1
|
Shen Y, Chen QC, Li CY, Han FJ. Independent organelle and organelle-organelle interactions: essential mechanisms for malignant gynecological cancer cell survival. Front Immunol 2024; 15:1393852. [PMID: 38711526 PMCID: PMC11070488 DOI: 10.3389/fimmu.2024.1393852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Different eukaryotic cell organelles (e.g., mitochondria, endoplasmic reticulum, lysosome) are involved in various cancer processes, by dominating specific cellular activities. Organelles cooperate, such as through contact points, in complex biological activities that help the cell regulate energy metabolism, signal transduction, and membrane dynamics, which influence survival process. Herein, we review the current studies of mechanisms by which mitochondria, endoplasmic reticulum, and lysosome are related to the three major malignant gynecological cancers, and their possible therapeutic interventions and drug targets. We also discuss the similarities and differences of independent organelle and organelle-organelle interactions, and their applications to the respective gynecological cancers; mitochondrial dynamics and energy metabolism, endoplasmic reticulum dysfunction, lysosomal regulation and autophagy, organelle interactions, and organelle regulatory mechanisms of cell death play crucial roles in cancer tumorigenesis, progression, and response to therapy. Finally, we discuss the value of organelle research, its current problems, and its future directions.
Collapse
Affiliation(s)
- Ying Shen
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiao-Chu Chen
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chen-Yu Li
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Feng-Juan Han
- Department of Obstetrics and Gynecology, Heilongjiang University of Chinese Medicine, Harbin, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
2
|
Wei X, Pan S, Wang Z, Chen J, Lu L, Cao Q, Song S, Zhang H, Liu X, Qu X, Lin X, Xu H. LAIR1 drives glioma progression by nuclear focal adhesion kinase dependent expressions of cyclin D1 and immunosuppressive chemokines/cytokines. Cell Death Dis 2023; 14:684. [PMID: 37845206 PMCID: PMC10579300 DOI: 10.1038/s41419-023-06199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/18/2023]
Abstract
Leukocyte-associated immunoglobulin-like receptor-1 (LAIR1), an immune receptor containing immunoreceptor tyrosine-based inhibiory motifs (ITIMs), has emerged as an attractive target for cancer therapy. However, the intrinsic function of LAIR1 in gliomas remains unclear. In this study, the poor prognosis of glioma patients and the malignant proliferation of glioma cells in vitro and in vivo were found to be closely correlated with LAIR1. LAIR1 facilitates focal adhesion kinase (FAK) nuclear localization, resulting in increased transcription of cyclin D1 and chemokines/cytokines (CCL5, TGFβ2, and IL33). LAIR1 specifically supports in the immunosuppressive glioma microenvironment via CCL5-mediated microglia/macrophage polarization. SHP2Q510E (PTP domain mutant) or FAKNLM (non-nuclear localizing mutant) significantly reversed the LAIR1-induced growth enhancement in glioma cells. In addition, LAIR1Y251/281F (ITIMs mutant) and SHP2Q510E mutants significantly reduced FAK nuclear localization, as well as CCL5 and cyclin D1 expression. Further experiments revealed that the ITIMs of LAIR1 recruited SH2-containing phosphatase 2 (SHP2), which then interacted with FAK and induced FAK nuclear localization. This study uncovered a critical role for intrinsic LAIR1 in facilitating glioma malignant progression and demonstrated a requirement for LAIR1 and SHP2 to enhance FAK nuclear localization.
Collapse
Affiliation(s)
- Xiaoqian Wei
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Shushan Pan
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Zirui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Jieru Chen
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Li Lu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Qizhi Cao
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Shuling Song
- School of Gerontology, Binzhou Medical University, Yantai, 264003, Shandong, P.R. China
| | - Huachang Zhang
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong, 264003, P.R. China
| | - Xiaohui Liu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Xianjun Qu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China
| | - Xiukun Lin
- College of Marine Sciences, Beibu Gulf University, Qinzhou, 535011, Guangxi, P.R. China
| | - Huanli Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing, P.R. China.
| |
Collapse
|
3
|
Ma L, Zhang H, Liu C, Liu M, Shangguan F, Liu Y, Yang S, Li H, An J, Song S, Cao Q, Qu G. A novel mechanism of cannabidiol in suppressing ovarian cancer through LAIR-1 mediated mitochondrial dysfunction and apoptosis. ENVIRONMENTAL TOXICOLOGY 2023; 38:1118-1132. [PMID: 36810933 DOI: 10.1002/tox.23752] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Cannabidiol (CBD) is a nonpsychoactive cannabinoid compound. It has been shown that CBD can inhibit the proliferation of ovarian cancer cells, but the underlying specific mechanism is unclear. We previously presented the first evidence for the expression of leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1), a member of the immunosuppressive receptor family, in ovarian cancer cells. In the present study, we investigated the mechanism by which CBD inhibits the growth of SKOV3 and CAOV3 ovarian cancer cells, and we sought to understand the concurrent role of LAIR-1. In addition to inducing ovarian cancer cell cycle arrest and promoting cell apoptosis, CBD treatment significantly affected the expression of LAIR-1 and inhibited the PI3K/AKT/mTOR signaling axis and mitochondrial respiration in ovarian cancer cells. These changes were accompanied by an increase in ROS, loss of mitochondrial membrane potential, and suppression of mitochondrial respiration and aerobic glycolysis, thereby inducing abnormal or disturbed metabolism and reducing ATP production. A combined treatment with N-acetyl-l-cysteine and CBD indicated that a reduction in ROS production would restore PI3K/AKT/mTOR pathway signaling and ovarian cancer cell proliferation. We subsequently confirmed that the inhibitory effect of CBD on the PI3K/AKT/mTOR signal axis and mitochondrial bioenergy metabolism was attenuated by knockdown of LAIR-1. Our animal studies further support the in vivo anti-tumor activity of CBD and suggest its mechanism of action. In summary, the present findings confirm that CBD inhibits ovarian cancer cell growth by disrupting the LAIR-1-mediated interference with mitochondrial bioenergy metabolism and the PI3K/AKT/mTOR pathway. These results provide a new experimental basis for research into ovarian cancer treatment based on targeting LAIR-1 with CBD.
