1
|
Das MK, Savidge B, Pearl JE, Yates T, Miles G, Pareek M, Haldar P, Cooper AM. Altered hepatic metabolic landscape and insulin sensitivity in response to pulmonary tuberculosis. PLoS Pathog 2024; 20:e1012565. [PMID: 39331683 PMCID: PMC11463835 DOI: 10.1371/journal.ppat.1012565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/09/2024] [Accepted: 08/26/2024] [Indexed: 09/29/2024] Open
Abstract
Chronic inflammation triggers development of metabolic disease, and pulmonary tuberculosis (TB) generates chronic systemic inflammation. Whether TB induced-inflammation impacts metabolic organs and leads to metabolic disorder is ill defined. The liver is the master regulator of metabolism and to determine the impact of pulmonary TB on this organ we undertook an unbiased mRNA and protein analyses of the liver in mice with TB and reanalysed published data on human disease. Pulmonary TB led to upregulation of genes in the liver related to immune signalling and downregulation of genes encoding metabolic processes. In liver, IFN signalling pathway genes were upregulated and this was reflected in increased biochemical evidence of IFN signalling, including nuclear location of phosphorylated Stat-1 in hepatocytes. The liver also exhibited reduced expression of genes encoding the gluconeogenesis rate-limiting enzymes Pck1 and G6pc. Phosphorylation of CREB, a transcription factor controlling gluconeogenesis was drastically reduced in the livers of mice with pulmonary TB as was phosphorylation of other glucose metabolism-related kinases, including GSK3a, AMPK, and p42. In support of the upregulated IFN signalling being linked to the downregulated metabolic functions in the liver, we found suppression of gluconeogenic gene expression and reduced CREB phosphorylation in hepatocyte cell lines treated with interferons. The impact of reduced gluconeogenic gene expression in the liver was seen when infected mice were less able to convert pyruvate, a gluconeogenesis substrate, to the same extent as uninfected mice. Infected mice also showed evidence of reduced systemic and hepatic insulin sensitivity. Similarly, in humans with TB, we found that changes in a metabolite-based signature of insulin resistance correlates temporally with successful treatment of active TB and with progression to active TB following exposure. These data support the hypothesis that TB drives interferon-mediated alteration of hepatic metabolism resulting in reduced gluconeogenesis and drives systemic reduction of insulin sensitivity.
Collapse
Affiliation(s)
- Mrinal K. Das
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
| | - Ben Savidge
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
| | - John E. Pearl
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
| | - Thomas Yates
- Diabetes Research Centre, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Gareth Miles
- Leicester Cancer Research Centre, University of Leicester, Clinical Sciences Building, Leicester, United Kingdom
| | - Manish Pareek
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
- Department of Infection and HIV Medicine, University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| | - Pranabashis Haldar
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
- NIHR Respiratory Biomedical Research Centre, Leicester, Glenfield Hospital, Groby Road, Leicester, United Kingdom
| | - Andrea M. Cooper
- Department of Respiratory Sciences, Leicester TB Research Group, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, University of Leicester and University Hospitals of Leicester NHS Trust, Leicester, United Kingdom
| |
Collapse
|
2
|
Bertasso IM, de Moura EG, Pietrobon CB, Cabral SS, Kluck GEG, Atella GC, Manhães AC, Lisboa PC. Low protein diet during lactation programs hepatic metabolism in adult male and female rats. J Nutr Biochem 2022; 108:109096. [PMID: 35779796 DOI: 10.1016/j.jnutbio.2022.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 02/28/2022] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
The liver is an essential regulator of energy metabolism, and its function can be disrupted by nutritional alterations. Since liver development continues during breastfeeding nutritional challenges during this period predispose patients to diseases throughout life. A maternal protein-restricted (PR) diet during lactation promotes reductions in the body weight, adiposity, and plasma glucose and insulin, leptin resistance and an increase in corticosterone and catecholamines in adult male rat offspring. Here, we investigated hepatic metabolism in the offspring (both sexes) of PR (8% protein diet during lactation) and control (23% protein diet) dams. Both male and female offspring were evaluated at 6 months of age. PR males had no liver steatosis and manifested a reduction in lipids in hepatocytes adjacent to the vasculature. These animals had lower levels of esterified cholesterol in hepatocytes, suggesting higher biliary excretion, unchanged glycolysis and gluconeogenesis, and lower contents of the markers of mitochondrial redox balance and endoplasmic reticulum (ER) stress response and estrogen receptor alpha. PR females showed normal hepatic morphology associated with higher uptake of cholesterol esters, normal glycolysis and gluconeogenesis, and lower ER stress parameters without changes in the key markers of the redox balance. Additionally, these animals had lower content of estrogen receptor alpha and higher content of androgen receptor. The maternal PR diet during lactation did not program hepatic lipid accumulation in the adult progeny. However, several repair homeostasis pathways were altered in males and females, possibly compromising maintenance of normal liver function.
