1
|
Carreño A, Morales-Guevara R, Cepeda-Plaza M, Páez-Hernández D, Preite M, Polanco R, Barrera B, Fuentes I, Marchant P, Fuentes JA. Synthesis, Physicochemical Characterization, and Antimicrobial Evaluation of Halogen-Substituted Non-Metal Pyridine Schiff Bases. Molecules 2024; 29:4726. [PMID: 39407654 PMCID: PMC11477791 DOI: 10.3390/molecules29194726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Four synthetic Schiff bases (PSB1 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-dibromophenol], PSB2 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-diiodophenol], PSB3 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-iodophenol], and PSB4 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-chloro-6-iodophenol]) were fully characterized. These compounds exhibit an intramolecular hydrogen bond between the hydroxyl group of the phenolic ring and the nitrogen of the azomethine group, contributing to their stability. Their antimicrobial activity was evaluated against various Gram-negative and Gram-positive bacteria, and it was found that the synthetic pyridine Schiff bases, as well as their precursors, showed no discernible antimicrobial effect on Gram-negative bacteria, including Salmonella Typhi (and mutant derivatives), Salmonella Typhimurium, Escherichia coli, and Morganella morganii. In contrast, a more pronounced biocidal effect against Gram-positive bacteria was found, including Bacillus subtilis, Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecalis, Staphylococcus aureus, and Staphylococcus haemolyticus. Among the tested compounds, PSB1 and PSB2 were identified as the most effective against Gram-positive bacteria, with PSB2 showing the most potent biocidal effects. Although the presence of reactive oxygen species (ROS) was noted after treatment with PSB2, the primary mode of action for PSB2 does not appear to involve ROS generation. This conclusion is supported by the observation that antioxidant treatment with vitamin C only partially mitigated bacterial inhibition, indicating an alternative biocidal mechanism.
Collapse
Affiliation(s)
- Alexander Carreño
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, República 330, Santiago 8370186, Chile; (R.M.-G.); (D.P.-H.)
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago 8370146, Chile;
| | - Rosaly Morales-Guevara
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, República 330, Santiago 8370186, Chile; (R.M.-G.); (D.P.-H.)
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador B. O’Higgins 3363, Santiago 9170022, Chile
- Facultad de Ingeniería, Universidad Finis Terrae, Av. Pedro de Valdivia 1509, Santiago 7501015, Chile
| | - Marjorie Cepeda-Plaza
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Av. República 275, Santiago 8370146, Chile;
| | - Dayán Páez-Hernández
- Laboratory of Organometallic Synthesis, Center of Applied NanoSciences (CANS), Facultad de Ciencias Exactas, Universidad Andres Bello, República 330, Santiago 8370186, Chile; (R.M.-G.); (D.P.-H.)
| | - Marcelo Preite
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Rubén Polanco
- Laboratorio de Hongos Fitopatógenos, Centro de Biotecnología Vegetal (CBV), Facultad de Ciencias de la Vida, Universidad Andres Bello, República 330, Santiago 8370186, Chile;
| | - Boris Barrera
- Escuela de Tecnología Médica, Facultad de Salud, Universidad Santo Tomás, Santiago 8370003, Chile;
| | - Ignacio Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 330, Santiago 8370186, Chile; (I.F.); (P.M.)
- Doctorado en Biotecnología, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 330, Santiago 8370186, Chile
| | - Pedro Marchant
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 330, Santiago 8370186, Chile; (I.F.); (P.M.)
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias de la Vida, Universidad Andres Bello, República 330, Santiago 8370186, Chile; (I.F.); (P.M.)