Collapse
Affiliation(s)
- Li Ma
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
- Fungal Laboratory, Jining First People's Hospital, Jining, Shandong Province, China
| | - Huachang Zhang
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
| | - Chuntong Liu
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
| | - Mengke Liu
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
| | - Fugen Shangguan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yan Liu
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
- Yantai Key Laboratory of Sports Injury and Rehabilitation, Health Commission of Shandong Province of Medicine and Health Key Laboratory of Sports Injury and Rehabilitation, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong Province, China
| | - Shude Yang
- Department of Edible Mushrooms, School of Agriculture, Ludong University, Yantai, Shandong Province, China
| | - Hua Li
- Department of Gynecology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong Province, China
| | - Jing An
- Division of Infectious Diseases and Global Health, School of Medicine, University of California, San Diego (UCSD), La Jolla, California, USA
| | - Shuling Song
- School of Gerontology, Binzhou Medical University, Shandong Province, China
| | - Qizhi Cao
- School of Basic Medical Sciences, Binzhou Medical University, Shandong Province, China
| | - Guiwu Qu
- School of Gerontology, Binzhou Medical University, Shandong Province, China
| |
Collapse
|
4
|
Proteomic and single-cell landscape reveals novel pathogenic mechanisms of HBV-infected intrahepatic cholangiocarcinoma. iScience 2023; 26:106003. [PMID: 36852159 PMCID: PMC9958296 DOI: 10.1016/j.isci.2023.106003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/12/2022] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
Despite the epidemiological association between intrahepatic cholangiocarcinoma (ICC) and hepatitis B virus (HBV) infection, little is known about the relevant oncogenic effects. A cohort of 32 HBV-infected ICC and 89 non-HBV-ICC patients were characterized using whole-exome sequencing, proteomic analysis, and single-cell RNA sequencing. Proteomic analysis revealed decreased cell-cell junction levels in HBV-ICC patients. The cell-cell junction level had an inverse relationship with the epithelial-mesenchymal transition (EMT) program in ICC patients. Analysis of the immune landscape found that more CD8 T cells and Th2 cells were present in HBV-ICC patients. Single-cell analysis indicated that transforming growth factor beta signaling-related EMT program changes increased in tumor cells of HBV-ICC patients. Moreover, ICAM1+ tumor-associated macrophages are correlated with a poor prognosis and contributed to the EMT in HBV-ICC patients. Our findings provide new insights into the behavior of HBV-infected ICC driven by various pathogenic mechanisms involving decreased cell junction levels and increased progression of the EMT program.
Collapse
|
5
|
Van Laethem F, Donaty L, Tchernonog E, Lacheretz-Szablewski V, Russello J, Buthiau D, Almeras M, Moreaux J, Bret C. LAIR1, an ITIM-Containing Receptor Involved in Immune Disorders and in Hematological Neoplasms. Int J Mol Sci 2022; 23:ijms232416136. [PMID: 36555775 PMCID: PMC9788452 DOI: 10.3390/ijms232416136] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Leukocyte-associated immunoglobulin (Ig)-like receptor 1 (LAIR1, CD305) belongs to the family of immune-inhibitory receptors and is widely expressed on hematopoietic mature cells, particularly on immune cells. Four different types of ligands of LAIR1 have been described, including collagens, suggesting a potential immune-regulatory function on the extracellular matrix. By modulating cytokine secretion and cellular functions, LAIR1 displays distinct patterns of expression among NK cell and T/B lymphocyte subsets during their differentiation and cellular activation and plays a major negative immunoregulatory role. Beyond its implications in physiology, the activity of LAIR1 can be inappropriately involved in various autoimmune or inflammatory disorders and has been implicated in cancer physiopathology, including hematological neoplasms. Its action as an inhibitory receptor can result in the dysregulation of immune cellular responses and in immune escape within the tumor microenvironment. Furthermore, when expressed by tumor cells, LAIR1 can modulate their proliferation or invasion properties, with contradictory pro- or anti-tumoral effects depending on tumor type. In this review, we will focus on its role in normal physiological conditions, as well as during pathological situations, including hematological malignancies. We will also discuss potential therapeutic strategies targeting LAIR1 for the treatment of various autoimmune diseases and cancer settings.
