1
|
Bonab MKF, Guo Z, Li Q. Glycosphingolipids: from metabolism to chemoenzymatic total synthesis. Org Biomol Chem 2024; 22:6665-6683. [PMID: 39120686 PMCID: PMC11341264 DOI: 10.1039/d4ob00695j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
GSLs are the major glycolipids in vertebrates and mediate many key biological processes from intercellular recognition to cis regulation of signal transduction. The fast-expanding field of glycobiology has led to a growing demand for diverse and structurally defined GSLs, and enzymatic GSL synthesis is developing rapidly in accordance. This article provides an overview of natural GSL biosynthetic pathways and surveys the bacterial enzymes applied to GSL synthesis and recent progress in synthesis strategies. By correlating these three areas, this article aims to define the gaps between GSL biosynthesis and chemoenzymatic synthesis and evaluate the opportunities for harnessing natural forces to access GSLs efficiently.
Collapse
Affiliation(s)
- Mitra K F Bonab
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA.
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA.
| | - Qingjiang Li
- Department of Chemistry, University of Massachusetts Boston, Boston, Massachusetts 02125, USA.
| |
Collapse
|
2
|
Hirano K, Furukawa K. Biosynthesis and Biological Significances of LacdiNAc Group on N- and O-Glycans in Human Cancer Cells. Biomolecules 2022; 12:biom12020195. [PMID: 35204696 PMCID: PMC8961560 DOI: 10.3390/biom12020195] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023] Open
Abstract
An increasing number of studies have shown that the disaccharide GalNAcβ1→4GlcNAc (LacdiNAc) group bound to N- and O-glycans in glycoproteins is expressed in a variety of mammalian cells. Biosynthesis of the LacdiNAc group was well studied, and two β4-N-acetylgalactosaminyltransferases, β4GalNAcT3 and β4GalNAcT4, have been shown to transfer N-acetylgalactosamine (GalNAc) to N-acetylglucosamine (GlcNAc) of N- and O-glycans in a β-1,4-linkage. The LacdiNAc group is often sialylated, sulfated, and/or fucosylated, and the LacdiNAc group, with or without these modifications, is recognized by receptors and lectins and is thus involved in the regulation of several biological phenomena, such as cell differentiation. The occurrences of the LacdiNAc group and the β4GalNAcTs appear to be tissue specific and are closely associated with the tumor progression or regression, indicating that they will be potent diagnostic markers of particular cancers, such as prostate cancer. It has been demonstrated that the expression of the LacdiNAc group on N-glycans of cell surface glycoproteins including β1-integrin is involved in the modulation of their protein functions, thus affecting cellular invasion and other malignant properties of cancer cells. The biological roles of the LacdiNAc group in cancer cells have not been fully understood. However, the re-expression of the LacdiNAc group on N-glycans, which is lost in breast cancer cells by transfection of the β4GalNAcT4 gene, brings about the partial restoration of normal properties and subsequent suppression of malignant phenotypes of the cells. Therefore, elucidation of the biological roles of the LacdiNAc group in glycoproteins will lead to the suppression of breast cancers.
Collapse
Affiliation(s)
- Kiyoko Hirano
- Glycoinformatics Project, The Noguchi Institute, Itabashi, Tokyo 173-0003, Japan
- Correspondence: ; Tel.: +81-3-3961-3255
| | - Kiyoshi Furukawa
- Department of Endocrinology and Diabetes, Medical Center, Saitama Medical University, Kawagoe 350-8550, Japan;
| |
Collapse
|
3
|
Characterisation of the main PSA glycoforms in aggressive prostate cancer. Sci Rep 2020; 10:18974. [PMID: 33149259 PMCID: PMC7643140 DOI: 10.1038/s41598-020-75526-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/12/2020] [Indexed: 12/16/2022] Open
Abstract
Serum levels of prostate specific antigen (PSA) are commonly used for prostate cancer (PCa) detection. However, their lack of specificity to distinguish benign prostate pathologies from PCa, or indolent from aggressive PCa have prompted the study of new non-invasive PCa biomarkers. Aberrant glycosylation is involved in neoplastic progression and specific changes in PSA glycosylation pattern, as the reduction in the percentage of α2,6-sialic acid (SA) are associated with PCa aggressiveness. In this study, we have characterised the main sialylated PSA glycoforms from blood serum of aggressive PCa patients and have compared with those of standard PSA from healthy individuals’ seminal plasma. PSA was immunoprecipitated and α2,6-SA were separated from α2,3-SA glycoforms using SNA affinity chromatography. PSA N-glycans were released, labelled and analysed by hydrophilic interaction liquid chromatography combined with exoglycosidase digestions. The results showed that blood serum PSA sialylated glycoforms containing GalNAc residues were largely increased in aggressive PCa patients, whereas the disialylated core fucosylated biantennary structures with α2,6-SA, which are the major PSA glycoforms in standard PSA from healthy individuals, were markedly reduced in aggressive PCa. The identification of these main PSA glycoforms altered in aggressive PCa opens the way to design specific strategies to target them, which will be useful to improve PCa risk stratification.
