1
|
Dunjic M, Turini S, Nejkovic L, Sulovic N, Cvetkovic S, Dunjic M, Dunjic K, Dolovac D. Comparative Molecular Docking of Apigenin and Luteolin versus Conventional Ligands for TP-53, pRb, APOBEC3H, and HPV-16 E6: Potential Clinical Applications in Preventing Gynecological Malignancies. Curr Issues Mol Biol 2024; 46:11136-11155. [PMID: 39451541 PMCID: PMC11505693 DOI: 10.3390/cimb46100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
This study presents a comparative analysis of molecular docking data, focusing on the binding interactions of the natural compounds apigenin and luteolin with the proteins TP-53, pRb, and APOBEC, in comparison to conventional pharmacological ligands. Advanced bioinformatics techniques were employed to evaluate and contrast binding energies, showing that apigenin and luteolin demonstrate significantly higher affinities for TP-53, pRb, and APOBEC, with binding energies of -6.9 kcal/mol and -6.6 kcal/mol, respectively. These values suggest strong potential for therapeutic intervention against HPV-16. Conventional ligands, by comparison, exhibited lower affinities, with energies ranging from -4.5 to -5.5 kcal/mol. Additionally, protein-protein docking simulations were performed to assess the interaction between HPV-16 E6 oncoprotein and tumor suppressors TP-53 and pRb, which revealed high binding energies around -976.7 kcal/mol, indicative of their complex interaction. A conversion formula was applied to translate these protein-protein interaction energies to a comparable scale for non-protein interactions, further underscoring the superior binding potential of apigenin and luteolin. These findings highlight the therapeutic promise of these natural compounds in preventing HPV-16-induced oncogenesis, warranting further experimental validation for clinical applications.
Collapse
Affiliation(s)
- Momir Dunjic
- School of Medicine, University of Pristina, BB Anri Dinana, 38220 Kosovska Mitrovica, Serbia;
- Faculty of Pharmacy, Heroja Pinkija 4, 21000 Novi Sad, Serbia
- Alma Mater Europaea (AMEU-ECM), Slovenska Ulica/Street 17, 2000 Maribor, Slovenia;
- BDORT Center for Functional Supplementation and Integrative Medicine, Bulevar Oslobodjenja 2, 11000 Belgrade, Serbia;
| | - Stefano Turini
- Alma Mater Europaea (AMEU-ECM), Slovenska Ulica/Street 17, 2000 Maribor, Slovenia;
- BDORT Center for Functional Supplementation and Integrative Medicine, Bulevar Oslobodjenja 2, 11000 Belgrade, Serbia;
- Guard Plus Doo, Nemanjina 40, 11000 Belgrade, Serbia
- Worldwide Consultancy and Services, Division of Advanced Research and Development, Via Andrea Ferrara 45, 00165 Rome, Italy;
- Capri Campus Forensic and Security, Division of Environmental Medicine and Security, Via G. Orlandi 91 Anacapri, Capri Island, 80071 Naples, Italy
| | - Lazar Nejkovic
- Belgrade University, School of Medicine, dr Subotića Starijeg 8, 11000 Belgrade, Serbia;
- Clinic for Obstetrics and Gynecology, Kraljice Natalije 62, 11000 Belgrade, Serbia
| | - Nenad Sulovic
- School of Medicine, University of Pristina, BB Anri Dinana, 38220 Kosovska Mitrovica, Serbia;
| | - Sasa Cvetkovic
- School of Medicine, University of Pristina, BB Anri Dinana, 38220 Kosovska Mitrovica, Serbia;
| | - Marija Dunjic
- Worldwide Consultancy and Services, Division of Advanced Research and Development, Via Andrea Ferrara 45, 00165 Rome, Italy;
| | - Katarina Dunjic
- BDORT Center for Functional Supplementation and Integrative Medicine, Bulevar Oslobodjenja 2, 11000 Belgrade, Serbia;
| | - Dina Dolovac
- General Hospital, UI. Generala Zivkovica 1, 36300 Novi Pazar, Serbia;
| |
Collapse
|
2
|
Portman N, Chen J, Lim E. MDM2 as a Rational Target for Intervention in CDK4/6 Inhibitor Resistant, Hormone Receptor Positive Breast Cancer. Front Oncol 2021; 11:777867. [PMID: 34804982 PMCID: PMC8596371 DOI: 10.3389/fonc.2021.777867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
With the adoption of inhibitors of cyclin dependent kinases 4 and 6 (CDK4/6i) in combination with endocrine therapy as standard of care for the treatment of advanced and metastatic estrogen receptor positive (ER+) breast cancer, the search is now on for novel therapeutic options to manage the disease after the inevitable development of resistance to CDK4/6i. In this review we will consider the integral role that the p53/MDM2 axis plays in the interactions between CDK4/6, ERα, and inhibitors of these molecules, the current preclinical evidence for the efficacy of MDM2 inhibitors in ER+ breast cancer, and discuss the possibility of targeting the p53/MDM2 via inhibition of MDM2 in the CDK4/6i resistance setting.
