1.
Collapse
|
4
|
Mohapatra A, Lokappa SB, Chaudhary N. Interaction of cavin-1/PTRF leucine zipper domain 2 and its congenital generalized lipodystrophy mutant with model membranes. Biochem Biophys Res Commun 2020; 521:732-738. [PMID: 31706570 DOI: 10.1016/j.bbrc.2019.10.167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 10/24/2019] [Indexed: 10/25/2022]
Abstract
The organization of caveolae ultrastructures in the plasma membrane and the functions they dictate are mediated by membrane-embedded caveolins (caveolin-1, 2, 3) and peripherally attached cavins (cavin-1, 2, 3, 4). Mutations in caveolin and cavin genes are associated with a variety of human diseases. Cavin-1/PTRF mutations are known to contribute to several human pathologies, including muscular dystrophy and congenital generalized lipodystrophy (CGL). In the present study, we investigated the membrane interaction of the second leucine zipper domain (LZD2) of cavin-1 and the analogous peptide stretch in its CGL frameshift mutant (p.Glu176Argfs). The fluorescence data from the Trp-tagged peptides suggest binding of both wild-type and mutant peptide with negatively-charged membranes. The mutant peptide displayed a rather enhanced interaction compared to the wild-type peptide. In addition, the mutant peptide displayed appreciable binding to the lipid raft-mimicking cholesterol/sphingomyelin-rich vesicles as well. The alteration in the dynamics of peptide-lipid interaction is attributed to increased charge and hydrophilicity of the mutant peptides. Overall, these results suggest that the frameshift mutation in cavin-1/PTRF (p.Glu176Argfs) imparts high membrane-binding propensity to the region corresponding to LZD2, which is hitherto unknown to interact with membranes. Such interaction in the disease condition, in turn, could either alter the native membrane interaction dynamics of cavin-1/PTRF or possibly result in interaction with non-target membranes.
Collapse
Affiliation(s)
- Anshuman Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, India
| | - Sowmya Bekshe Lokappa
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, 90033, USA; Department of Bioinformatics, Karunya University, Coimbatore, 641 114, India.
| | - Nitin Chaudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781 039, India.
| |
Collapse
|
5
|
Wang H, Pilch PF, Liu L. Cavin-1/PTRF mediates insulin-dependent focal adhesion remodeling and ameliorates high-fat diet-induced inflammatory responses in mice. J Biol Chem 2019; 294:10544-10552. [PMID: 31126986 DOI: 10.1074/jbc.ra119.008824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/20/2019] [Indexed: 11/06/2022] Open
Abstract
Cavin-1/polymerase I and transcript release factor (PTRF) is a requisite component of caveolae, small plasma membrane invaginations that are highly abundant in adipocytes. Cavin-1 is a dynamic molecule whose dissociation from caveolae plays an important role in mechanoprotection and rRNA synthesis. In the former situation, the acute dissociation of cavin-1 from caveolae allows cell membrane expansion that occurs upon insulin-aided lipid uptake into the fat cells. Cavin-1 dissociation from caveolae and membrane flattening alters the cytoskeleton and the interaction of plasma membrane proteins with the extracellular matrix through interactions with focal adhesion structures. Here, using cavin-1 knockout mice, subcellular fractionation, and immunoblotting methods, we addressed the relationship of cavin-1 with focal adhesion complexes following nutritional stimulation. We found that cavin-1 is acutely translocated to focal complex compartments upon insulin stimulation, where it regulates focal complex formation through an interaction with paxillin. We found that loss of cavin-1 impairs focal complex remodeling and focal adhesion formation and causes a mechanical stress response, concomitant with activation of proinflammatory and senescence/apoptosis pathways. We conclude that cavin-1 plays key roles in dynamic remodeling of focal complexes upon metabolic stimulation. This mechanism also underlies the crucial role of caveolae in the long-term healthy expansion of the adipocyte.
