1
|
Stahl A, Tomchik SM. Modeling neurodegenerative and neurodevelopmental disorders in the Drosophila mushroom body. Learn Mem 2024; 31:a053816. [PMID: 38876485 PMCID: PMC11199955 DOI: 10.1101/lm.053816.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/01/2024] [Indexed: 06/16/2024]
Abstract
The common fruit fly Drosophila melanogaster provides a powerful platform to investigate the genetic, molecular, cellular, and neural circuit mechanisms of behavior. Research in this model system has shed light on multiple aspects of brain physiology and behavior, from fundamental neuronal function to complex behaviors. A major anatomical region that modulates complex behaviors is the mushroom body (MB). The MB integrates multimodal sensory information and is involved in behaviors ranging from sensory processing/responses to learning and memory. Many genes that underlie brain disorders are conserved, from flies to humans, and studies in Drosophila have contributed significantly to our understanding of the mechanisms of brain disorders. Genetic mutations that mimic human diseases-such as Fragile X syndrome, neurofibromatosis type 1, Parkinson's disease, and Alzheimer's disease-affect MB structure and function, altering behavior. Studies dissecting the effects of disease-causing mutations in the MB have identified key pathological mechanisms, and the development of a complete connectome promises to add a comprehensive anatomical framework for disease modeling. Here, we review Drosophila models of human neurodevelopmental and neurodegenerative disorders via the effects of their underlying mutations on MB structure, function, and the resulting behavioral alterations.
Collapse
Affiliation(s)
- Aaron Stahl
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Seth M Tomchik
- Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa 52242, USA
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa 52242, USA
- Hawk-IDDRC, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
2
|
Ecovoiu AA, Ratiu AC, Micheu MM, Chifiriuc MC. Inter-Species Rescue of Mutant Phenotype-The Standard for Genetic Analysis of Human Genetic Disorders in Drosophila melanogaster Model. Int J Mol Sci 2022; 23:2613. [PMID: 35269756 PMCID: PMC8909942 DOI: 10.3390/ijms23052613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Drosophila melanogaster (the fruit fly) is arguably a superstar of genetics, an astonishing versatile experimental model which fueled no less than six Nobel prizes in medicine. Nowadays, an evolving research endeavor is to simulate and investigate human genetic diseases in the powerful D. melanogaster platform. Such a translational experimental strategy is expected to allow scientists not only to understand the molecular mechanisms of the respective disorders but also to alleviate or even cure them. In this regard, functional gene orthology should be initially confirmed in vivo by transferring human or vertebrate orthologous transgenes in specific mutant backgrounds of D. melanogaster. If such a transgene rescues, at least partially, the mutant phenotype, then it qualifies as a strong candidate for modeling the respective genetic disorder in the fruit fly. Herein, we review various examples of inter-species rescue of relevant mutant phenotypes of the fruit fly and discuss how these results recommend several human genes as candidates to study and validate genetic variants associated with human diseases. We also consider that a wider implementation of this evolutionist exploratory approach as a standard for the medicine of genetic disorders would allow this particular field of human health to advance at a faster pace.
Collapse
Affiliation(s)
- Alexandru Al. Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Attila Cristian Ratiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest and Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| |
Collapse
|
3
|
Dissecting the complexity of CNV pathogenicity: insights from Drosophila and zebrafish models. Curr Opin Genet Dev 2021; 68:79-87. [PMID: 33812298 DOI: 10.1016/j.gde.2021.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/21/2021] [Accepted: 02/26/2021] [Indexed: 11/20/2022]
Abstract
Genetic architecture predisposes regions of the human genome to copy-number variants, which confer substantial disease risk, most prominently towards neurodevelopmental disorders. These variants typically contain multiple genes and are often associated with extensive pleiotropy and variable phenotypic expressivity. Despite the expansion of the fidelity of CNV detection, and the study of such lesions at the population level, understanding causal mechanisms for CNV phenotypes will require biological testing of constituent genes and their interactions. In this regard, model systems amenable to high-throughput phenotypic analysis of dosage-sensitive genes (and combinations thereof) are beginning to offer improved granularity of CNV-driven pathology. Here, we review the utility of Drosophila and zebrafish models for pathogenic CNV regions, highlight the advances made in discovery of single gene drivers and genetic interactions that determine specific CNV phenotypes, and argue for their validity in dissecting conserved developmental mechanisms associated with CNVs.
