1
|
Dehghani K, Stanek A, Bagherabadi A, Atashi F, Beygi M, Hooshmand A, Hamedi P, Farhang M, Bagheri S, Zolghadri S. CCND1 Overexpression in Idiopathic Dilated Cardiomyopathy: A Promising Biomarker? Genes (Basel) 2023; 14:1243. [PMID: 37372424 DOI: 10.3390/genes14061243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiomyopathy, a disorder of electrical or heart muscle function, represents a type of cardiac muscle failure and culminates in severe heart conditions. The prevalence of dilated cardiomyopathy (DCM) is higher than that of other types (hypertrophic cardiomyopathy and restrictive cardiomyopathy) and causes many deaths. Idiopathic dilated cardiomyopathy (IDCM) is a type of DCM with an unknown underlying cause. This study aims to analyze the gene network of IDCM patients to identify disease biomarkers. Data were first extracted from the Gene Expression Omnibus (GEO) dataset and normalized based on the RMA algorithm (Bioconductor package), and differentially expressed genes were identified. The gene network was mapped on the STRING website, and the data were transferred to Cytoscape software to determine the top 100 genes. In the following, several genes, including VEGFA, IGF1, APP, STAT1, CCND1, MYH10, and MYH11, were selected for clinical studies. Peripheral blood samples were taken from 14 identified IDCM patients and 14 controls. The RT-PCR results revealed no significant differences in the expression of the genes APP, MYH10, and MYH11 between the two groups. By contrast, the STAT1, IGF1, CCND1, and VEGFA genes were overexpressed in patients more than in controls. The highest expression was found for VEGFA, followed by CCND1 (p < 0.001). Overexpression of these genes may contribute to disease progression in patients with IDCM. However, more patients and genes need to be analyzed in order to achieve more robust results.
Collapse
Affiliation(s)
- Khatereh Dehghani
- Department of Cardiology, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran
| | - Agata Stanek
- Department and Clinic of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 Street, 41-902 Bytom, Poland
| | - Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran
| | - Fatemeh Atashi
- Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran
| | - Mohammad Beygi
- Department of Agricultural Biotechnology, College of Agriculture, Isfahan University of Technology, Isfahan 8415683111, Iran
| | - Amirreza Hooshmand
- Department of Molecular and Cellular Sciences, Faculty of Advanced Sciences & Technology, Tehran Medical Sciences, Islamic Azad University, Tehran 1916893813, Iran
| | - Pezhman Hamedi
- Research Center, Department of Medical Laboratory Sciences, Faculty of Medicine, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran
| | - Mohsen Farhang
- Molecular Study and Diagnostic Center, Jahrom University of Medical Sciences, Jahrom 7414846199, Iran
| | - Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran
| |
Collapse
|
2
|
Ramlakhan KP, Malhamé I, Marelli A, Rutz T, Goland S, Franx A, Sliwa K, Elkayam U, Johnson MR, Hall R, Cornette J, Roos-Hesselink JW. Hypertensive disorders of pregnant women with heart disease: the ESC EORP ROPAC Registry. Eur Heart J 2022; 43:3749-3761. [PMID: 35727736 PMCID: PMC9840477 DOI: 10.1093/eurheartj/ehac308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 01/19/2023] Open
Abstract
AIMS Hypertensive disorders of pregnancy (HDP) occur in 10% of pregnancies in the general population, pre-eclampsia specifically in 3-5%. Hypertensive disorders of pregnancy may have a high prevalence in, and be poorly tolerated by, women with heart disease. METHODS AND RESULTS The prevalence and outcomes of HDP (chronic hypertension, gestational hypertension or pre-eclampsia) were assessed in the ESC EORP ROPAC (n = 5739), a worldwide prospective registry of pregnancies in women with heart disease.The overall prevalence of HDP was 10.3%, made up of chronic hypertension (5.9%), gestational hypertension (1.3%), and pre-eclampsia (3%), with significant differences between the types of underlying heart disease (P < 0.05). Pre-eclampsia rates were highest in women with pulmonary arterial hypertension (PAH) (11.1%), cardiomyopathy (CMP) (7.1%), and ischaemic heart disease (IHD) (6.3%). Maternal mortality was 1.4 and 0.6% in women with vs. without HDP (P = 0.04), and even 3.5% in those with pre-eclampsia. All pre-eclampsia-related deaths were post-partum and 50% were due to heart failure. Heart failure occurred in 18.5 vs. 10.6% of women with vs. without HDP (P < 0.001) and in 29.1% of those with pre-eclampsia. Perinatal mortality was 3.1 vs. 1.7% in women with vs. without HDP (P = 0.019) and 4.7% in those with pre-eclampsia. CONCLUSION Hypertensive disorders of pregnancy and pre-eclampsia rates were higher in women with CMP, IHD, and PAH than in the general population. Adverse outcomes were increased in women with HDP, and maternal mortality was strikingly high in women with pre-eclampsia. The combination of HDP and heart disease should prompt close surveillance in a multidisciplinary context and the diagnosis of pre-eclampsia requires hospital admission and continued monitoring during the post-partum period.