Collapse
Affiliation(s)
- Hong Wang
- From the Departments of Biochemistry
| | - Paul F Pilch
- From the Departments of Biochemistry.,Medicine, and
| | - Libin Liu
- From the Departments of Biochemistry, .,Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
6
|
Wei Z, Liu T, Lei J, Wu Y, Wang S, Liao K. Fam198a, a member of secreted kinase, secrets through caveolae biogenesis pathway. Acta Biochim Biophys Sin (Shanghai) 2018; 50:968-975. [PMID: 30188967 DOI: 10.1093/abbs/gmy105] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Indexed: 01/21/2023] Open
Abstract
Fam198a is a member of four-jointed protein kinases, a secreted protein kinase family. It was identified as a caveolae-associated protein and colocalized with cavin-1 and caveolin-1 in both tissues and cells. The newly synthesized Fam198a precursor in endoplasmic reticulum (ER) was transported by caveolae biogenesis vesicles to Golgi apparatus in which it was proteolytically cleaved into the secreted mature form. The amino acid mutation analysis identified Arg 120 and 437 as the proteolytic sites in Fam198a precursor during maturation. In mouse embryo fibroblasts (MEFs) obtained from cavin-1-/- or caveolin-1-/- mice, Fam198a precursor was retained in ER and no mature Fam198a could be formed in these cells. Ectopic expression of exogenous cavin-1 in cavin-1-/- MEFs restored the blocked Fam198a post-translational process and secretion. Cavin-1 was also required for Fam198a secretion after its maturation in Golgi apparatus. Ectopic expression of cavin-1 in A549 cells restored the blocked Fam198a secretion. These results suggest that protein secretion is an important function for caveolae biogenesis pathway and the disruption of caveolae system will affect those functions played by the secreted proteins.
Collapse
Affiliation(s)
- Zhuang Wei
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Tao Liu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jigang Lei
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Yuan Wu
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Shilong Wang
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Kan Liao
- Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Busija AR, Patel HH, Insel PA. Caveolins and cavins in the trafficking, maturation, and degradation of caveolae: implications for cell physiology. Am J Physiol Cell Physiol 2017; 312:C459-C477. [PMID: 28122734 DOI: 10.1152/ajpcell.00355.2016] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 01/09/2023]
Abstract
Caveolins (Cavs) are ~20 kDa scaffolding proteins that assemble as oligomeric complexes in lipid raft domains to form caveolae, flask-shaped plasma membrane (PM) invaginations. Caveolae ("little caves") require lipid-lipid, protein-lipid, and protein-protein interactions that can modulate the localization, conformational stability, ligand affinity, effector specificity, and other functions of proteins that are partners of Cavs. Cavs are assembled into small oligomers in the endoplasmic reticulum (ER), transported to the Golgi for assembly with cholesterol and other oligomers, and then exported to the PM as an intact coat complex. At the PM, cavins, ~50 kDa adapter proteins, oligomerize into an outer coat complex that remodels the membrane into caveolae. The structure of caveolae protects their contents (i.e., lipids and proteins) from degradation. Cellular changes, including signal transduction effects, can destabilize caveolae and produce cavin dissociation, restructuring of Cav oligomers, ubiquitination, internalization, and degradation. In this review, we provide a perspective of the life cycle (biogenesis, degradation), composition, and physiologic roles of Cavs and caveolae and identify unanswered questions regarding the roles of Cavs and cavins in caveolae and in regulating cell physiology.1.