Collapse
|
4
|
Mariano V, Achsel T, Bagni C, Kanellopoulos AK. Modelling Learning and Memory in Drosophila to Understand Intellectual Disabilities. Neuroscience 2020; 445:12-30. [PMID: 32730949 DOI: 10.1016/j.neuroscience.2020.07.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022]
Abstract
Neurodevelopmental disorders (NDDs) include a large number of conditions such as Fragile X syndrome, autism spectrum disorders and Down syndrome, among others. They are characterized by limitations in adaptive and social behaviors, as well as intellectual disability (ID). Whole-exome and whole-genome sequencing studies have highlighted a large number of NDD/ID risk genes. To dissect the genetic causes and underlying biological pathways, in vivo experimental validation of the effects of these mutations is needed. The fruit fly, Drosophila melanogaster, is an ideal model to study NDDs, with highly tractable genetics, combined with simple behavioral and circuit assays, permitting rapid medium-throughput screening of NDD/ID risk genes. Here, we review studies where the use of well-established assays to study mechanisms of learning and memory in Drosophila has permitted insights into molecular mechanisms underlying IDs. We discuss how technologies in the fly model, combined with a high degree of molecular and physiological conservation between flies and mammals, highlight the Drosophila system as an ideal model to study neurodevelopmental disorders, from genetics to behavior.
Collapse
Affiliation(s)
- Vittoria Mariano
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Tilmann Achsel
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland
| | - Claudia Bagni
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne 1005, Switzerland; Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome 00133, Italy.
| | | |
Collapse
|
5
|
Lee J, Yoon K, Park P, Lee C, Kim MJ, Han DH, Kim J, Kim S, Lee H, Lee Y, Jang E, Ko H, Kong Y, Kaang B. Neur1
and
Neur2
are required for hippocampus‐dependent spatial memory and synaptic plasticity. Hippocampus 2020; 30:1158-1166. [DOI: 10.1002/hipo.23247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Jaehyun Lee
- Interdisciplinary Program in Neuroscience Seoul National University Seoul South Korea
| | - Ki‐Jun Yoon
- Department of Biological Sciences Korea Advanced Institute of Science and Technology (KAIST) Daejeon South Korea
| | - Pojeong Park
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Chaery Lee
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Min Jung Kim
- Interdisciplinary Program in Neuroscience Seoul National University Seoul South Korea
| | - Dae Hee Han
- Interdisciplinary Program in Neuroscience Seoul National University Seoul South Korea
| | - Ji‐il Kim
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Somi Kim
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Hye‐Ryeon Lee
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Yeseul Lee
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Eun‐Hae Jang
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| | - Hyoung‐Gon Ko
- Department of Anatomy and Neurobiology School of Dentistry, Kyungpook National University Daegu South Korea
| | - Young‐Yun Kong
- School of Biological Sciences, College of Natural Sciences Seoul National University Seoul South Korea
| | - Bong‐Kiun Kaang
- Interdisciplinary Program in Neuroscience Seoul National University Seoul South Korea
- Neurobiology Laboratory School of Biological Sciences, College of Natural Sciences, Seoul National University Seoul South Korea
| |
Collapse
|
6
|
Ueoka I, Pham HTN, Matsumoto K, Yamaguchi M. Autism Spectrum Disorder-Related Syndromes: Modeling with Drosophila and Rodents. Int J Mol Sci 2019; 20:E4071. [PMID: 31438473 PMCID: PMC6747505 DOI: 10.3390/ijms20174071] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/17/2019] [Accepted: 08/18/2019] [Indexed: 12/11/2022] Open
Abstract
Whole exome analyses have identified a number of genes associated with autism spectrum disorder (ASD) and ASD-related syndromes. These genes encode key regulators of synaptogenesis, synaptic plasticity, cytoskeleton dynamics, protein synthesis and degradation, chromatin remodeling, transcription, and lipid homeostasis. Furthermore, in silico studies suggest complex regulatory networks among these genes. Drosophila is a useful genetic model system for studies of ASD and ASD-related syndromes to clarify the in vivo roles of ASD-associated genes and the complex gene regulatory networks operating in the pathogenesis of ASD and ASD-related syndromes. In this review, we discuss what we have learned from studies with vertebrate models, mostly mouse models. We then highlight studies with Drosophila models. We also discuss future developments in the related field.