Collapse
Affiliation(s)
| | - Lucie Donaty
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
| | | | - Vanessa Lacheretz-Szablewski
- Department of Biopathology, CHU Montpellier, 34295 Montpellier, France
- Faculty of Medicine, University of Montpellier, 34090 Montpellier, France
| | - Jennifer Russello
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
| | | | | | - Jérôme Moreaux
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
- Faculty of Medicine, University of Montpellier, 34090 Montpellier, France
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34396 Montpellier, France
- Institut Universitaire de France (IUF), 75005 Paris, France
| | - Caroline Bret
- Department of Biological Hematology, CHU Montpellier, 34295 Montpellier, France
- Faculty of Medicine, University of Montpellier, 34090 Montpellier, France
- Institute of Human Genetics, UMR 9002 CNRS-UM, 34396 Montpellier, France
- Correspondence: ; Tel.: +33-0467-337-031
| |
Collapse
|
6
|
Xie J, Gui X, Deng M, Chen H, Chen Y, Liu X, Ku Z, Tan L, Huang R, He Y, Zhang B, Lewis C, Chen K, Xu L, Xu J, Huang T, Liao XC, Zhang N, An Z, Zhang CC. Blocking LAIR1 signaling in immune cells inhibits tumor development. Front Immunol 2022; 13:996026. [PMID: 36211388 PMCID: PMC9534319 DOI: 10.3389/fimmu.2022.996026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/01/2022] [Indexed: 12/31/2022] Open
Abstract
The current immune checkpoint blockade therapy has been successful in treating some cancers but not others. New molecular targets and therapeutic approaches of cancer immunology need to be identified. Leukocyte associated immunoglobulin like receptor 1 (LAIR1) is an immune inhibitory receptor expressing on most immune cell types. However, it remains a question whether we can specifically and actively block LAIR1 signaling to activate immune responses for cancer treatment. Here we report the development of specific antagonistic anti-LAIR1 monoclonal antibodies and studied the effects of LAIR1 blockade on the anti-tumor immune functions. The anti-LAIR1 antagonistic antibody stimulated the activities of T cells, natural killer cells, macrophages, and dendritic cells in vitro. The single-cell RNA sequencing analysis of intratumoral immune cells in syngeneic human LAIR1 transgenic mice treated with control or anti-LAIR1 antagonist antibodies indicates that LAIR1 signaling blockade increased the numbers of CD4 memory T cells and inflammatory macrophages, but decreased those of pro-tumor macrophages, regulatory T cells, and plasmacytoid dendritic cells. Importantly, the LAIR1 blockade by the antagonistic antibody inhibited the activity of immunosuppressive myeloid cells and reactivated T cells from cancer patients in vitro and impeded tumor metastasis in a humanized mouse model. Blocking LAIR1 signaling in immune cells represents a promising strategy for development of anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Jingjing Xie
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xun Gui
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Heyu Chen
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yuanzhi Chen
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Xiaoye Liu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Lingxiao Tan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Ryan Huang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yubo He
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Bruce Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Cheryl Lewis
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kenian Chen
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Pediatrics, University of Texas Southwestern Medical Center,
Dallas, TX, United States
| | - Lin Xu
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Department of Pediatrics, University of Texas Southwestern Medical Center,
Dallas, TX, United States
| | - Jian Xu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Tao Huang
- Immune-Onc Therapeutics, Inc, Palo Alto, CA, United States
| | | | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
7
|
Gu Y, Bi Y, Wei H, Li J, Huang Z, Liao C, Liao W, Huang Y. Expression and clinical significance of inhibitory receptor Leukocyte-associated immunoglobulin-like receptor-1 on peripheral blood T cells of chronic hepatitis B patients: A cross-sectional study. Medicine (Baltimore) 2021; 100:e26667. [PMID: 34398030 PMCID: PMC8294879 DOI: 10.1097/md.0000000000026667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is an inhibitory receptor that is expressed on the surface of multiple immune cells and plays key roles in immune modulation. In patients with chronic hepatitis B (CHB), T cell number and functions are abnormal and the expression of inhibitory receptors is elevated. However, the expression of LAIR-1 on T cells in patients with CHB is still undetermined.We recruited 320 patients with CHB in different disease phases and 17 healthy donors. Serum biochemical and virological examinations were performed for each participant, and their demographic and clinical data were collected. According to the latest American Association for the Study of Liver Disease guidelines, we categorized the patients into 4 groups: immune active, immune tolerant, inactive CHB, and gray zone. Additionally, we tested the expression of LAIR-1 on T cells and T cell subsets using flow cytometry.We observed a significant decrease in LAIR-1 expression on CD3+ T cells and its two subsets (CD4+ and CD8+ T cells) in patients with CHB. LAIR-1 expression on T cells was the lowest in the immune active group. LAIR-1 expression levels on CD4+ and CD8+ T cells showed a significant negative association with hepatitis B virus (HBV) DNA load and were lower in hepatitis B e antigen (HBeAg)-positive patients than in HBeAg-negative patients (P < .05). In addition, LAIR-1 expression levels on CD3+, CD4+, and CD8+ T cells were all negatively associated with liver inflammation and fibrosis parameters, such as alanine aminotransferase and aspartate aminotransferase levels, FibroScan value, and aspartate aminotransferase-to-platelet ratio index score.LAIR-1 expression levels on T cells were associated with HBV DNA load and liver inflammation and fibrosis parameters, indicating that LAIR-1 may play an important regulatory role in HBV-induced T cell immune pathogenesis and may be a therapeutic target for CHB.
Collapse
Affiliation(s)
- Yurong Gu
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanhua Bi
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huan Wei
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zexuan Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chunhong Liao
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Weixin Liao
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuehua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun 2021. [PMID: 34140495 DOI: 10.1038/s41467-021-24010-1.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Interaction between tumor cells and immune cells in the tumor microenvironment is important in cancer development. Immune cells interact with the tumor cells to shape this process. Here, we use single-cell RNA sequencing analysis to delineate the immune landscape and tumor heterogeneity in a cohort of patients with HBV-associated human hepatocellular carcinoma (HCC). We found that tumor-associated macrophages suppress tumor T cell infiltration and TIGIT-NECTIN2 interaction regulates the immunosuppressive environment. The cell state transition of immune cells towards a more immunosuppressive and exhaustive status exemplifies the overall cancer-promoting immunocellular landscape. Furthermore, the heterogeneity of global molecular profiles reveals co-existence of intra-tumoral and inter-tumoral heterogeneity, but is more apparent in the latter. This analysis of the immunosuppressive landscape and intercellular interactions provides mechanistic information for the design of efficacious immune-oncology treatments in hepatocellular carcinoma.