Collapse
Affiliation(s)
- Anna R Busija
- Department of Anesthesiology, University of California, San Diego, La Jolla, California.,Department of Pharmacology, University of California, San Diego, La Jolla, California
| | - Hemal H Patel
- Department of Anesthesiology, University of California, San Diego, La Jolla, California
| | - Paul A Insel
- Department of Medicine, University of California, San Diego, La Jolla, California; and .,Department of Pharmacology, University of California, San Diego, La Jolla, California
| |
Collapse
|
8
|
Liu L, Pilch PF. PTRF/Cavin-1 promotes efficient ribosomal RNA transcription in response to metabolic challenges. eLife 2016; 5. [PMID: 27528195 PMCID: PMC4987143 DOI: 10.7554/elife.17508] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/18/2016] [Indexed: 01/25/2023] Open
Abstract
Ribosomal RNA transcription mediated by RNA polymerase I represents the rate-limiting step in ribosome biogenesis. In eukaryotic cells, nutrients and growth factors regulate ribosomal RNA transcription through various key factors coupled to cell growth. We show here in mature adipocytes, ribosomal transcription can be acutely regulated in response to metabolic challenges. This acute response is mediated by PTRF (polymerase I transcription and release factor, also known as cavin-1), which has previously been shown to play a critical role in caveolae formation. The caveolae–independent rDNA transcriptional role of PTRF not only explains the lipodystrophy phenotype observed in PTRF deficient mice and humans, but also highlights its crucial physiological role in maintaining adipocyte allostasis. Multiple post-translational modifications of PTRF provide mechanistic bases for its regulation. The role of PTRF in ribosomal transcriptional efficiency is likely relevant to many additional physiological situations of cell growth and organismal metabolism. DOI:http://dx.doi.org/10.7554/eLife.17508.001 Obesity can cause several other health conditions to develop. Type 2 diabetes is one such condition, which arises in part because fat cells become unable to store excess fats. This makes certain tissues in the body less sensitive to the hormone insulin, and so the individual is less able to adapt to changing nutrient levels. Without treatment or a change in lifestyle, this insulin resistance may develop into diabetes. However, “healthy obese” individuals also exist, who can accommodate an overabundance of fat without developing insulin resistance and diabetes. Some forms of rare genetic disorders called lipodystrophies, which result in an almost complete lack of body fat, can also lead to type 2 diabetes. This raises the question of whether lipodystrophy and obesity share some common mechanisms that cause fat cells to trigger insulin resistance. One possible player in such mechanisms is a protein called PTRF. In rare cases, individuals with lipodystrophy lack this protein, and mice that have been engineered to lack PTRF also largely lack body fat and develop insulin resistance. Fat cells can respond rapidly to changes in nutrients during feeding or fasting, and to do so, they must produce new proteins. Structures called ribosomes, which are made up of proteins and ribosomal RNA, build proteins; thus when the cell needs to make new proteins, it also has to produce more ribosomes. PTRF is thought to play a role in ribosome production, but it is not clear how it does so. Liu and Pilch analyzed normal mice as well as those that lacked the PTRF protein. This revealed that in response to cycles of fasting and feeding, PTRF increases the production of ribosomal RNA in fat cells, enabling the cells to produce more proteins. By contrast, the fat cells of mice that lack PTRF have much lower levels of ribosomal RNA and proteins. Liu and Pilch then examined mouse fat cells that were grown in the laboratory. Exposing these cells to insulin caused phosphate groups to be attached to the PTRF proteins inside the cells. This modification caused PTRF to move into the cell’s nucleus, where it increased the production of ribosomal RNA. Overall, the results show that fat cells that lack PTRF are unable to produce the proteins that they need to deal with changing nutrient levels, leading to an increased likelihood of diabetes. The next steps are to investigate the mechanism by which PTRF is modified, and to see whether the mechanisms uncovered in this study also apply to humans. DOI:http://dx.doi.org/10.7554/eLife.17508.002
Collapse
Affiliation(s)
- Libin Liu
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Paul F Pilch
- Department of Biochemistry, Boston University School of Medicine, Boston, United States.,Department of Medicine, Boston University School of Medicine, Boston, United States
| |
Collapse
|
9
|
Naito D, Ogata T, Hamaoka T, Nakanishi N, Miyagawa K, Maruyama N, Kasahara T, Taniguchi T, Nishi M, Matoba S, Ueyama T. The coiled-coil domain of MURC/cavin-4 is involved in membrane trafficking of caveolin-3 in cardiomyocytes. Am J Physiol Heart Circ Physiol 2015; 309:H2127-36. [PMID: 26497963 DOI: 10.1152/ajpheart.00446.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/06/2015] [Indexed: 11/22/2022]
