1
|
Zou Y, Tang X, Yang S, Chen Z, Liu B, Zhou Z, Peng X, Tang C. New insights into the function of the NLRP3 inflammasome in sarcopenia: mechanism and therapeutic strategies. Metabolism 2024; 158:155972. [PMID: 38972476 DOI: 10.1016/j.metabol.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Sarcopenia is one of the most common skeletal muscle disorders and is characterized by infirmity and disability. While extensive research has focused on elucidating the mechanisms underlying the progression of sarcopenia, further comprehensive insights into its pathogenesis are necessary to identify new preventive and therapeutic approaches. The involvement of inflammasomes in sarcopenia is widely recognized, with particular emphasis on the NLRP3 (NLR family pyrin domain containing 3) inflammasome. In this review, we aim to elucidate the underlying mechanisms of the NLRP3 inflammasome and its relevance in sarcopenia of various etiologies. Furthermore, we highlight interventions targeting the NLRP3 inflammasome in the context of sarcopenia and discuss the current limitations of our knowledge in this area.
Collapse
Affiliation(s)
- Yunyi Zou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiangbin Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Siyuan Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Zhanglin Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Bin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Zuoqiong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiyang Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China.
| | - Changfa Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China.
| |
Collapse
|
2
|
Kostrominova TY. Skeletal Muscle Denervation: Past, Present and Future. Int J Mol Sci 2022; 23:ijms23147489. [PMID: 35886838 PMCID: PMC9316613 DOI: 10.3390/ijms23147489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/28/2022] [Indexed: 12/04/2022] Open
Affiliation(s)
- Tatiana Y Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Northwest, Gary, IN 46408, USA
| |
Collapse
|
3
|
NISHIKAWA A, NISHIKAWA A, KAMAJIRI N, OKADA K, IMAGITA H. The Effects of Branched-Chain Amino Acids on the Akt/mTOR Pathway and Nebulin Protein in Joint Fixation-Induced Muscle Atrophy. J Nutr Sci Vitaminol (Tokyo) 2022; 68:112-119. [DOI: 10.3177/jnsv.68.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Murphy S, Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Proteomic profiling of giant skeletal muscle proteins. Expert Rev Proteomics 2019; 16:241-256. [DOI: 10.1080/14789450.2019.1575205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| |
Collapse
|
5
|
Analysis of Titin in Red and White Muscles: Crucial Role on Muscle Contractions Using a Fish Model. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5816875. [PMID: 30581860 PMCID: PMC6276494 DOI: 10.1155/2018/5816875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/18/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023]
Abstract
Several studies have compared molecular components between red and white skeletal muscles in mammals. However, mammalian skeletal muscles are composed of mixed types of muscle fibers. In the current study, we analyzed and compared the distributions of titin, lipid, phosphate ions, and fatty acid levels in red and white muscles using a fish model (Tilapia), which is rich in red and white muscles, and these are well separated. Oil-red O staining showed that red muscle had more-abundant lipids than did white muscle. A time-of-flight secondary-ion mass spectrometric (TOF-SIMS) analysis revealed that red muscle possessed high levels of palmitic acid and oleic acid, but white muscle contained more phosphate ions. Moreover, elastica-van Gieson (EVG) and Mito-Tracker green FM staining showed that collagen and elastic fibers were highly, respectively, distributed in connective tissues and mitochondria in red muscle. An electron micrographic analysis indicated that red muscle had a relatively higher number of mitochondria and longer sarcomere lengths and Z-line widths, while myofibril diameters were thicker in white muscle. Myofibrillar proteins separated by SDS-PAGE showed that the major giant protein, titin, was highly expressed in white muscle than in red muscle. Furthermore, ratios of titin to myosin heavy chain (MHC) (titin/MHC) were about 1.3 times higher in white muscle than red muscle. We postulated that white muscle is fit for short and strong contractile performance due to high levels of titin and condensed sarcomeres, whereas red muscle is fit for low intensity and long-lasting activity due to high levels of lipids and mitochondria and long sarcomeres.
Collapse
|
6
|
Tabata S, Aizawa M, Kinoshita M, Ito Y, Kawamura Y, Takebe M, Pan W, Sakuma K. The influence of isoflavone for denervation-induced muscle atrophy. Eur J Nutr 2017; 58:291-300. [PMID: 29236164 DOI: 10.1007/s00394-017-1593-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/08/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE Decrease in activity stress induces skeletal muscle atrophy. A previous study showed that treatment with a high level (20%) of isoflavone inhibits muscle atrophy after short-term denervation (at 4 days) in mice. The present study was designed to elucidate whether the dietary isoflavone aglycone (AglyMax) at a 0.6% prevents denervation-mediated muscle atrophy, based on the modulation of atrogin-1- or apoptosis-dependent signaling. METHODS Mice were fed either a normal diet or 0.6% AglyMax diet. One week later, the right sciatic nerve was cut. The wet weight, mean fiber area, amount of atrogin-1 and cleaved caspase-3 proteins, and the percentages of apoptotic nuclei were examined in the gastrocnemius muscle at 14 days after denervation. RESULTS The 0.6% AglyMax diet significantly attenuated denervation-induced decreases in fiber atrophy but not the muscle wet weight. In addition, dietary isoflavone suppressed the denervation-induced apoptosis in spite of there being no significant changes in the amount of cleaved caspase-3 protein. In contrast, the 0.6% AglyMax diet did not significantly modulate the protein expression of atrogin-1 in the denervated muscle of mice. CONCLUSIONS The isoflavone aglycone (AglyMax) at a 0.6% significantly would modulate muscle atrophy after denervation in mice, probably due to the decrease in apoptosis-dependent signaling.
Collapse
Affiliation(s)
- Shinpei Tabata
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, 441-8580, Japan
| | - Miki Aizawa
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, 441-8580, Japan
| | - Masakazu Kinoshita
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, 441-8580, Japan
| | - Yoshinori Ito
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, 441-8580, Japan
| | - Yusuke Kawamura
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, 441-8580, Japan
| | | | - Weijun Pan
- Nichimo Biotics Company, Tokyo, 140-0002, Japan
| | - Kunihiro Sakuma
- Research Center for Physical Fitness, Sports and Health, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, 441-8580, Japan. .,Institute for Liberal Arts, Environment and Society, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.
| |
Collapse
|