1
|
Diving into the complexity of the spirochetal endoflagellum. Trends Microbiol 2023; 31:294-307. [PMID: 36244923 DOI: 10.1016/j.tim.2022.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022]
Abstract
Spirochaetes, a phylum that includes medically important pathogens such as the causative agents of Lyme disease, syphilis, and leptospirosis, are in many ways highly unique bacteria. Their cell morphology, subcellular organization, and metabolism reveal atypical features. Spirochetal motility is also singular, dependent on the presence of periplasmic flagella or endoflagella, inserted subterminally at cell poles and not penetrating the outer membrane and elongating outside the cell as in enterobacteria. In this review we present a comprehensive comparative genomics analysis of endoflagellar systems in spirochetes, highlighting recent findings on the flagellar basal body and filament. Continued progress in understanding the function and architecture of spirochetal flagella is uncovering paradigm-shifting mechanisms of bacterial motility.
Collapse
|
2
|
Nakamura S. Motility of the Zoonotic Spirochete Leptospira: Insight into Association with Pathogenicity. Int J Mol Sci 2022; 23:ijms23031859. [PMID: 35163781 PMCID: PMC8837006 DOI: 10.3390/ijms23031859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/02/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
If a bacterium has motility, it will use the ability to survive and thrive. For many pathogenic species, their motilities are a crucial virulence factor. The form of motility varies among the species. Some use flagella for swimming in liquid, and others use the cell-surface machinery to move over solid surfaces. Spirochetes are distinguished from other bacterial species by their helical or flat wave morphology and periplasmic flagella (PFs). It is believed that the rotation of PFs beneath the outer membrane causes transformation or rolling of the cell body, propelling the spirochetes. Interestingly, some spirochetal species exhibit motility both in liquid and over surfaces, but it is not fully unveiled how the spirochete pathogenicity involves such amphibious motility. This review focuses on the causative agent of zoonosis leptospirosis and discusses the significance of their motility in liquid and on surfaces, called crawling, as a virulence factor.
Collapse
Affiliation(s)
- Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai 980-8579, Japan
| |
Collapse
|
3
|
Spirochete Flagella and Motility. Biomolecules 2020; 10:biom10040550. [PMID: 32260454 PMCID: PMC7225975 DOI: 10.3390/biom10040550] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Spirochetes can be distinguished from other flagellated bacteria by their long, thin, spiral (or wavy) cell bodies and endoflagella that reside within the periplasmic space, designated as periplasmic flagella (PFs). Some members of the spirochetes are pathogenic, including the causative agents of syphilis, Lyme disease, swine dysentery, and leptospirosis. Furthermore, their unique morphologies have attracted attention of structural biologists; however, the underlying physics of viscoelasticity-dependent spirochetal motility is a longstanding mystery. Elucidating the molecular basis of spirochetal invasion and interaction with hosts, resulting in the appearance of symptoms or the generation of asymptomatic reservoirs, will lead to a deeper understanding of host-pathogen relationships and the development of antimicrobials. Moreover, the mechanism of propulsion in fluids or on surfaces by the rotation of PFs within the narrow periplasmic space could be a designing base for an autonomously driving micro-robot with high efficiency. This review describes diverse morphology and motility observed among the spirochetes and further summarizes the current knowledge on their mechanisms and relations to pathogenicity, mainly from the standpoint of experimental biophysics.
Collapse
|
4
|
Xu H, He J, Liu J, Motaleb MA. BB0326 is responsible for the formation of periplasmic flagellar collar and assembly of the stator complex in Borrelia burgdorferi. Mol Microbiol 2019; 113:418-429. [PMID: 31743518 DOI: 10.1111/mmi.14428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/19/2022]
Abstract
Borrelia burgdorferi is a highly motile spirochete due to its periplasmic flagella. Unlike flagella of other bacteria, spirochetes' periplasmic flagella possess a complex structure called the collar, about which little is known in terms of function and composition. Using various approaches, we have identified a novel protein, BB0326, as a key component of the collar. We show that a peripheral portion of the collar is diminished in the Δbb0326 mutant and restored in the complemented bb0326+ cells, leading us to rename BB0326 as periplasmic flagellar collar protein A or FlcA. The ΔflcA mutant cells produced fewer, abnormally tilted and shorter flagella, as well as diminished stators, suggesting that FlcA is crucial for flagellar and stator assemblies. We provide further evidence that FlcA interacts with the stator and that this collar-stator interaction is essential for the high torque needed to power the spirochete's periplasmic flagellar motors. These observations suggest that the collar provides various important functions to the spirochete's periplasmic flagellar assembly and rotation.