Collapse
Affiliation(s)
- Neil Portman
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Julia Chen
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Elgene Lim
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| |
Collapse
|
3
|
de Oliveira Ribeiro H, Cortez AP, de Ávila RI, da Silva ACG, de Carvalho FS, Menegatti R, Lião LM, Valadares MC. Small-molecule MDM2 inhibitor LQFM030-induced apoptosis in p53-null K562 chronic myeloid leukemia cells. Fundam Clin Pharmacol 2020; 34:444-457. [PMID: 32011031 DOI: 10.1111/fcp.12540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 01/01/2023]
Abstract
Our group designed and synthesized the N-phenyl-piperazine LQFM030 [1-(4-((1-(4-chlorophenyl)-1H-pyrazol-4-yl)methyl) piperazin-1-yl) ethanone], a small molecule derived from molecular simplification of the Nutlin-1, an inhibitor of the human homologue of murine double minute 2 (MDM2) protein that is expressed in several types of cancer. To better investigate the effects of LQFM030 regarding the p53 mutation status, this study investigated the antiproliferative activity of LQFM030 against the p53-null K562 leukemia cells as well as the cell death pathways involved. In addition, the effects of LQFM030 on the levels of the p53/MDM2 complex were also carried out using 3T3 cells as a p53 wild-type model. Our data suggest that LQFM030 triggered apoptosis in K562 cells via different mechanisms including cell cycle arrest, caspase activation, reduction of mitochondrial activity, decrease in MDM2 expression, and transcriptional modulation of MDMX, p73, MYC, and NF-ĸB. Additionally, it promoted effects in p53/MDM2 binding in p53 wild-type 3T3 cells. Therefore, LQFM030 has antiproliferative effects in cancer cells by a p53 mutation status-independent manner with different signaling pathways. These findings open new perspectives to the treatment of leukemic cells considering the resistance development associated with cancer treatment with conventional cytotoxic drugs.