Collapse
|
9
|
Ho DWH, Tsui YM, Chan LK, Sze KMF, Zhang X, Cheu JWS, Chiu YT, Lee JMF, Chan ACY, Cheung ETY, Yau DTW, Chia NH, Lo ILO, Sham PC, Cheung TT, Wong CCL, Ng IOL. Single-cell RNA sequencing shows the immunosuppressive landscape and tumor heterogeneity of HBV-associated hepatocellular carcinoma. Nat Commun 2021; 12:3684. [PMID: 34140495 PMCID: PMC8211687 DOI: 10.1038/s41467-021-24010-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
Interaction between tumor cells and immune cells in the tumor microenvironment is important in cancer development. Immune cells interact with the tumor cells to shape this process. Here, we use single-cell RNA sequencing analysis to delineate the immune landscape and tumor heterogeneity in a cohort of patients with HBV-associated human hepatocellular carcinoma (HCC). We found that tumor-associated macrophages suppress tumor T cell infiltration and TIGIT-NECTIN2 interaction regulates the immunosuppressive environment. The cell state transition of immune cells towards a more immunosuppressive and exhaustive status exemplifies the overall cancer-promoting immunocellular landscape. Furthermore, the heterogeneity of global molecular profiles reveals co-existence of intra-tumoral and inter-tumoral heterogeneity, but is more apparent in the latter. This analysis of the immunosuppressive landscape and intercellular interactions provides mechanistic information for the design of efficacious immune-oncology treatments in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Daniel Wai-Hung Ho
- Department of Pathology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| | - Yu-Man Tsui
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Lo-Kong Chan
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Karen Man-Fong Sze
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Xin Zhang
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | | | - Yung-Tuen Chiu
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Joyce Man-Fong Lee
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Albert Chi-Yan Chan
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | | | | | - Nam-Hung Chia
- Department of Surgery, Queen Elizabeth Hospital, Hong Kong, China
| | - Irene Lai-Oi Lo
- Department of Surgery, Queen Elizabeth Hospital, Hong Kong, China
| | - Pak-Chung Sham
- Department of Psychiatry, The University of Hong Kong, Hong Kong, China
| | - Tan-To Cheung
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Carmen Chak-Lui Wong
- Department of Pathology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China
| | - Irene Oi-Lin Ng
- Department of Pathology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
10
|
Liu Y, Ma L, Shangguan F, Zhao X, Wang W, Gao Z, Zhou H, Qu G, Huang Y, An J, Xue J, Yang S, Cao Q. LAIR-1 suppresses cell growth of ovarian cancer cell via the PI3K-AKT-mTOR pathway. Aging (Albany NY) 2021; 12:16142-16154. [PMID: 32628130 PMCID: PMC7485720 DOI: 10.18632/aging.103589] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 06/13/2020] [Indexed: 12/25/2022]
Abstract
Recently, over-expression of LAIR-1 has been found in some solid cancers, including ovarian cancer. The role of LAIR-1 in cancer progression needs further investigation. In this study, we identified the LAIR-1 cDNA sequence of the ovarian cancer cells HO8910. Using SKOV3 cells, we confirmed the finding from our previous study that LAIR-1 could suppress in vitro cell proliferation and cell migration. We also found LAIR-1 overexpression can induce apoptosis of SKOV3 cells. We revealed LAIR-1 suppressed cell growth by inhibiting the PI3K-AKT-mTOR axis. Moreover, the LAIR-1 antitumor activity and its mechanism were also identified in vivo. We used Co-IP assay and mass spectrometry to identify potential LAIR-1-binding proteins in LAIR-1 overexpressing SKOV3 cells. MS analysis identified 167 potentially interacting proteins. GO analyses indicated a possible involvement of LAIR-1 in mRNA processing through its interaction with some eukaryotic translation initiation factors (eIF4E1B, eIF2S3, eIF3D, eIF4G2, eIF5B) and eukaryotic translation elongation factors (eEF1A2 and eEF1B2). Our findings suggest that LAIR-1 may suppress the growth of ovarian cancer cells by serving as a modulator that suppresses PI3K-AKT-mTOR directly or regulating protein synthesis at the translational level. Our results indicate that a LAIR-1-based strategy may prevent or suppress the progression of ovarian cancer.