Collapse
Affiliation(s)
- Hui Xu
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Jun He
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale School of Medicine, New Haven, CT, USA
| | - Jun Liu
- Department of Microbial Pathogenesis, Microbial Sciences Institute, Yale School of Medicine, New Haven, CT, USA
| | - Md A Motaleb
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
5
|
Flagella-Driven Motility of Bacteria. Biomolecules 2019; 9:biom9070279. [PMID: 31337100 PMCID: PMC6680979 DOI: 10.3390/biom9070279] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/17/2023] Open
Abstract
The bacterial flagellum is a helical filamentous organelle responsible for motility. In bacterial species possessing flagella at the cell exterior, the long helical flagellar filament acts as a molecular screw to generate thrust. Meanwhile, the flagella of spirochetes reside within the periplasmic space and not only act as a cytoskeleton to determine the helicity of the cell body, but also rotate or undulate the helical cell body for propulsion. Despite structural diversity of the flagella among bacterial species, flagellated bacteria share a common rotary nanomachine, namely the flagellar motor, which is located at the base of the filament. The flagellar motor is composed of a rotor ring complex and multiple transmembrane stator units and converts the ion flux through an ion channel of each stator unit into the mechanical work required for motor rotation. Intracellular chemotactic signaling pathways regulate the direction of flagella-driven motility in response to changes in the environments, allowing bacteria to migrate towards more desirable environments for their survival. Recent experimental and theoretical studies have been deepening our understanding of the molecular mechanisms of the flagellar motor. In this review article, we describe the current understanding of the structure and dynamics of the bacterial flagellum.
Collapse
|
6
|
Tahara H, Takabe K, Sasaki Y, Kasuga K, Kawamoto A, Koizumi N, Nakamura S. The mechanism of two-phase motility in the spirochete Leptospira: Swimming and crawling. SCIENCE ADVANCES 2018; 4:eaar7975. [PMID: 29854948 PMCID: PMC5976277 DOI: 10.1126/sciadv.aar7975] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/23/2018] [Indexed: 05/11/2023]
Abstract
Many species of bacteria are motile, but their migration mechanisms are considerably diverse. Whatever mechanism is used, being motile allows bacteria to search for more optimal environments for growth, and motility is a crucial virulence factor for pathogenic species. The spirochete Leptospira, having two flagella in the periplasmic space, swims in liquid but has also been previously shown to crawl over solid surfaces. The present motility assays show that the spirochete movements both in liquid and on surfaces involve a rotation of the helical cell body. Direct observations of cell-surface movement with amino-specific fluorescent dye and antibody-coated microbeads suggest that the spirochete attaches to the surface via mobile, adhesive outer membrane components, and the cell body rotation propels the cell relative to the anchoring points. Our results provide models of how the spirochete switches its motility mode from swimming to crawling.
Collapse
Affiliation(s)
- Hajime Tahara
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Kyosuke Takabe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuya Sasaki
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kie Kasuga
- Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Akiha-ku, Niigata City, Niigata 956-8603, Japan
- Division of Medical Sciences, Graduate School of Medicine, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-0934, Japan
| | - Akihiro Kawamoto
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Nobuo Koizumi
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
- Corresponding author.
| |
Collapse
|
7
|
Abstract
Spirochetes are bacteria distinguished by an undulate or helical cell body and intracellular flagellar called periplasmic flagella or endoflagella. Spirochetes translate by rotating the cell body. In this chapter, we show a method for simultaneous measurement of the cell body rotation and swimming speed in individual spirochete cells. We also describe a simple chemotaxis assay capable of observing the response of spirochete in real time under a microscope and quantitatively evaluating the response magnitude to attractants and repellents.
Collapse
|
8
|
Takabe K, Kawamoto A, Tahara H, Kudo S, Nakamura S. Implications of coordinated cell-body rotations for Leptospira motility. Biochem Biophys Res Commun 2017; 491:1040-1046. [PMID: 28780349 DOI: 10.1016/j.bbrc.2017.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 02/05/2023]
Abstract
The spirochete Leptospira has a coiled cell body and two periplasmic flagella (PFs) that reside beneath the outer sheath. PFs extend from each end of the cell body and are attached to the right-handed spiral protoplasmic cylinder (PC) via a connection with the flagellar motor embedded in the inner membrane. PFs bend each end of the cell body into left-handed spiral (S) or planar hook (H) shapes, allowing leptospiral cells to swim using combined anterior S-end and posterior H-end gyrations with PC rotations. As a plausible mechanism for motility, S- and H-end gyrations by PFs and PC rotations by PF countertorque imply mutual influences among the three parts. Here we show a correlation between H-end gyration and PC rotation from the time records of rotation rates and rotational directions of individual swimming cells. We then qualitatively explain the observed correlation using a simple rotation model based on the measurements of motility and intracellular arrangements of PFs revealed by cryo-electron microscopy and electron cryotomography.
Collapse
Affiliation(s)
- Kyosuke Takabe
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Akihiro Kawamoto
- Graduate School of Frontier BioSciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hajime Tahara
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Seishi Kudo
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan.
| |
Collapse
|