Collapse
|
4
|
LacdiNAcylation of N-glycans in MDA-MB-231 human breast cancer cells results in changes in morphological appearance and adhesive properties of the cells. Histochem Cell Biol 2019; 153:17-26. [PMID: 31606752 DOI: 10.1007/s00418-019-01822-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2019] [Indexed: 12/24/2022]
Abstract
We demonstrated previously that the expression of the disaccharide, GalNAcβ1 → 4GlcNAc (LacdiNAc), on N-glycans of cell surface glycoproteins in MDA-MB-231 human breast cancer cells suppresses their malignant properties such as tumor formation in nude mice. Here, we report changes in the morphological appearance and adhesive properties of two kinds of clonal cells of MDA-MB-231 cells overexpressing β4-N-acetyl-galactosaminyltransferase 4. The clonal cells exhibited a cobble stone-like shape as compared to a spindle-like shape of the mock-transfected cells and the original MDA-MB-231 cells. This was associated with an increased expression of cell surface E-cadherin, a marker of epithelial cells, and a decreased expression of N-cadherin, vimentin, α-smooth muscle actin and ZEB1, markers of mesenchymal cells. In addition, the clonal cells showed a lower migratory activity compared to the mock-transfected cells by wound-healing assay. These results suggest that mesenchymal-epithelial transition may be occurring in these clonal cells. Furthermore, increased adhesion to extracellular matrix proteins such as fibronectin, collagen type I, collagen type IV, and laminin was observed. The clonal cells spread and enlarged, whereas the mock-transfected cells demonstrated poor spreading on laminin-coated plates in the absence of fetal calf serum, indicating that expression of LacdiNAc on cell surface glycoproteins results in changes in cell adhesive and spreading properties particularly to laminin.
Collapse
|
5
|
Yoneyama T, Tobisawa Y, Kaneko T, Kaya T, Hatakeyama S, Mori K, Sutoh Yoneyama M, Okubo T, Mitsuzuka K, Duivenvoorden W, Pinthus JH, Hashimoto Y, Ito A, Koie T, Suda Y, Gardiner RA, Ohyama C. Clinical significance of the LacdiNAc-glycosylated prostate-specific antigen assay for prostate cancer detection. Cancer Sci 2019; 110:2573-2589. [PMID: 31145522 PMCID: PMC6676104 DOI: 10.1111/cas.14082] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/02/2023] Open
Abstract
To reduce unnecessary prostate biopsies (Pbx), better discrimination is needed. To identify clinically significant prostate cancer (CSPC) we determined the performance of LacdiNAc‐glycosylated prostate‐specific antigen (LDN‐PSA) and LDN‐PSA normalized by prostate volume (LDN‐PSAD). We retrospectively measured LDN‐PSA, total PSA (tPSA), and free PSA/tPSA (F/T PSA) values in 718 men who underwent a Pbx in 3 academic urology clinics in Japan and Canada (Pbx cohort) and in 174 PC patients who subsequently underwent radical prostatectomy in Australia (preop‐PSA cohort). The assays were evaluated using the area under the receiver operating characteristics curve (AUC) and decision curve analyses to discriminate CSPC. In the Pbx cohort, LDN‐PSAD (AUC 0.860) provided significantly better clinical performance for discriminating CSPC compared with LDN‐PSA (AUC 0.827, P = 0.0024), PSAD (AUC 0.809, P < 0.0001), tPSA (AUC 0.712, P < 0.0001), and F/T PSA (AUC 0.661, P < 0.0001). The decision curve analysis showed that using a risk threshold of 20% and adding LDN‐PSA and LDN‐PSAD to the base model (age, digital rectal examination status, tPSA, and F/T PSA) permitted avoidance of even more biopsies without missing CSPC (9.89% and 18.11%, respectively vs 2.23% [base model]). In the preop‐PSA cohort, LDN‐PSA values positively correlated with tumor volume and tPSA and were significantly higher in pT3, pathological Gleason score ≥ 7. Limitations include limited sample size, retrospective nature, and no family history information prior to biopsy. LacdiNAc‐glycosylated PSA is significantly better than the conventional PSA test in identifying patients with CSPC. This study was approved by the ethics committee of each institution (“The Study about Carbohydrate Structure Change in Urological Disease”; approval no. 2014‐195).