Collapse
Affiliation(s)
- Higor de Oliveira Ribeiro
- Laboratory of Education and Research in In Vitro Toxicology - Tox In, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, 74605-220, Brazil
| | - Alane Pereira Cortez
- Laboratory of Education and Research in In Vitro Toxicology - Tox In, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, 74605-220, Brazil
| | - Renato Ivan de Ávila
- Laboratory of Education and Research in In Vitro Toxicology - Tox In, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, 74605-220, Brazil
| | - Artur Christian Garcia da Silva
- Laboratory of Education and Research in In Vitro Toxicology - Tox In, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, 74605-220, Brazil
| | - Flávio Silva de Carvalho
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, 74605-220, Brazil
| | - Ricardo Menegatti
- Laboratório de Química Farmacêutica Medicinal (LQFM), Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, 74605-220, Brazil
| | - Luciano Morais Lião
- Laboratório de Ressonância Magnética Nuclear, Instituto de Química, Universidade Federal de Goiás, Goiânia, 74605-220, Brazil
| | - Marize Campos Valadares
- Laboratory of Education and Research in In Vitro Toxicology - Tox In, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, 74605-220, Brazil
| |
Collapse
|
4
|
Caspases interplay with kinases and phosphatases to determine cell fate. Eur J Pharmacol 2019; 855:20-29. [DOI: 10.1016/j.ejphar.2019.04.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 12/15/2022]
|
5
|
Tesson M, Vasan R, Hock A, Nixon C, Rae C, Gaze M, Mairs R. An evaluation in vitro of the efficacy of nutlin-3 and topotecan in combination with 177Lu-DOTATATE for the treatment of neuroblastoma. Oncotarget 2018; 9:29082-29096. [PMID: 30018737 PMCID: PMC6044389 DOI: 10.18632/oncotarget.25607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 05/28/2018] [Indexed: 12/17/2022] Open
Abstract
Targeted radiotherapy of metastatic neuroblastoma using the somatostatin receptor (SSTR)-targeted octreotide analogue DOTATATE radiolabelled with lutetium-177 (177Lu-DOTATATE) is a promising strategy. This study evaluates whether its effectiveness may be enhanced by combination with radiosensitising drugs. The growth rate of multicellular tumour spheroids, derived from the neuroblastoma cell lines SK-N-BE(2c), CHLA-15 and CHLA-20, was evaluated following treatment with 177Lu-DOTATATE, nutlin-3 and topotecan alone or in combination. Immunoblotting, immunostaining and flow cytometric analyses were used to determine activation of p53 signalling and cell death. Exposure to 177Lu-DOTATATE resulted in a significant growth delay in CHLA-15 and CHLA-20 spheroids, but not in SK-N-BE(2c) spheroids. Nutlin-3 enhanced the spheroid growth delay induced by topotecan in CHLA-15 and CHLA-20 spheroids, but not in SK-N-BE(2c) spheroids. Importantly, the combination of nutlin-3 with topotecan enhanced the spheroid growth delay induced by X-irradiation or by exposure to 177Lu-DOTATATE. The efficacy of the combination treatments was p53-dependent. These results indicate that targeted radiotherapy of high risk neuroblastoma with 177Lu-DOTATATE may be improved by combination with the radiosensitising drugs nutlin-3 and topotecan.
Collapse
Affiliation(s)
- Mathias Tesson
- Radiation Oncology, Institute of Cancer Sciences, Wolfson Wohl Translational Cancer Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - Richa Vasan
- Radiation Oncology, Institute of Cancer Sciences, Wolfson Wohl Translational Cancer Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - Andreas Hock
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK
| | - Colin Rae
- Radiation Oncology, Institute of Cancer Sciences, Wolfson Wohl Translational Cancer Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| | - Mark Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Robert Mairs
- Radiation Oncology, Institute of Cancer Sciences, Wolfson Wohl Translational Cancer Research Centre, University of Glasgow, Bearsden, Glasgow, UK
| |
Collapse
|
6
|
Yoon S, Beermann ML, Yu B, Shao D, Bachschmid M, Miller JB. Aberrant Caspase Activation in Laminin-α2-Deficient Human Myogenic Cells is Mediated by p53 and Sirtuin Activity. J Neuromuscul Dis 2018; 5:59-73. [PMID: 29278895 PMCID: PMC5836413 DOI: 10.3233/jnd-170262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Mutations in the LAMA2 gene encoding laminin-α2 cause congenital muscular dystrophy Type 1A (MDC1A), a severe recessive disease with no effective treatment. Previous studies have shown that aberrant activation of caspases and cell death through a pathway regulated by BAX and KU70 is a significant contributor to pathogenesis in laminin-α2-deficiency. Objectives: To identify mechanisms of pathogenesis in MDC1A. Methods: We used immunocytochemical and molecular studies of human myogenic cells and mouse muscles—comparing laminin-α2-deficient vs. healthy controls—to identify mechanisms that regulate pathological activation of caspase in laminin-α2-deficiency. Results: In cultures of myogenic cells from MDC1A donors, p53 accumulated in a subset of nuclei and aberrant caspase activation was inhibited by the p53 inhibitor pifithrin-alpha. Also, the p53 target BBC3 (PUMA) was upregulated in both MDC1A myogenic cells and Lama2–/– mouse muscles. In addition, studies with sirtuin inhibitors and SIRT1 overexpression showed that caspase activation in MDC1A myotubes was inversely related to sirtuin deacetylase activity. Caspase activation in laminin-α2-deficiency was, however, not associated with increased phosphorylation of p38 MAPK. Conclusions: Aberrant caspase activation in MDC1A cells was mediated both by sirtuin deacetylase activity and by p53. Interventions that inhibit aberrant caspase activation by targeting sirtuin or p53 function could potentially be useful in ameliorating MDC1A.