| |
Collapse
|
2
|
Yu M, Tang Y, Lu L, Kong W, Ye J. CysB Is a Key Regulator of the Antifungal Activity of Burkholderia pyrrocinia JK-SH007. Int J Mol Sci 2023; 24:ijms24098067. [PMID: 37175772 PMCID: PMC10179380 DOI: 10.3390/ijms24098067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Burkholderia pyrrocinia JK-SH007 can effectively control poplar canker caused by pathogenic fungi. Its antifungal mechanism remains to be explored. Here, we characterized the functional role of CysB in B. pyrrocinia JK-SH007. This protein was shown to be responsible for the synthesis of cysteine and the siderophore ornibactin, as well as the antifungal activity of B. pyrrocinia JK-SH007. We found that deletion of the cysB gene reduced the antifungal activity and production of the siderophore ornibactin in B. pyrrocinia JK-SH007. However, supplementation with cysteine largely restored these two abilities in the mutant. Further global transcriptome analysis demonstrated that the amino acid metabolic pathway was significantly affected and that some sRNAs were significantly upregulated and targeted the iron-sulfur metabolic pathway by TargetRNA2 prediction. Therefore, we suggest that, in B. pyrrocinia JK-SH007, CysB can regulate the expression of genes related to Fe-S clusters in the iron-sulfur metabolic pathway to affect the antifungal activity of B. pyrrocinia JK-SH007. These findings provide new insights into the various biological functions regulated by CysB in B. pyrrocinia JK-SH007 and the relationship between iron-sulfur metabolic pathways and fungal inhibitory substances. Additionally, they lay the foundation for further investigation of the main antagonistic substances of B. pyrrocinia JK-SH007.
Collapse
Affiliation(s)
- Meng Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yuwei Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Lanxiang Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Weiliang Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
3
|
The LysR-Type Transcription Regulator YhjC Promotes the Systemic Infection of Salmonella Typhimurium in Mice. Int J Mol Sci 2023; 24:ijms24021302. [PMID: 36674819 PMCID: PMC9867438 DOI: 10.3390/ijms24021302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Salmonella Typhimurium is a Gram-negative intestinal pathogen that can infect humans and a variety of animals, causing gastroenteritis or serious systemic infection. Replication within host macrophages is essential for S. Typhimurium to cause systemic infection. By analyzing transcriptome data, the expression of yhjC gene, which encodes a putative regulator in S. Typhimurium, was found to be significantly up-regulated after the internalization of Salmonella by macrophages. Whether yhjC gene is involved in S. Typhimurium systemic infection and the related mechanisms were investigated in this study. The deletion of yhjC reduced the replication ability of S. Typhimurium in macrophages and decreased the colonization of S. Typhimurium in mouse systemic organs (liver and spleen), while increasing the survival rate of the infected mice, suggesting that YhjC protein promotes systemic infection by S. Typhimurium. Furthermore, by using transcriptome sequencing and RT-qPCR assay, the transcription of several virulence genes, including spvD, iroCDE and zraP, was found to be down-regulated after the deletion of yhjC. Electrophoretic mobility shift assay showed that YhjC protein can directly bind to the promoter region of spvD and zraP to promote their transcription. These findings suggest that YhjC contributes to the systemic virulence of S. Typhimurium via the regulation of multiple virulence genes and YhjC could represent a promising target to control S. Typhimurium infection.
Collapse
|
4
|
Yu J, Wang Z, Wang J, Mohisn A, Liu H, Zhang Y, Zhuang Y, Guo M. Physiological metabolic topology analysis of Halomonas elongata DSM 2581 T in response to sodium chloride stress. Biotechnol Bioeng 2022; 119:3509-3525. [PMID: 36062959 DOI: 10.1002/bit.28222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/06/2022]
Abstract
The halophilic bacterium Halomonas elongata DSM 2581T generally adapts well to high level of salinity by biosynthesizing ectoine, which functions as an important compatible solute protecting the cell against external salinity environment. Halophilic bacteria have specific metabolic activities under high-salt conditions and are gradually applied in various industries. The present study focuses on investigating the physiological and metabolic mechanism of Halomonas elongata DSM 2581T driven by the external salinity environment. The physiological metabolic dynamics under salt stress were investigated to evaluate the effect of NaCl stress on the metabolism of H. elongata. The obtained results demonstrated that ectoine biosynthesis transited from a non-growth-related process to a growth-related process when the NaCl concentration varied from 1% to 13% (w/v). The maximum biomass (Xm =41.37 g/L), and highest ectoine production (Pm =12.91 g/L) were achieved under 8% NaCl. Moreover, the maximum biomass (Xm ) and the maximum specific growth rates (μm ) showed a first rising and then declining trend with the increased NaCl stress. Furthermore, the transcriptome analysis of H. elongata under different NaCl concentrations demonstrated that both 8% and 13% NaCl conditions resulted in increased expressions of genes involved in the pentose phosphate pathway (PPP), Entner-Doudoroff (ED) pathway, Flagellar assembly pathway and ectoine metabolism, but negatively affected the tricarboxylic acid (TCA) cycle and Fatty acid metabolism. At last, the proposed possible adaptation mechanism under the optimum NaCl concentration in H. elongata was described. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Junxiong Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Zejian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Jing Wang