Collapse
Affiliation(s)
- Ibuki Ueoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan
| | - Hang Thi Nguyet Pham
- Department of Pharmacology and Biochemistry, National Institute of Medicinal Materials, Hanoi 110100, Vietnam
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 603-8585, Japan.
| |
Collapse
|
7
|
Bimali Koongolla J, Andrady AL, Terney Pradeep Kumara PB, Gangabadage CS. Evidence of microplastics pollution in coastal beaches and waters in southern Sri Lanka. MARINE POLLUTION BULLETIN 2018; 137:277-284. [PMID: 30503436 DOI: 10.1016/j.marpolbul.2018.10.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/13/2018] [Accepted: 10/13/2018] [Indexed: 05/23/2023]
Abstract
The abundance of microplastics (MPs) in surface water and beach sediment in Southern Sri Lanka covering a distance of 91 km of coastline is reported. MPs were classified according to polymer type, geometry and color of the sites tested 60% showed MP contamination in sand and 70% in surface waters off the coast. The size range of MPs from surface waters and beaches were to 1.5-2.5 mm and 3-4.5 mm, respectively. Majority of these were identified as polyethylene (PE) and polypropylene (PP) with some polystyrene (PS) foam at a few sites. Fragments derived from larger debris appears to be the dominant type of MP at most sites and only 2 sites showed virgin pellets that accounted for 14% of the samples collected.
Collapse
Affiliation(s)
- J Bimali Koongolla
- Department of Oceanography and Marine Geology, Faculty of Fisheries and Marine Sciences and Technology, University of Ruhuna, Matara, Sri Lanka.
| | - A L Andrady
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC 28403, USA
| | - P B Terney Pradeep Kumara
- Department of Oceanography and Marine Geology, Faculty of Fisheries and Marine Sciences and Technology, University of Ruhuna, Matara, Sri Lanka; Marine Environment Protection Authority, No. 758, 2nd Floor, Baseline Road, Colombo 09, Sri Lanka
| | - C S Gangabadage
- Department of Chemistry, Faculty of Science, University of Ruhuna, Matara, Sri Lanka
| |
Collapse
|
8
|
Neuronal Proteomic Analysis of the Ubiquitinated Substrates of the Disease-Linked E3 Ligases Parkin and Ube3a. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3180413. [PMID: 29693004 PMCID: PMC5859835 DOI: 10.1155/2018/3180413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/15/2018] [Indexed: 01/09/2023]
Abstract
Both Parkin and UBE3A are E3 ubiquitin ligases whose mutations result in severe brain dysfunction. Several of their substrates have been identified using cell culture models in combination with proteasome inhibitors, but not in more physiological settings. We recently developed the bioUb strategy to isolate ubiquitinated proteins in flies and have now identified by mass spectrometry analysis the neuronal proteins differentially ubiquitinated by those ligases. This is an example of how flies can be used to provide biological material in order to reveal steady state substrates of disease causing genes. Collectively our results provide new leads to the possible physiological functions of the activity of those two disease causing E3 ligases. Particularly, in the case of Parkin the novelty of our data originates from the experimental setup, which is not overtly biased by acute mitochondrial depolarisation. In the case of UBE3A, it is the first time that a nonbiased screen for its neuronal substrates has been reported.
Collapse
|
9
|
Hope KA, LeDoux MS, Reiter LT. Glial overexpression of Dube3a causes seizures and synaptic impairments in Drosophila concomitant with down regulation of the Na +/K + pump ATPα. Neurobiol Dis 2017; 108:238-248. [PMID: 28888970 PMCID: PMC5675773 DOI: 10.1016/j.nbd.2017.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
Duplication 15q syndrome (Dup15q) is an autism-associated disorder co-incident with high rates of pediatric epilepsy. Additional copies of the E3 ubiquitin ligase UBE3A are thought to cause Dup15q phenotypes, yet models overexpressing UBE3A in neurons have not recapitulated the epilepsy phenotype. We show that Drosophila endogenously expresses Dube3a (fly UBE3A homolog) in glial cells and neurons, prompting an investigation into the consequences of glial Dube3a overexpression. Here we expand on previous work showing that the Na+/K+ pump ATPα is a direct ubiquitin ligase substrate of Dube3a. A robust seizure-like phenotype was observed in flies overexpressing Dube3a in glial cells, but not neurons. Glial-specific knockdown of ATPα also produced seizure-like behavior, and this phenotype was rescued by simultaneously overexpressing ATPα and Dube3a in glia. Our data provides the basis of a paradigm shift in Dup15q research given that clinical phenotypes have long been assumed to be due to neuronal UBE3A overexpression.