Collapse
Affiliation(s)
- Karishma P Ramlakhan
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rg-435 - P.O. Box: 2040, Rotterdam, 3000 CA, The Netherlands,Department of Obstetrics and Fetal Medicine, Erasmus MC—Sophia’s Children’s Hospital, University Medical Center Rotterdam, Rotterdam, 3000 CB, The Netherlands
| | - Isabelle Malhamé
- Department of Medicine, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Ariane Marelli
- McGill Adult Unit for Congenital Heart Disease (MAUDE Unit), Department of Medicine, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Tobias Rutz
- Service of Cardiology, Lausanne University Hospital and University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Sorel Goland
- Heart Institute, Kaplan Medical Center, Rehovot, Hebrew University and Hadassah Medical School, Rehovot, 76100 and Jerusalem, 9112102, Israel
| | - Arie Franx
- Department of Obstetrics and Fetal Medicine, Erasmus MC—Sophia’s Children’s Hospital, University Medical Center Rotterdam, Rotterdam, 3000 CB, The Netherlands
| | - Karen Sliwa
- Cape Heart Institute, Department of Medicine and Cardiology, University of Cape Town, Cape Town, 7925, South Africa
| | - Uri Elkayam
- Department of Medicine, Division of Cardiovascular Medicine and Department of Obstetrics and Gynecology, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, United States
| | - Mark R Johnson
- Department of Obstetric Medicine, Imperial College London, Chelsea and Westminster Hospital, London SW7 2BX, United Kingdom
| | - Roger Hall
- Department of Cardiology, Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Jérôme Cornette
- Department of Obstetrics and Fetal Medicine, Erasmus MC—Sophia’s Children’s Hospital, University Medical Center Rotterdam, Rotterdam, 3000 CB, The Netherlands
| | | |
Collapse
|
3
|
Immune Mechanism, Gene Module, and Molecular Subtype Identification of Astragalus Membranaceus in the Treatment of Dilated Cardiomyopathy: An Integrated Bioinformatics Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:2252832. [PMID: 34567206 PMCID: PMC8457948 DOI: 10.1155/2021/2252832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023]
Abstract
Astragalus membranaceus has complex components as a natural drug and has multilevel, multitarget, and multichannel effects on dilated cardiomyopathy (DCM). However, the immune mechanism, gene module, and molecular subtype of astragalus membranaceus in the treatment of DCM are still not revealed. Microarray information of GSE84796 was downloaded from the GEO database, including RNA sequencing data of seven normal cardiac tissues and ten DCM cardiac tissues. A total of 4029 DCM differentially expressed genes were obtained, including 1855 upregulated genes and 2174 downregulated genes. GO/KEGG/GSEA analysis suggested that the activation of T cells and B cells was the primary cause of DCM. WGCNA was used to obtain blue module genes. The blue module genes are primarily ADCY7, BANK1, CD1E, CD19, CD38, CD300LF, CLEC4E, FLT3, GPR18, HCAR3, IRF4, LAMP3, MRC1, SYK, and TLR8, which successfully divided DCM into three molecular subtypes. Based on the CIBERSORT algorithm, the immune infiltration profile of DCM was analyzed. Many immune cell subtypes, including the abovementioned immune cells, showed different levels of increased infiltration in the myocardial tissue of DCM. However, this infiltration pattern was not obviously correlated with clinical characteristics, such as age, EF, and sex. Based on network pharmacology and ClueGO, 20 active components of Astragalus membranaceus and 40 components of DMCTGS were obtained from TCMSP. Through analysis of the immune regulatory network, we found that Astragalus membranaceus effectively regulates the activation of immune cells, such as B cells and T cells, cytokine secretion, and other processes and can intervene in DCM at multiple components, targets, and levels. The above mechanisms were verified by molecular docking results, which confirmed that AKT1, VEGFA, MMP9, and RELA are promising potential targets of DCM.
Collapse
|
4
|
Shi M, Zhao F, Sun L, Tang F, Gao W, Xie W, Cao X, Zhuang J, Chen X. Bioactive glass activates VEGF paracrine signaling of cardiomyocytes to promote cardiac angiogenesis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112077. [PMID: 33947569 DOI: 10.1016/j.msec.2021.112077] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 03/13/2021] [Accepted: 03/20/2021] [Indexed: 12/28/2022]
Abstract
The heart contains a wide range of cell types, which are not isolated but interact with one another via multifarious paracrine, autocrine and endocrine factors. In terms of cardiac angiogenesis, previous studies have proved that regulating the communication between cardiomyocytes and endothelial cells is efficacious to promote capillary formation. Firstly, this study investigated the effect and underlying mechanism of bioactive glass (BG) acted on vascular endothelial growth factor (VEGF) paracrine signaling in cardiomyocytes. We found that bioactive ions released from BG significantly promoted the VEGF production and secretion of cardiomyocytes. Subsequently, we proved that cardiomyocyte-derived VEGF played an important role in mediating the behavior of endothelial cells. Further research showed that the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/hypoxia-inducible factor 1α (HIF-1α) signaling pathway was upregulated by BG, which was involved in VEGF expression of cardiomyocytes. This study revealed that by means of modulating cellular crosstalk via paracrine signaling of host cells in heart is a new direction for the application of BGs in cardiac angiogenesis.
Collapse
Affiliation(s)
- Miao Shi
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Fujian Zhao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Luyao Sun
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Fengling Tang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Wendong Gao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Weihan Xie
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaodong Cao
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China
| | - Jian Zhuang
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China; Guangdong General Hospital, Guangzhou 510080, PR China.
| | - Xiaofeng Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China; Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Roles of Host Immunity in Viral Myocarditis and Dilated Cardiomyopathy. J Immunol Res 2018; 2018:5301548. [PMID: 29854842 PMCID: PMC5964556 DOI: 10.1155/2018/5301548] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/09/2018] [Accepted: 04/19/2018] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of viral myocarditis includes both the direct damage mediated by viral infection and the indirect lesion resulted from host immune responses. Myocarditis can progress into dilated cardiomyopathy that is also associated with immunopathogenesis. T cell-mediated autoimmunity, antibody-mediated autoimmunity (autoantibodies), and innate immunity, working together, contribute to the development of myocarditis and dilated cardiomyopathy.
Collapse
|