- Department of Chemical Engineering for Energy Resources, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Ali Mohisn
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Hao Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Yue Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Rd, Shanghai, 200237, China
| |
Collapse
|
5
|
Zhang Y, Liu Z, Tang Y, Ma X, Tang H, Li H, Liu Z. Cbl upregulates cysH for hydrogen sulfide production in Aeromonas veronii. PeerJ 2021; 9:e12058. [PMID: 34589297 PMCID: PMC8435198 DOI: 10.7717/peerj.12058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022] Open
Abstract
Endogenous hydrogen sulfide (H2S) is generated in many metabolism pathways, and has been recognized as a second messenger against antibiotics and reactive oxygen species (ROS). In Aeromonas veronii, Small Protein B (SmpB) plays an important role in resisting stress. The absence of smpB could trigger sulfate assimilation pathway to adapt the nutrient deficiency, of which was mediated by up-regulation of cbl and cys genes and followed with enhancing H2S production. To figure out the mutual regulations of cbl and cys genes, a series of experiments were performed. Compared with the wild type, cysH was down-regulated significantly in cbl deletion by qRT-PCR. The fluorescence analysis further manifested that Cbl had a positive regulatory effect on the promoter of cysJIH. Bacterial one-hybrid analysis and electrophoretic mobility shift assay (EMSA) verified that Cbl bound with the promoter of cysJIH. Collectively, the tolerance to adversity could be maintained by the production of H2S when SmpB was malfunctioned, of which the activity of cysJIH promoter was positively regulated by upstream Cbl protein. The outcomes also suggested the enormous potentials of Aeromonas veronii in environmental adaptability.
Collapse
Affiliation(s)
| | | | | | - Xiang Ma
- Hainan University, Haikou, China
| | | | - Hong Li
- Hainan University, Haikou, China
| | - Zhu Liu
- Hainan University, Haikou, China
| |
Collapse
|
6
|
Díaz-Yáñez F, Álvarez R, Calderón IL, Fuentes JA, Gil F. CdsH Contributes to the Replication of Salmonella Typhimurium inside Epithelial Cells in a Cysteine-Supplemented Medium. Microorganisms 2020; 8:microorganisms8122019. [PMID: 33348574 PMCID: PMC7767077 DOI: 10.3390/microorganisms8122019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022] Open
Abstract
Salmonella Typhimurium is a facultative, intracellular pathogen whose products range from self-limited gastroenteritis to systemic diseases. Food ingestion increases biomolecules' concentration in the intestinal lumen, including amino acids such as cysteine, which is toxic in a concentration-dependent manner. When cysteine's intracellular concentration reaches toxic levels, S. Typhimurium expresses a cysteine-inducible enzyme (CdsH), which converts cysteine into pyruvate, sulfide, and ammonia. Despite this evidence, the biological context of cdsH's role is not completely clear, especially in the infective cycle. Since inside epithelial cells both cdsH and its positive regulator, ybaO, are overexpressed, we hypothesized a possible role of cdsH in the intestinal phase of the infection. To test this hypothesis, we used an in vitro model of HT-29 cell infection, adding extra cysteine to the culture medium during the infective process. We observed that, at 6 h post-invasion, the wild type S. Typhimurium proliferated 30% more than the ΔcdsH strain in the presence of extra cysteine. This result shows that cdsH contributes to the bacterial replication in the intracellular environment in increased concentrations of extracellular cysteine, strongly suggesting that cdsH participates by increasing the bacterial fitness in the intestinal phase of the S. Typhimurium infection.
Collapse
Affiliation(s)
- Fernando Díaz-Yáñez
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile; (F.D.-Y.); (R.Á.)
- ANID-Millennium Science Initiative Program-Millennium Nucleus in the Biology of the Intestinal Microbiota, 8370186 Santiago, Chile
| | - Ricardo Álvarez
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile; (F.D.-Y.); (R.Á.)
| | - Iván L. Calderón
- Laboratorio de RNAs Bacterianos, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile;
| | - Juan A. Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile
- Correspondence: (J.A.F.); (F.G.); Tel.: +56-2-2661-8373 (J.A.F.); +56-2-2770-3065 (F.G.)