Collapse
Affiliation(s)
- Kevin A Hope
- Department of Neurology, UTHSC, Memphis, TN, United States; Integrated Biomedical Science Program, UTHSC, Memphis, TN, United States; Department of Anatomy and Neurobiology, UTHSC, Memphis, TN, United States
| | - Mark S LeDoux
- Department of Neurology, UTHSC, Memphis, TN, United States; Department of Anatomy and Neurobiology, UTHSC, Memphis, TN, United States
| | - Lawrence T Reiter
- Department of Neurology, UTHSC, Memphis, TN, United States; Department of Anatomy and Neurobiology, UTHSC, Memphis, TN, United States; Department of Pediatrics, UTHSC, Memphis, TN, United States.
| |
Collapse
|
10
|
Copping NA, Christian SGB, Ritter DJ, Islam MS, Buscher N, Zolkowska D, Pride MC, Berg EL, LaSalle JM, Ellegood J, Lerch JP, Reiter LT, Silverman JL, Dindot SV. Neuronal overexpression of Ube3a isoform 2 causes behavioral impairments and neuroanatomical pathology relevant to 15q11.2-q13.3 duplication syndrome. Hum Mol Genet 2017; 26:3995-4010. [PMID: 29016856 PMCID: PMC5886211 DOI: 10.1093/hmg/ddx289] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/21/2017] [Accepted: 07/10/2017] [Indexed: 01/07/2023] Open
Abstract
Maternally derived copy number gains of human chromosome 15q11.2-q13.3 (Dup15q syndrome or Dup15q) cause intellectual disability, epilepsy, developmental delay, hypotonia, speech impairments, and minor dysmorphic features. Dup15q syndrome is one of the most common and penetrant chromosomal abnormalities observed in individuals with autism spectrum disorder (ASD). Although ∼40 genes are located in the 15q11.2-q13.3 region, overexpression of the ubiquitin-protein E3A ligase (UBE3A) gene is thought to be the predominant molecular cause of the phenotypes observed in Dup15q syndrome. The UBE3A gene demonstrates maternal-specific expression in neurons and loss of maternal UBE3A causes Angelman syndrome, a neurodevelopmental disorder with some overlapping neurological features to Dup15q. To directly test the hypothesis that overexpression of UBE3A is an important underlying molecular cause of neurodevelopmental dysfunction, we developed and characterized a mouse overexpressing Ube3a isoform 2 in excitatory neurons. Ube3a isoform 2 is conserved between mouse and human and known to play key roles in neuronal function. Transgenic mice overexpressing Ube3a isoform 2 in excitatory forebrain neurons exhibited increased anxiety-like behaviors, learning impairments, and reduced seizure thresholds. However, these transgenic mice displayed normal social approach, social interactions, and repetitive motor stereotypies that are relevant to ASD. Reduced forebrain, hippocampus, striatum, amygdala, and cortical volume were also observed. Altogether, these findings show neuronal overexpression of Ube3a isoform 2 causes phenotypes translatable to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nycole A Copping
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | | | - Dylan J Ritter
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
- Texas A&M, College Station, TX, USA
| | - M Saharul Islam
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Nathalie Buscher
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Dorota Zolkowska
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Michael C Pride
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Elizabeth L Berg
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Janine M LaSalle
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | - Jacob Ellegood
- The Hospital for Sick Children, Mouse Imaging Centre, Toronto, ON, Canada
| | - Jason P Lerch
- The Hospital for Sick Children, Mouse Imaging Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Lawrence T Reiter
- Departments of Neurology, Pediatrics and Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jill L Silverman
- MIND Institute, School of Medicine, University of California, Davis, Sacramento, CA, USA
| | | |
Collapse
|
11
|
Tian Y, Zhang ZC, Han J. Drosophila Studies on Autism Spectrum Disorders. Neurosci Bull 2017; 33:737-746. [PMID: 28795356 DOI: 10.1007/s12264-017-0166-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
In the past decade, numerous genes associated with autism spectrum disorders (ASDs) have been identified. These genes encode key regulators of synaptogenesis, synaptic function, and synaptic plasticity. Drosophila is a prominent model system for ASD studies to define novel genes linked to ASDs and decipher their molecular roles in synaptogenesis, synaptic function, synaptic plasticity, and neural circuit assembly and consolidation. Here, we review Drosophila studies on ASD genes that regulate synaptogenesis, synaptic function, and synaptic plasticity through modulating chromatin remodeling, transcription, protein synthesis and degradation, cytoskeleton dynamics, and synaptic scaffolding.