Collapse
Affiliation(s)
- Yan Liu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, P.R. China.,Equal contribution
| | - Li Ma
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, P.R. China.,Equal contribution
| | - Fugen Shangguan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, P.R. China.,Equal contribution
| | - Xuena Zhao
- Binzhou Medical University, Yantai 264003, Shandong, P.R. China
| | - Wenjie Wang
- Binzhou Medical University, Yantai 264003, Shandong, P.R. China
| | - Zhiyue Gao
- Binzhou Medical University, Yantai 264003, Shandong, P.R. China
| | - Huimin Zhou
- Binzhou Medical University, Yantai 264003, Shandong, P.R. China
| | - Guiwu Qu
- Anti-aging Research Institution, Binzhou Medical University, Yantai 264003, Shandong, P.R.China
| | - Yumei Huang
- Department of Stomatology, Affiliated Hospital of Binzhou Medical College, Binzhou 256603, Shandong, P.R. China
| | - Jing An
- Division of Infectious Diseases and Global Health, School of Medicine, University of California at San Diego, La Jolla, CA 92037, USA
| | - Jiangnan Xue
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, P.R. China
| | - Shude Yang
- School of Agriculture, Ludong University, Yantai 264025, Shandong, P.R.China
| | - Qizhi Cao
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Yantai 264003, Shandong, P.R. China.,Anti-aging Research Institution, Binzhou Medical University, Yantai 264003, Shandong, P.R.China
| |
Collapse
|
11
|
Joseph C, Alsaleem MA, Toss MS, Kariri YA, Althobiti M, Alsaeed S, Aljohani AI, Narasimha PL, Mongan NP, Green AR, Rakha EA. The ITIM-Containing Receptor: Leukocyte-Associated Immunoglobulin-Like Receptor-1 (LAIR-1) Modulates Immune Response and Confers Poor Prognosis in Invasive Breast Carcinoma. Cancers (Basel) 2020; 13:E80. [PMID: 33396670 PMCID: PMC7795350 DOI: 10.3390/cancers13010080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) plays a role in immune response homeostasis, extracellular matrix remodelling and it is overexpressed in many high-grade cancers. This study aimed to elucidate the biological and prognostic role of LAIR-1 in invasive breast cancer (BC). METHODS The biological and prognostic effect of LAIR-1 was evaluated at the mRNA and protein levels using well-characterised multiple BC cohorts. Related signalling pathways were evaluated using in silico differential gene expression and siRNA knockdown were used for functional analyses. RESULTS High LAIR-1 expression either in mRNA or protein levels were associated with high tumour grade, poor Nottingham Prognostic Index, hormone receptor negativity, immune cell infiltrates and extracellular matrix remodelling elements. High LAIR-1 protein expression was an independent predictor of shorter BC-specific survival and distant metastasis-free survival in the entire BC cohort and human epidermal growth factor receptor 2 (HER2)+ subtype. Pathway analysis highlights LAIR-1 association with extracellular matrix remodelling-receptor interaction, and cellular proliferation. Depletion of LAIR-1 using siRNA significantly reduced cell proliferation and invasion capability in HER2+ BC cell lines. CONCLUSION High expression of LAIR-1 is associated with poor clinical outcome in BC. Association with immune cells and immune checkpoint markers warrant further studies to assess the underlying mechanistic roles.
Collapse
Affiliation(s)
- Chitra Joseph
- School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham NG7 2RD, UK;
| | - Mansour A. Alsaleem
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
- Department of Applied Medical Sciences, Unayzah Community College, Qassim University, Unayzah 56435, Saudi Arabia
| | - Michael S. Toss
- School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham NG7 2RD, UK;
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
| | - Yousif A. Kariri
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
- Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Shaqra University 33, Shaqra 11961, Saudi Arabia
| | - Maryam Althobiti
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
- Department of Clinical Laboratory Science, Faculty of Applied Medical Science, Shaqra University 33, Shaqra 11961, Saudi Arabia
| | - Sami Alsaeed
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
| | - Abrar I. Aljohani
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
| | - Pavan L. Narasimha
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
| | - Nigel P. Mongan
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
| | - Andrew R. Green
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
| | - Emad A. Rakha
- School of Medicine, The University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham City Hospital, Nottingham NG7 2RD, UK;
- Division of Cancer and Stem Cells, School of Medicine, University of Nottingham Biodiscovery Institute, University Park, Nottingham NG7 2RD, UK; (M.A.A.); (Y.A.K.); (M.A.); (S.A.); (A.I.A.); (P.L.N.); (N.P.M.); (A.R.G.)
| |
Collapse
|
12
|
Guo N, Zhang K, Gao X, Lv M, Luan J, Hu Z, Li A, Gou X. Role and mechanism of LAIR-1 in the development of autoimmune diseases, tumors, and malaria: A review. Curr Res Transl Med 2020; 68:119-124. [DOI: 10.1016/j.retram.2020.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 04/23/2020] [Accepted: 05/17/2020] [Indexed: 02/08/2023]
|
13
|
Zhang J, Zhang Y, Cheng S, Mu Y, Liu Y, Yi X, Jiang D, Ding Y, Zhuang R. LAIR-1 overexpression inhibits epithelial-mesenchymal transition in osteosarcoma via GLUT1-related energy metabolism. World J Surg Oncol 2020; 18:136. [PMID: 32563267 PMCID: PMC7345510 DOI: 10.1186/s12957-020-01896-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Background Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a collagen receptor belonging to the immunoglobulin superfamily. Although previous studies have evaluated the biological role of LAIR in solid tumors, the precise mechanisms underlying the functions of LAIR-1 as a regulator of tumor biological functions remain unclear. Methods LAIR-1 expression was evaluated by immunohistochemical analysis using an osteosarcoma (OS) tissue microarray. Wound healing and transwell migration assays were performed to evaluate tumor cell migration. Quantitative real-time polymerase chain reaction (qPCR) and western blotting were conducted to detect the expression of epithelial–mesenchymal transition (EMT)-related molecules. RNA-sequencing (RNA-seq) was conducted to evaluate the mRNA expression profiles after overexpressing LAIR-1 in OS cells. Glucose transporter (Glut)1 expression in OS cells was evaluated by western blotting. Results LAIR-1 expression was significantly different between the T1 and T2 stages of OS tumors, and it inhibited OS cell migration. LAIR-1 expression was inversely correlated with the expression of Twist1, an EMT-associated transcription factor, via the Forkhead box O1 signal transduction pathway. Furthermore, RNA-seq and qPCR demonstrated that the expression of EMT energy metabolism-related molecules was significantly reduced after LAIR-1 overexpression. Conclusions LAIR-1 overexpression decreased the expression of Glut1 and inhibited the expression of EMT-related molecules in OS cells. These findings provide new insights into the molecular mechanism underlying OS progression.