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, 8370186 Santiago, Chile; (F.D.-Y.); (R.Á.)
- ANID-Millennium Science Initiative Program-Millennium Nucleus in the Biology of the Intestinal Microbiota, 8370186 Santiago, Chile
- Correspondence: (J.A.F.); (F.G.); Tel.: +56-2-2661-8373 (J.A.F.); +56-2-2770-3065 (F.G.)
| |
Collapse
|
7
|
GigC, a LysR Family Transcription Regulator, Is Required for Cysteine Metabolism and Virulence in Acinetobacter baumannii. Infect Immun 2020; 89:IAI.00180-20. [PMID: 33077621 DOI: 10.1128/iai.00180-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/11/2020] [Indexed: 11/20/2022] Open
Abstract
A critical facet of mammalian innate immunity involves the hosts' attempts to sequester and/or limit the availability of key metabolic products from pathogens. For example, nutritional immunity encompasses host approaches to limit the availability of key heavy metal ions such as zinc and iron. Previously, we identified several hundred genes in a multidrug-resistant isolate of Acinetobacter baumannii that are required for growth and/or survival in the Galleria mellonella infection model. In the present study, we further characterize one of these genes, a LysR family transcription regulator that we previously named GigC. We show that mutant strains lacking gigC have impaired growth in the absence of the amino acid cysteine and that gigC regulates the expression of several genes involved in the sulfur assimilation and cysteine biosynthetic pathways. We further show that cells harboring a deletion of the gigC gene are attenuated in two murine infection models, suggesting that the GigC protein, likely through its regulation of the cysteine biosynthetic pathway, plays a key role in the virulence of A. baumannii.
Collapse
|
8
|
Liu B, Hou W, Li K, Chen Q, Liu Y, Yue T. Specific gene SEN1393 contributes to higher survivability of Salmonella Enteritidis in egg white by regulating sulfate assimilation pathway. Int J Food Microbiol 2020; 337:108927. [PMID: 33152571 DOI: 10.1016/j.ijfoodmicro.2020.108927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 11/16/2022]
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis) presents an excellent capacity to survive in egg white, which is a hostile environment for bacterial growth. To reveal its survival mechanism, this study focuses on the specific gene SEN1393, which has been found to exist only in the genomic sequence of S. Enteritidis. The survival capacity of the deletion mutant strain ΔSEN1393 was proven to be significantly reduced after incubation in egg white. RNA sequencing and RT-qPCR results demonstrate that the expression levels of 19 genes were up-regulated, while the expression levels of 9 genes were down-regulated in egg white. These genes were classified into 6 groups based on their functional categories, namely the sulfate assimilation pathway, arginine biosynthesis, the tricarboxylic acid cycle, the fimbrial protein, the transport and chelation of metal ion, and others (sctT, rhs, and pspG). The strain ΔSEN1393 was deduced to damage FeS cluster enzymes and increase the sulfate and iron requirements, and to reduce bacterial motility and copper homeostasis. Via InterProScan analysis, the gene SEN1393 was speculated to encode a TerB-like and/or DjlA-like protein, and therefore, together with cysJ, possibly reduced the oxidative toxicities resulting from oxyanions such as tellurite, and/or improved CysPUWA conformation to restrain the uptake of the toxic oxyanions. In summary, the gene SEN1393 enabled the higher survival of S. Enteritidis in egg white as compared to other pathogens by regulating the sulfate assimilation pathway.
Collapse
Affiliation(s)
- Bin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China; National Engineering Research Center of Agriculture Integration Test, Yangling, China.