Collapse
Affiliation(s)
- Soonsang Yoon
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Mary Lou Beermann
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Bryant Yu
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Di Shao
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Markus Bachschmid
- Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
7
|
Flamini V, Ghadiali RS, Antczak P, Rothwell A, Turnbull JE, Pisconti A. The Satellite Cell Niche Regulates the Balance between Myoblast Differentiation and Self-Renewal via p53. Stem Cell Reports 2018; 10:970-983. [PMID: 29429962 PMCID: PMC5918193 DOI: 10.1016/j.stemcr.2018.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 12/18/2022] Open
Abstract
Satellite cells are adult muscle stem cells residing in a specialized niche that regulates their homeostasis. How niche-generated signals integrate to regulate gene expression in satellite cell-derived myoblasts is poorly understood. We undertook an unbiased approach to study the effect of the satellite cell niche on satellite cell-derived myoblast transcriptional regulation and identified the tumor suppressor p53 as a key player in the regulation of myoblast quiescence. After activation and proliferation, a subpopulation of myoblasts cultured in the presence of the niche upregulates p53 and fails to differentiate. When satellite cell self-renewal is modeled ex vivo in a reserve cell assay, myoblasts treated with Nutlin-3, which increases p53 levels in the cell, fail to differentiate and instead become quiescent. Since both these Nutlin-3 effects are rescued by small interfering RNA-mediated p53 knockdown, we conclude that a tight control of p53 levels in myoblasts regulates the balance between differentiation and return to quiescence.
Collapse
Affiliation(s)
- Valentina Flamini
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Rachel S Ghadiali
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Philipp Antczak
- Department of Functional Genomics, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK; Computational Biology Facility, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Amy Rothwell
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Jeremy E Turnbull
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Addolorata Pisconti
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK.
| |
Collapse
|
8
|
Yuan S, Friedman DL, Daniels AB. Alternative Chemotherapeutic Agents for the Treatment of Retinoblastoma Using the Intra-Arterial and Intravitreal Routes: A Path Forward Toward Drug Discovery. Int Ophthalmol Clin 2017; 57:129-141. [PMID: 27898619 DOI: 10.1097/iio.0000000000000154] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
9
|
Roles of pRB in the Regulation of Nucleosome and Chromatin Structures. BIOMED RESEARCH INTERNATIONAL 2016; 2016:5959721. [PMID: 28101510 PMCID: PMC5215604 DOI: 10.1155/2016/5959721] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/08/2016] [Indexed: 01/31/2023]
Abstract
Retinoblastoma protein (pRB) interacts with E2F and other protein factors to play a pivotal role in regulating the expression of target genes that induce cell cycle arrest, apoptosis, and differentiation. pRB controls the local promoter activity and has the ability to change the structure of nucleosomes and/or chromosomes via histone modification, epigenetic changes, chromatin remodeling, and chromosome organization. Functional inactivation of pRB perturbs these cellular events and causes dysregulated cell growth and chromosome instability, which are hallmarks of cancer cells. The role of pRB in regulation of nucleosome/chromatin structures has been shown to link to tumor suppression. This review focuses on the ability of pRB to control nucleosome/chromatin structures via physical interactions with histone modifiers and chromatin factors and describes cancer therapies based on targeting these protein factors.
Collapse
|