Collapse
Affiliation(s)
- Jinxue Zhang
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, #1 Xinsi Road, Xi'an, 710032, China.,Department of Immunology, Fourth Military Medical University, #129 West Changle Road, Xi'an, 710032, China
| | - Yuan Zhang
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, Shaanxi, China
| | - Shiyang Cheng
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, #1 Xinsi Road, Xi'an, 710032, China
| | - Yang Mu
- Department of Immunology, Fourth Military Medical University, #129 West Changle Road, Xi'an, 710032, China
| | - Yongming Liu
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, #1 Xinsi Road, Xi'an, 710032, China
| | - Xin Yi
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, #1 Xinsi Road, Xi'an, 710032, China
| | - Dongxu Jiang
- Department of Immunology, Fourth Military Medical University, #129 West Changle Road, Xi'an, 710032, China
| | - Yong Ding
- Orthopedic Department of Tangdu Hospital, Fourth Military Medical University, #1 Xinsi Road, Xi'an, 710032, China.
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, #129 West Changle Road, Xi'an, 710032, China.
| |
Collapse
|
14
|
Xu L, Wang S, Li J, Li J, Li B. Cancer immunotherapy based on blocking immune suppression mediated by an immune modulator LAIR-1. Oncoimmunology 2020; 9:1740477. [PMID: 33457088 PMCID: PMC7790510 DOI: 10.1080/2162402x.2020.1740477] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The leukocyte-associated immunoglobulin-like receptor 1 (LAIR-1) is an inhibitory receptor expressed on the majority of peripheral blood mononuclear cells and is important for the regulation of immune responses. The binding of LAIR-1 to its ligands results in the loss of immune function in the tumor microenvironment (TME) and a reduction in T cell function and immune responses of antigen-presenting cells. Using bioinformatics analysis, we showed that LAIR-1 is broadly upregulated in multiple types of cancer. By designing a LAIR-2-Fc recombinant protein to block the binding of LAIR-1 to its ligand collagen, we observed augmented cytotoxic T cell infiltration and function resulting in antitumor immune responses that eliminated cancer cells. Besides, LAIR-2-Fc fusion protein potentiated the antitumor effect of PD-1/L1 checkpoint blockade therapy. Collectively, our results support the targeting of LAIR-1 for potential immunotherapeutic applications.
Collapse
Affiliation(s)
- Lijun Xu
- College of Medical, Henan University of Science and Technology, Luoyang, Henan, China
| | - Shanlong Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Jufeng Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Jie Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Henan University of Science and Technology, Luoyang, Henan, China
| | - Bingyu Li
- College of Medical, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
15
|
Cao Q, Yang S, Lv Q, Liu Y, Li L, Wu X, Qu G, He X, Zhang X, Sun S, Li B, An J, Hu T, Xue J. Five ETS family members, ELF-1, ETV-4, ETV-3L, ETS-1, and ETS-2 upregulate human leukocyte-associated immunoglobulin-like receptor-1 gene basic promoter activity. Aging (Albany NY) 2019; 10:1390-1401. [PMID: 29915163 PMCID: PMC6046229 DOI: 10.18632/aging.101475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/10/2018] [Indexed: 12/14/2022]
Abstract
Human leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1), an immunoinhibitory receptor, is expressed on most types of hematopoietic cells and some tumor cells. LAIR-1 plays an inhibitory role in immune cell maturation, differentiation, and activation. LAIR-1 is also involved in some autoimmune diseases and tumors. However, the mechanism controlling the regulation of the LAIR-1 gene is still unknown. In order to elucidate the molecular mechanisms involved in LAIR-1 regulation, in the present study, we cloned and characterized the promoter region of LAIR-1 gene using a series of truncated promoter plasmids in luciferase reporter assays. Our results show that the basic core promoter of LAIR-1 is located within the region -256/-8 relative to the translational start site. Our further studies indicate that five ETS transcription factors: ELF-1, ETV-4, ETV-3L, ETS-1 and ETS-2, can up-regulate the LAIR-1 basic promoter activity. Of these, ETS-2 is the most effective transcription factor. Moreover, ETS-2 was confirmed to interact directly with the basic promoter of LAIR-1. This study presents the first description of regions/factors capable of up-regulation the promoter activity of LAIR-1. This new knowledge contributes to understanding of the molecular mechanisms involved in LAIR-1 associated immune regulation and diseases.