| | - Wanwan Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China; National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Ke Li
- Zhejiang Academy of Science & Technology for Inspection & Quarantine, Hangzhou, China
| | - Qing Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China; National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Yaxin Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China; National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China; National Engineering Research Center of Agriculture Integration Test, Yangling, China
| |
Collapse
|
9
|
Zhang Y, Vera JM, Xie D, Serate J, Pohlmann E, Russell JD, Hebert AS, Coon JJ, Sato TK, Landick R. Multiomic Fermentation Using Chemically Defined Synthetic Hydrolyzates Revealed Multiple Effects of Lignocellulose-Derived Inhibitors on Cell Physiology and Xylose Utilization in Zymomonas mobilis. Front Microbiol 2019; 10:2596. [PMID: 31787963 PMCID: PMC6853872 DOI: 10.3389/fmicb.2019.02596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/25/2019] [Indexed: 01/14/2023] Open
Abstract
Utilization of both C5 and C6 sugars to produce biofuels and bioproducts is a key goal for the development of integrated lignocellulosic biorefineries. Previously we found that although engineered Zymomonas mobilis 2032 was able to ferment glucose to ethanol when fermenting highly concentrated hydrolyzates such as 9% glucan-loading AFEX-pretreated corn stover hydrolyzate (9% ACSH), xylose conversion after glucose depletion was greatly impaired. We hypothesized that impaired xylose conversion was caused by lignocellulose-derived inhibitors (LDIs) in hydrolyzates. To investigate the effects of LDIs on the cellular physiology of Z. mobilis during fermentation of hydrolyzates, including impacts on xylose utilization, we generated synthetic hydrolyzates (SynHs) that contained nutrients and LDIs at concentrations found in 9% ACSH. Comparative fermentations of Z. mobilis 2032 using SynH with or without LDIs were performed, and samples were collected for end product, transcriptomic, metabolomic, and proteomic analyses. Several LDI-specific effects were observed at various timepoints during fermentation including upregulation of sulfur assimilation and cysteine biosynthesis, upregulation of RND family efflux pump systems (ZMO0282-0285) and ZMO1429-1432, downregulation of a Type I secretion system (ZMO0252-0255), depletion of reduced glutathione, and intracellular accumulation of mannose-1P and mannose-6P. Furthermore, when grown in SynH containing LDIs, Z. mobilis 2032 only metabolized ∼50% of xylose, compared to ∼80% in SynH without LDIs, recapitulating the poor xylose utilization observed in 9% ACSH. Our metabolomic data suggest that the overall flux of xylose metabolism is reduced in the presence of LDIs. However, the expression of most genes involved in glucose and xylose assimilation was not affected by LDIs, nor did we observe blocks in glucose and xylose metabolic pathways. Accumulations of intracellular xylitol and xylonic acid was observed in both SynH with and without LDIs, which decreased overall xylose-to-ethanol conversion efficiency. Our results suggest that xylose metabolism in Z. mobilis 2032 may not be able to support the cellular demands of LDI mitigation and detoxification during fermentation of highly concentrated lignocellulosic hydrolyzates with elevated levels of LDIs. Together, our findings identify several cellular responses to LDIs and possible causes of impaired xylose conversion that will enable future strain engineering of Z. mobilis.
Collapse
Affiliation(s)
- Yaoping Zhang
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Jessica M Vera
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Dan Xie
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Jose Serate
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Edward Pohlmann
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Jason D Russell
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Alexander S Hebert
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Joshua J Coon
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Trey K Sato
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert Landick
- DOE-Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Villagra NA, Valenzuela LM, Mora AY, Millanao AR, Saavedra CP, Mora GC, Hidalgo AA. Cysteine auxotrophy drives reduced susceptibility to quinolones and paraquat by inducing the expression of efflux-pump systems and detoxifying enzymes in S. Typhimurium. Biochem Biophys Res Commun 2019; 515:339-344. [PMID: 31151825 DOI: 10.1016/j.bbrc.2019.05.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 05/19/2019] [Indexed: 12/15/2022]
Abstract
Currently, Salmonella enterica serovar Typhimurium (S. Typhimurium), is a major global public health problem, which has caused food-borne illnesses in many countries. Today, with the extensive use of antimicrobials, antimicrobial resistance is increasing at a serious rate in S. Typhimurium isolates. The present study sought the role of cysteine (Cys) auxotrophy on the resistance to quinolones and paraquat in S. Typhimurium. Cys auxotrophy was achieved by deleting either the cysDNC, cysJIH or cysQ loci. Deletion of these loci resulted in loss of susceptibility against nalidixic acid, levofloxacin, ciprofloxacin (CIP) and paraquat. Further studies with cysJIH mutant indicated increased expression of multi-antibiotic resistance genes marA and ramA, and consequently increased expression of efflux-pump systems. The cysJIH mutant presented a smaller increase of reactive oxygen species (ROS) in presence of paraquat or CIP. Expression of katG and sodA (expressing for a catalase and a superoxide dismutase, respectively) genes was increased in presence of paraquat in the cysJIH mutant; while expression of the superoxide dismutase gene sodB was decreased. These results indicate that deletion of cysDNC, cysJIH or cysQ genes of S. Typhimurium renders Cys auxotrophy along with decreased susceptibility in response to quinolone and paraquat. Overexpression of efflux-pump systems AcrB-TolC and SmvA-OmpD and antioxidant enzymes KatG and SodA could explain the mechanisms of antimicrobial resistance in the Cys auxotrophic mutants.