Collapse
Affiliation(s)
- Tohru Yoneyama
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yuki Tobisawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | - Takatoshi Kaya
- Corporate R&D Headquarters, Konica Minolta, Tokyo, Japan
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazuyuki Mori
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Mihoko Sutoh Yoneyama
- Department of Cancer Immunology and Cell Biology, Oyokyo Kidney Research Institute, Hirosaki, Japan
| | - Teppei Okubo
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Koji Mitsuzuka
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | | | - Yasuhiro Hashimoto
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Akihiro Ito
- Department of Urology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takuya Koie
- Department of Urology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoshihiko Suda
- Corporate R&D Headquarters, Konica Minolta, Tokyo, Japan
| | - Robert A Gardiner
- Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Australia.,Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Chikara Ohyama
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan.,Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
6
|
Hagiwara K, Tobisawa Y, Kaya T, Kaneko T, Hatakeyama S, Mori K, Hashimoto Y, Koie T, Suda Y, Ohyama C, Yoneyama T. Wisteria floribunda Agglutinin and Its Reactive-Glycan-Carrying Prostate-Specific Antigen as a Novel Diagnostic and Prognostic Marker of Prostate Cancer. Int J Mol Sci 2017; 18:ijms18020261. [PMID: 28134773 PMCID: PMC5343797 DOI: 10.3390/ijms18020261] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/09/2023] Open
Abstract
Wisteria floribunda agglutinin (WFA) preferably binds to LacdiNAc glycans, and its reactivity is associated with tumor progression. The aim of this study to examine whether the serum LacdiNAc carrying prostate-specific antigen–glycosylation isomer (PSA-Gi) and WFA-reactivity of tumor tissue can be applied as a diagnostic and prognostic marker of prostate cancer (PCa). Between 2007 and 2016, serum PSA-Gi levels before prostate biopsy (Pbx) were measured in 184 biopsy-proven benign prostatic hyperplasia patients and 244 PCa patients using an automated lectin-antibody immunoassay. WFA-reactivity on tumor was analyzed in 260 radical prostatectomy (RP) patients. Diagnostic and prognostic performance of serum PSA-Gi was evaluated using area under the receiver-operator characteristic curve (AUC). Prognostic performance of WFA-reactivity on tumor was evaluated via Cox proportional hazards regression analysis and nomogram. The AUC of serum PSA-Gi detecting PCa and predicting Pbx Grade Group (GG) 3 and GG ≥ 3 after RP was much higher than those of conventional PSA. Multivariate analysis showed that WFA-reactivity on prostate tumor was an independent risk factor of PSA recurrence. The nomogram was a strong model for predicting PSA-free survival provability with a c-index ≥0.7. Serum PSA-Gi levels and WFA-reactivity on prostate tumor may be a novel diagnostic and pre- and post-operative prognostic biomarkers of PCa, respectively.
Collapse
Affiliation(s)
- Kazuhisa Hagiwara
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Yuki Tobisawa
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Takatoshi Kaya
- Corporate R&D Headquarters, Konica Minolta, Inc., Hino-shi, Tokyo 191-8511, Japan.
| | - Tomonori Kaneko
- Corporate R&D Headquarters, Konica Minolta, Inc., Hino-shi, Tokyo 191-8511, Japan.
| | - Shingo Hatakeyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Kazuyuki Mori
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Yasuhiro Hashimoto
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Takuya Koie
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Yoshihiko Suda
- Corporate R&D Headquarters, Konica Minolta, Inc., Hino-shi, Tokyo 191-8511, Japan.
| | - Chikara Ohyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| | - Tohru Yoneyama
- Department of Urology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
- Department of Advanced Transplant and Regenerative Medicine, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan.
| |
Collapse
|