Collapse
Affiliation(s)
- Qizhi Cao
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China.,Anti-aging Research Institution, Binzhou Medical University, Shandong 264003, China
| | - Shude Yang
- School of Agriculture, Ludong University, Shandong 264003, China
| | - Qing Lv
- Anti-aging Research Institution, Binzhou Medical University, Shandong 264003, China.,School of Gerontology, Binzhou Medical University, Shandong 264003, China
| | - Yan Liu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| | - Li Li
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaojie Wu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| | - Guiwu Qu
- Anti-aging Research Institution, Binzhou Medical University, Shandong 264003, China.,School of Gerontology, Binzhou Medical University, Shandong 264003, China
| | - Xiaoli He
- The People's Liberation Army 107 Hospital, Affiliated Hospital of Bin Zhou Medical University, Yantai 264002, China
| | - Xiaoshu Zhang
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| | - Shuqin Sun
- School of Gerontology, Binzhou Medical University, Shandong 264003, China
| | - Boqing Li
- Department of Microbiology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| | - Jing An
- School of Medicine, University of California - San Diego, La Jolla, CA 92037, USA
| | - Tao Hu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| | - Jiangnan Xue
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| |
Collapse
|
16
|
Achieng AO, Guyah B, Cheng Q, Ong'echa JM, Ouma C, Lambert CG, Perkins DJ. Molecular basis of reduced LAIR1 expression in childhood severe malarial anaemia: Implications for leukocyte inhibitory signalling. EBioMedicine 2019; 45:278-289. [PMID: 31257148 PMCID: PMC6642411 DOI: 10.1016/j.ebiom.2019.06.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Leukocyte-associated immunoglobulin like receptor-1 (LAIR1) is a transmembrane inhibitory receptor that influences susceptibility to a myriad of inflammatory diseases. Our recent investigations of severe malarial anaemia (SMA) pathogenesis in Kenyan children discovered that novel LAIR1 genetic variants which were associated with decreased LAIR1 transcripts enhanced the longitudinal risk of SMA and all-cause mortality. METHODS To characterize the molecular mechanism(s) responsible for altered LAIR1 signalling in severe malaria, we determined LAIR1 transcripts and protein, sLAIR1, sLAIR2, and complement component 1q (C1q) in children with malarial anaemia, followed by a series of in vitro experiments investigating the LAIR1 signalling cascade. FINDINGS Kenyan children with SMA had elevated circulating levels of soluble LAIR1 (sLAIR1) relative to non-SMA (1.69-fold P < .0001). The LAIR1 antagonist, sLAIR2, was also elevated in the circulation of children with SMA (1.59 fold-change, P < .0001). There was a positive correlation between sLAIR1 and sLAIR2 (ρ = 0.741, P < .0001). Conversely, circulating levels of complement component 1q (C1q), a LAIR1 natural ligand, were lower in SMA (-1.21-fold P = .048). These in vivo findings suggest that reduced membrane-bound LAIR1 expression in SMA is associated with elevated production of sLAIR1, sLAIR2 (antagonist), and limited C1q (agonist) availability. Since reduced LAIR1 transcripts in SMA were associated with increased acquisition of haemozoin (PfHz) by monocytes (P = .028), we explored the relationship between acquisition of intraleukocytic PfHz, LAIR1 expression, and subsequent impacts on leukocyte signalling in cultured PBMCs from malaria-naïve donors stimulated with physiological concentrations of PfHz (10 μg/mL). Phagocytosis of PfHz reduced LAIR1 transcript and protein expression in a time-dependent manner (P < .050), and inhibited LAIR1 signalling through decreased phosphorylation of LAIR1 (P < .0001) and SH2-domain containing phosphatase-1 (SHP-1) (P < .001). This process was associated with NF-κB activation (P < .0001) and enhanced production of IL-6, IL-1β, and TNF-α (all P < .0001). INTERPRETATION Collectively, these findings demonstrate that SMA is characterized by reduced LAIR1 transmembrane expression, reduced C1q, and enhanced production of sLAIR1 and sLAIR2, molecular events which can promote enhanced production of cytokines that contribute to the pathogenesis of SMA. These investigations are important for discovering immune checkpoints that could be future targets of immunotherapy to improve disease outcomes.
Collapse
Affiliation(s)
- Angela O Achieng
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya; Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Bernard Guyah
- Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Qiuying Cheng
- University of New Mexico, Center for Global Health, Department of Internal Medicine, NM, USA
| | - John M Ong'echa
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Collins Ouma
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya; Department of Biomedical Sciences and Technology, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Christophe G Lambert
- University of New Mexico, Center for Global Health, Department of Internal Medicine, NM, USA
| | - Douglas J Perkins
- University of New Mexico-Kenya Global Health Programs, Kisumu and Siaya, Kenya; University of New Mexico, Center for Global Health, Department of Internal Medicine, NM, USA.
| |
Collapse
|
17
|
Wu X, Zhang L, Zhou J, Liu L, Fu Q, Fu A, Feng X, Xin R, Liu H, Gao Y, Xue J. Clinicopathologic significance of LAIR-1 expression in hepatocellular carcinoma. Curr Probl Cancer 2019; 43:18-26. [DOI: 10.1016/j.currproblcancer.2018.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/04/2018] [Accepted: 04/20/2018] [Indexed: 12/22/2022]
|
18
|
Xu F, Yi J, Wang F, Wang W, Wang Z, Xue J, Luan X. Involvement of soluble B7-H3 in combination with the serum inflammatory cytokines interleukin-17, -8 and -6 in the diagnosis of hepatocellular carcinoma. Oncol Lett 2017; 14:8138-8143. [PMID: 29344257 DOI: 10.3892/ol.2017.7215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 09/01/2017] [Indexed: 02/07/2023] Open
Abstract
Previous studies have demonstrated that B7-H3, and the inflammatory cytokines interleukin (IL)-17, IL-8 and IL-6, are involved in the development of a variety of tumors. The objectives of the present study were: i) To investigate the association between soluble B7-H3 (sB7-H3) and cytokine levels of IL-17, IL-8 and IL-6 in the serum of patients with hepatocellular carcinoma (HCC); and ii) to determine their potential value for use in HCC diagnosis. Serum sB7-H3, IL-17, IL-8 and IL-6 levels in the HCC patients and healthy control subjects were measured using ELISA. The accuracy of each of these biomarkers in HCC diagnosis was compared using a receiver operating characteristic curve and the area under the curve (AUC). A logistic regression model was used to investigate the accuracy of diagnosing HCC when evaluated using combined determinations of sB7-H3, IL-17, IL-8 and IL-6 levels. The data demonstrated that serum levels of sB7-H3, IL-17, IL-8 and IL-6 were significantly increased in HCC patients compared with those in the healthy control group. Serum sB7-H3 levels were positively associated with serum IL-17, whereas serum IL-8 levels were negatively correlated with serum IL-17 levels. The AUC values for sB7-H3, IL-17, IL-8 and IL-6 were 83.2, 65.7, 95.3 and 97.0%, respectively, and indicated that all four biomarkers exhibited a statistically significant capacity for diagnosing HCC. Using the logistic regression model, the AUC value, sensitivity and specificity, as determined for the combination of the four biomarkers, were 99.2, 96.67 and 97.14%, respectively. This was significantly greater than that achieved when any single biomarker was used alone in the logistic regression model to assess their accuracy in HCC diagnosis. The optimum cutoff value of the predicted probability obtained by the combination of sB7-H3, IL-17, IL-8 and IL-6 in the regression model was 0.5745. To conclude, the present study revealed that there exists a positive association between serum sB7-H3 and IL-17 levels in HCC patients. Determinations involving the combination of serum sB7-H3, IL-17, IL-8 and IL-6 levels demonstrate great potential for use in HCC diagnosis.