Collapse
Affiliation(s)
| | | | - Aracely Y Mora
- Escuela de Química y Farmacia, Universidad Andres Bello, Santiago, Chile
| | - Ana R Millanao
- Escuela de Química y Farmacia, Universidad Andres Bello, Santiago, Chile; Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile; Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Claudia P Saavedra
- Laboratorio de Microbiología Molecular, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile; Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Guido C Mora
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas SEK (I3CBSEK), Facultad de Ciencias de la Salud, Universidad SEK, Santiago, Chile
| | | |
Collapse
|
11
|
Antibiotic resistance and molecular characterization of the hydrogen sulfide-negative phenotype among diverse Salmonella serovars in China. BMC Infect Dis 2018; 18:292. [PMID: 29970024 PMCID: PMC6029346 DOI: 10.1186/s12879-018-3209-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Among 2179 Salmonella isolates obtained during national surveillance for salmonellosis in China from 2005 to 2013, we identified 46 non-H2S-producing strains originating from different sources. METHODS The isolates were characterized in terms of antibiotic resistance and genetic variability by pulsed-field gel electrophoresis and multilocus sequence typing. Mutation in the phs operon, which may account for the non-H2S-producing phenotype of the isolated Salmonella strains, was performed in this study. RESULTS Among isolated non-H2S-producing Salmonella strains, more than 50% were recovered from diarrhea patients, of which H2S-negative S. Gallinarum, S. Typhimurium, S. Choleraesuis and S. Paratyphi A isolates constituted 76%. H2S-negative isolates exhibited a high rate of resistance to ticarcillin, ampicillin, and tetracycline, and eight of them had the multidrug resistance phenotype. Most H2S-negative Salmonella isolates had similar pulsed-field gel electrophoresis profiles and the same sequence type as H2S-positive strains, indicating a close origin, but carried mutations in the phsA gene, which may account for the non-H2S-producing phenotype. CONCLUSIONS Our data indicate that multiple H2S-negative strains have emerged and persist in China, emphasizing the necessity to implement efficient surveillance measures for controlling dissemination of these atypical Salmonella strains.
Collapse
|
12
|
Frávega J, Álvarez R, Díaz F, Inostroza O, Tejías C, Rodas PI, Paredes-Sabja D, Fuentes JA, Calderón IL, Gil F. SalmonellaTyphimurium exhibits fluoroquinolone resistance mediated by the accumulation of the antioxidant molecule H2S in a CysK-dependent manner. J Antimicrob Chemother 2016; 71:3409-3415. [DOI: 10.1093/jac/dkw311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/23/2016] [Accepted: 07/05/2016] [Indexed: 01/06/2023] Open
|
13
|
Ferrario C, Duranti S, Milani C, Mancabelli L, Lugli GA, Turroni F, Mangifesta M, Viappiani A, Ossiprandi MC, van Sinderen D, Ventura M. Exploring Amino Acid Auxotrophy in Bifidobacterium bifidum PRL2010. Front Microbiol 2015; 6:1331. [PMID: 26635786 PMCID: PMC4656816 DOI: 10.3389/fmicb.2015.01331] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/12/2015] [Indexed: 01/01/2023] Open
Abstract
The acquisition and assimilation strategies followed by members of the infant gut microbiota to retrieve nitrogen from the gut lumen are still largely unknown. In particular, no information on these metabolic processes is available regarding bifidobacteria, which are among the first microbial colonizers of the human intestine. Here, evaluation of amino acid auxotrophy and prototrophy of Bifidobacterium bifidum, with particular emphasis on B. bifidum strain PRL2010 (LMG S-28692), revealed a putative auxotrophy for cysteine. In addition, we hypothesized that cysteine plays a role in the oxidative stress response in B. bifidum. The use of glutathione as an alternative reduced sulfur compound did not alleviate cysteine auxotrophy of this strain, though it was shown to stimulate expression of the genes involved in cysteine biosynthesis, reminiscent of oxidative stress response. When PRL2010 was grown on a medium containing complex substrates, such as whey proteins or casein hydrolysate, we noticed a distinct growth-promoting effect of these compounds. Transcriptional analysis involving B. bifidum PRL2010 cultivated on whey proteins or casein hydrolysate revealed that the biosynthetic pathways for cysteine and methionine are modulated by the presence of casein hydrolysate. Such findings support the notion that certain complex substrates may act as potential prebiotics for bifidobacteria in their ecological niche.