Collapse
Affiliation(s)
- Yao Tian
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Zi Chao Zhang
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China
| | - Junhai Han
- Institute of Life Sciences, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
12
|
Hillman PR, Christian SGB, Doan R, Cohen ND, Konganti K, Douglas K, Wang X, Samollow PB, Dindot SV. Genomic imprinting does not reduce the dosage of UBE3A in neurons. Epigenetics Chromatin 2017; 10:27. [PMID: 28515788 PMCID: PMC5433054 DOI: 10.1186/s13072-017-0134-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The ubiquitin protein E3A ligase gene (UBE3A) gene is imprinted with maternal-specific expression in neurons and biallelically expressed in all other cell types. Both loss-of-function and gain-of-function mutations affecting the dosage of UBE3A are associated with several neurodevelopmental syndromes and psychological conditions, suggesting that UBE3A is dosage-sensitive in the brain. The observation that loss of imprinting increases the dosage of UBE3A in brain further suggests that inactivation of the paternal UBE3A allele evolved as a dosage-regulating mechanism. To test this hypothesis, we examined UBE3A transcript and protein levels among cells, tissues, and species with different imprinting states of UBE3A. RESULTS Overall, we found no correlation between the imprinting status and dosage of UBE3A. Importantly, we found that maternal Ube3a protein levels increase in step with decreasing paternal Ube3a protein levels during neurogenesis in mouse, fully compensating for loss of expression of the paternal Ube3a allele in neurons. CONCLUSIONS Based on our findings, we propose that imprinting of UBE3A does not function to reduce the dosage of UBE3A in neurons but rather to regulate some other, as yet unknown, aspect of gene expression or protein function.
Collapse
Affiliation(s)
- Paul R. Hillman
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77845 USA
| | - Sarah G. B. Christian
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
| | - Ryan Doan
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
- Interdisciplinary Genetics Program, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX 77845 USA
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX USA
| | - Kranti Konganti
- Institute for Genome Science and Society, Texas A&M University, College Station, TX 77845 USA
| | - Kory Douglas
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX USA
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853 USA
| | - Paul B. Samollow
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Scott V. Dindot
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77845 USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77845 USA
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, 4467 TAMU, College Station, TX 77843 USA
| |
Collapse
|
13
|
Abstract
In mammals, expression of UBE3A is epigenetically regulated in neurons and expression is restricted to the maternal copy of UBE3A. A recent report claimed that Drosophila melanogaster UBE3A homolog (Dube3a) is preferentially expressed from the maternal allele in fly brain, inferring an imprinting mechanism. However, complex epigenetic regulatory features of the mammalian imprinting center are not present in Drosophila, and allele specific expression of Dube3a has not been documented. We used behavioral and electrophysiological analysis of the Dube3a loss-of-function allele (Dube3a15b) to investigate Dube3a imprinting in fly neurons. We found that motor impairment (climbing ability) and a newly-characterized defect in synaptic transmission are independent of parental inheritance of the Dube3a15b allele. Furthermore, expression analysis of coding single nucleotide polymorphisms (SNPs) in Dube3a did not reveal allele specific expression differences among reciprocal crosses. These data indicate that Dube3a is neither imprinted nor preferentially expressed from the maternal allele in fly neurons.
Collapse
Affiliation(s)
- Kevin A Hope
- a Departments of Neurology , Anatomy and Neurobiology, The University of Tennessee Health Science Center , Memphis , TN , USA
| | - Mark S LeDoux
- a Departments of Neurology , Anatomy and Neurobiology, The University of Tennessee Health Science Center , Memphis , TN , USA
| | - Lawrence T Reiter
- a Departments of Neurology , Anatomy and Neurobiology, The University of Tennessee Health Science Center , Memphis , TN , USA.,b Pediatrics, The University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
14
|
Crocker A, Guan XJ, Murphy CT, Murthy M. Cell-Type-Specific Transcriptome Analysis in the Drosophila Mushroom Body Reveals Memory-Related Changes in Gene Expression. Cell Rep 2016; 15:1580-1596. [PMID: 27160913 DOI: 10.1016/j.celrep.2016.04.046] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 02/21/2016] [Accepted: 04/08/2016] [Indexed: 12/25/2022] Open
Abstract
Learning and memory formation in Drosophila rely on a network of neurons in the mushroom bodies (MBs). Whereas numerous studies have delineated roles for individual cell types within this network in aspects of learning or memory, whether or not these cells can also be distinguished by the genes they express remains unresolved. In addition, the changes in gene expression that accompany long-term memory formation within the MBs have not yet been studied by neuron type. Here, we address both issues by performing RNA sequencing on single cell types (harvested via patch pipets) within the MB. We discover that the expression of genes that encode cell surface receptors is sufficient to identify cell types and that a subset of these genes, required for sensory transduction in peripheral sensory neurons, is not only expressed within individual neurons of the MB in the central brain, but is also critical for memory formation.
Collapse
Affiliation(s)
- Amanda Crocker
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Xiao-Juan Guan
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Paul F. Glenn Laboratories for Aging Research, Princeton University, Princeton, NJ 08544, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|