Collapse
Affiliation(s)
- Fenghuang Xu
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Junzhu Yi
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Feifei Wang
- Department of Anesthesiology, The Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264100, P.R. China
| | - Weiwei Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Zhuoya Wang
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Jiangnan Xue
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiying Luan
- Department of Immunology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
19
|
Bekiares N, Krueger CG, Meudt JJ, Shanmuganayagam D, Reed JD. Effect of Sweetened Dried Cranberry Consumption on Urinary Proteome and Fecal Microbiome in Healthy Human Subjects. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 22:145-153. [PMID: 28618237 PMCID: PMC5810433 DOI: 10.1089/omi.2016.0167] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The relationship among diet, human health, and disease is an area of growing interest in biomarker research. Previous studies suggest that the consumption of cranberries (Vaccinium macrocarpon) could beneficially influence urinary and digestive health. The present study sought to determine if daily consumption of sweetened dried cranberries (SDC) changes the urinary proteome and fecal microbiome, as determined in a prospective sample of 10 healthy individuals. Baseline urine and fecal samples were collected from the subjects in the fasted (8-12 h) state. The subjects then consumed one serving (42 g) of SDC daily with lunch for 2 weeks. Urine and fecal samples were collected again the day after 2 weeks of SDC consumption. Orbitrap Q-Exactive mass spectrometry of urinary proteins showed that consumption of SDC resulted in changes to 22 urinary proteins. Multiplex sequencing of 16S ribosomal RNA genes in fecal samples indicated changes in relative abundance of several bacterial taxonomic units after consumption of SDC. There was a shift in the Firmicutes:Bacteroidetes ratio, increases in commensal bacteria, and decreases or the absence of bacteria associated with negative health effects. A decrease in uromodulin in all subjects and an increase in Akkermansia bacteria in most subjects were observed and warrant further investigation. Future larger clinical studies with multiomics and multitissue sampling designs are required to determine the effects of SDC consumption on nutrition and health.
Collapse
Affiliation(s)
- Nell Bekiares
- 1 Department of Animal Sciences, Reed Research Group, University of Wisconsin-Madison , Madison, Wisconsin
| | - Christian G Krueger
- 1 Department of Animal Sciences, Reed Research Group, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jennifer J Meudt
- 2 Department of Animal Sciences, Biomedical and Genomic Research Group, University of Wisconsin-Madison , Madison, Wisconsin
| | - Dhanansayan Shanmuganayagam
- 2 Department of Animal Sciences, Biomedical and Genomic Research Group, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jess D Reed
- 1 Department of Animal Sciences, Reed Research Group, University of Wisconsin-Madison , Madison, Wisconsin
| |
Collapse
|
20
|
Wang Y, Zhang X, Miao F, Cao Y, Xue J, Cao Q, Zhang X. Clinical significance of leukocyte-associated immunoglobulin-like receptor-1 expression in human cervical cancer. Exp Ther Med 2016; 12:3699-3705. [PMID: 28105100 PMCID: PMC5228450 DOI: 10.3892/etm.2016.3842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 10/10/2016] [Indexed: 12/18/2022] Open
Abstract
Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is broadly expressed on the majority of immune cells; however, the biological role of LAIR in solid tumors has yet to be elucidated. In the present study, using immunohistochemical staining analysis, the expression of LAIR-1 in human cervical cancer (HCC) and nontumor-adjacent tissue specimens was determined, and the results indicated that the expression of LAIR-1 in HCC tissue was higher compared with that in noncancerous tissue. The χ2 test was used to analyze the correlation between the expression of LAIR-1 in tumor tissues with clinicopathological parameters. The results showed that the expression of LAIR-1 in the cancer cell nucleus was significantly associated with tumor size, pathological differentiation, T classification and clinical stage. In addition, the expression in the cytoplasm was evidently associated with the number of positive lymph nodes. The HCC cell line, ME-180, which does not express LAIR-1, was stably transfected using LAIR-1 cDNA. Cell Counting Kit-8 and an annexin V assay showed that the overexpression of LAIR-1 in ME-180 cells suppressed the proliferation and anti-apoptosis capacity of the cells. These findings demonstrated that LAIR-1 is markedly overexpressed in HCC tissue, and that its expression status is associated with tumor progression. LAIR-1 may be a biomarker and target in the diagnosis and treatment of patients with HCC.
Collapse
Affiliation(s)
- Yue Wang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xueshan Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Fang Miao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yanning Cao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Jiangnan Xue
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Qizhi Cao
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xiaoshu Zhang
- Department of Immunology, School of Basic Medicine, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|