Collapse
Affiliation(s)
- Chiara Ferrario
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma Parma, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma Parma, Italy
| | - Gabriele A Lugli
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma Parma, Italy
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma Parma, Italy
| | | | | | - Maria C Ossiprandi
- Department of Medical-Veterinary Science, University of Parma Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, University College Cork, National University of Ireland Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma Parma, Italy
| |
Collapse
|
14
|
Joint Transcriptional Control of Virulence and Resistance to Antibiotic and Environmental Stress in Acinetobacter baumannii. mBio 2015; 6:e01660-15. [PMID: 26556274 PMCID: PMC4659468 DOI: 10.1128/mbio.01660-15] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The increasing emergence of antibiotic-resistant bacterial pathogens represents a serious risk to human health and the entire health care system. Many currently circulating strains of Acinetobacter baumannii exhibit resistance to multiple antibiotics. A key limitation in combating A. baumannii is that our understanding of the molecular mechanisms underlying the pathogenesis of A. baumannii is lacking. To identify potential virulence determinants of a contemporary multidrug-resistant isolate of A. baumannii, we used transposon insertion sequencing (TnSeq) of strain AB5075. A collection of 250,000 A. baumannii transposon mutants was analyzed for growth within Galleria mellonella larvae, an insect-based infection model. The screen identified 300 genes that were specifically required for survival and/or growth of A. baumannii inside G. mellonella larvae. These genes encompass both known, established virulence factors and several novel genes. Among these were more than 30 transcription factors required for growth in G. mellonella. A subset of the transcription factors was also found to be required for resistance to antibiotics and environmental stress. This work thus establishes a novel connection between virulence and resistance to both antibiotics and environmental stress in A. baumannii. Acinetobacter baumannii is rapidly emerging as a significant human pathogen, largely because of disinfectant and antibiotic resistance, causing lethal infection in fragile hosts. Despite the increasing prevalence of infections with multidrug-resistant A. baumannii strains, little is known regarding not only the molecular mechanisms that allow A. baumannii to resist environmental stresses (i.e., antibiotics and disinfectants) but also how these pathogens survive within an infected host to cause disease. We employed a large-scale genetic screen to identify genes required for A. baumannii to survive and grow in an insect disease model. While we identified many known virulence factors harbored by A. baumannii, we also discovered many novel genes that likely play key roles in A. baumannii survival of exposure to antibiotics and other stress-inducing chemicals. These results suggest that selection for increased resistance to antibiotics and environmental stress may inadvertently select for increased virulence in A. baumannii.
Collapse
|
15
|
Álvarez R, Frávega J, Rodas PI, Fuentes JA, Paredes-Sabja D, Calderón IL, Gil F. Participation of S. Typhimurium cysJIH Operon in the H2S-mediated Ciprofloxacin Resistance in Presence of Sulfate as Sulfur Source. Antibiotics (Basel) 2015. [PMCID: PMC4790288 DOI: 10.3390/antibiotics4030321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Ricardo Álvarez
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago 8370146, Chile; E-Mails: (R.A.); (J.F.); (I.L.C.)
| | - Jorge Frávega
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago 8370146, Chile; E-Mails: (R.A.); (J.F.); (I.L.C.)
| | - Paula I. Rodas
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andres Bello, Echaurren 183, Santiago 8370071, Chile; E-Mail:
| | - Juan A. Fuentes
- Laboratorio de Microbiología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago 8370146, Chile; E-Mail:
| | - Daniel Paredes-Sabja
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago 837014, Chile; E-Mail:
| | - Iván L. Calderón
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago 8370146, Chile; E-Mails: (R.A.); (J.F.); (I.L.C.)
| | - Fernando Gil
- Laboratorio de Genética y Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, República 217, Santiago 8370146, Chile; E-Mails: (R.A.); (J.F.); (I.L.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +56-2-2661-8664
| |
Collapse
|