Abstract
Muscle-restricted coiled-coil protein (MURC), also referred to as cavin-4, is a member of the cavin family that works cooperatively with caveolins in caveola formation and function. Cavins are cytoplasmic proteins with coiled-coil domains and form heteromeric complexes, which are recruited to caveolae in cells expressing caveolins. Among caveolins, caveolin-3 (Cav3) is exclusively expressed in muscle cells, similar to MURC/cavin-4. In the heart, Cav3 overexpression contributes to cardiac protection, and its deficiency leads to progressive cardiomyopathy. Mutations in the MURC/cavin-4 gene have been identified in patients with dilated cardiomyopathy. In the present study, we show the role of MURC/cavin-4 as a caveolar component in the heart. In H9c2 cells, MURC/cavin-4 was localized at the plasma membrane, whereas a MURC/cavin-4 mutant lacking the coiled-coil domain (ΔCC) was primarily localized to the cytoplasm. ΔCC bound to Cav3 and impaired membrane localization of Cav3 in cardiomyocytes. Additionally, although ΔCC did not alter Cav3 mRNA expression, ΔCC decreased the Cav3 protein level. MURC/cavin-4 and ΔCC similarly induced cardiomyocyte hypertrophy; however, ΔCC showed higher hypertrophy-related fetal gene expression than MURC/cavin-4. ΔCC induced ERK activation in cardiomyocytes. Transgenic mice expressing ΔCC in the heart (ΔCC-Tg mice) showed impaired cardiac function accompanied by cardiomyocyte hypertrophy and marked interstitial fibrosis. Hearts from ΔCC-Tg mice showed a reduction of the Cav3 protein level and activation of ERK. These results suggest that MURC/cavin-4 requires its coiled-coil domain to target the plasma membrane and to stabilize Cav3 at the plasma membrane of cardiomyocytes and that MURC/cavin-4 functions as a crucial caveolar component to regulate cardiac function.
Collapse
Affiliation(s)
- Daisuke Naito
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takehiro Ogata
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuro Hamaoka
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohiko Nakanishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kotaro Miyagawa
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naoki Maruyama
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeru Kasahara
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takuya Taniguchi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masahiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomomi Ueyama
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
10
|
Tillu VA, Kovtun O, McMahon KA, Collins BM, Parton RG. A phosphoinositide-binding cluster in cavin1 acts as a molecular sensor for cavin1 degradation. Mol Biol Cell 2015; 26:3561-9. [PMID: 26269585 PMCID: PMC4603927 DOI: 10.1091/mbc.e15-06-0359] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/06/2015] [Indexed: 11/30/2022] Open
Abstract
Cavin1 degradation is primarily mediated by the ubiquitin proteasome system. The phosphoinositide-binding region in cavin1 acts as a molecular switch for cavin1 degradation upon release of cavins in cytosol. This mechanism may help to maintain low levels of free cytosolic cavins at steady state. Caveolae are abundant surface organelles implicated in a range of cellular processes. Two classes of proteins work together to generate caveolae: integral membrane proteins termed caveolins and cytoplasmic coat proteins called cavins. Caveolae respond to membrane stress by releasing cavins into the cytosol. A crucial aspect of this model is tight regulation of cytosolic pools of cavin under resting conditions. We now show that a recently identified region of cavin1 that can bind phosphoinositide (PI) lipids is also a major site of ubiquitylation. Ubiquitylation of lysines within this site leads to rapid proteasomal degradation. In cells that lack caveolins and caveolae, cavin1 is cytosolic and rapidly degraded as compared with cells in which cavin1 is associated with caveolae. Membrane stretching causes caveolar disassembly, release of cavin complexes into the cytosol, and increased proteasomal degradation of wild-type cavin1 but not mutant cavin1 lacking the major ubiquitylation site. Release of cavin1 from caveolae thus leads to exposure of key lysine residues in the PI-binding region, acting as a trigger for cavin1 ubiquitylation and down-regulation. This mutually exclusive PI-binding/ubiquitylation mechanism may help maintain low levels of cytosolic cavin1 in resting cells, a prerequisite for cavins acting as signaling modules following release from caveolae.
Collapse
Affiliation(s)
- Vikas A Tillu
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Oleksiy Kovtun
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Kerrie-Ann McMahon
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Brett M Collins
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia Centre for Microscopy and Microanalysis, University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
11
|
|