Collapse
Affiliation(s)
- Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla Bruna Pietrobon
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Suelen Silva Cabral
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - George Eduardo Gabriel Kluck
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Georgia Correa Atella
- Laboratory of Lipids and Lipoprotein Biochemistry, Biochemistry Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alex Christian Manhães
- Laboratory of Neurophysiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Al-Kuraishy HM, Hussian NR, Al-Naimi MS, Al-Gareeb AI, Al-Mamorri F, Al-Buhadily AK. The Potential Role of Pancreatic γ-Aminobutyric Acid (GABA) in Diabetes Mellitus: A Critical Reappraisal. Int J Prev Med 2021; 12:19. [PMID: 34084316 PMCID: PMC8106282 DOI: 10.4103/ijpvm.ijpvm_278_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/02/2019] [Indexed: 12/31/2022] Open
Abstract
Background Diabetes mellitus (DM) is an endocrine disorder characterized by hyperglycemia, polyuria, polydipsia, and glucosuria. γ-aminobutyric acid (GABA) is an inhibitory neurotransmitter in the central nervous system (CNS) of humans and other mammals. GABA acts on two different receptors, which are GABA-A and GABA-B. Pancreatic β-cells synthesize GABA from glutamic acid by glutamic acid decarboxylase (GAD). Aim The objective of this study was to explore the potential role of pancreatic GABA on glycemic indices in DM. Methods Evidence from experimental, preclinical, and clinical studies are evaluated for bidirectional relationships between pancreatic GABA and blood glucose disorders. A multiplicity of search strategies took on and assumed included electronic database searches of Medline and Pubmed using MeSH terms, keywords and title words during the search. Results The pancreatic GABA signaling system has a role in the regulation of pancreatic hormone secretions, inhibition of immune response, improve β-cells survival, and change α cell into β-cell. Moreover, a GABA agonist improves the antidiabetic effects of metformin. In addition, benzodiazepine receptor agonists improve pancreatic β-cell functions through GABA dependent pathway or through modulation of pancreatic adenosine and glucagon-like peptide (GLP-1). Conclusions Pancreatic GABA improves islet cell function, glucose homeostasis, and autoimmunity in DM. Orally administered GABA is safe for humans, and acts on peripheral GABA receptors and represents a new therapeutic modality for both T1DM and T2DM. Besides, GABA-A receptor agonist like benzodiazepines improves pancreatic β-cell function and insulin sensitivity through activation of GABA-A receptors.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology, and Medicine, College of Medicine Almustansiriya University, P.O. Box 14132, Baghdad, Iraq
| | - Nawar R Hussian
- Department of Pharmacology, Toxicology, and Medicine, College of Medicine Almustansiriya University, P.O. Box 14132, Baghdad, Iraq
| | - Marwa S Al-Naimi
- Department of Pharmacology, Toxicology, and Medicine, College of Medicine Almustansiriya University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology, and Medicine, College of Medicine Almustansiriya University, P.O. Box 14132, Baghdad, Iraq
| | - Farah Al-Mamorri
- Department of Pharmacology, Toxicology, and Medicine, College of Medicine Almustansiriya University, P.O. Box 14132, Baghdad, Iraq
| | - Ali K Al-Buhadily
- Department of Pharmacology, Toxicology, and Medicine, College of Medicine Almustansiriya University, P.O. Box 14132, Baghdad, Iraq
| |
Collapse
|
4
|
Phu HT, Thuan DTB, Nguyen THD, Posadino AM, Eid AH, Pintus G. Herbal Medicine for Slowing Aging and Aging-associated Conditions: Efficacy, Mechanisms and Safety. Curr Vasc Pharmacol 2020; 18:369-393. [PMID: 31418664 DOI: 10.2174/1570161117666190715121939] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022]
Abstract
Aging and aging-associated diseases are issues with unsatisfactory answers in the medical field. Aging causes important physical changes which, even in the absence of the usual risk factors, render the cardiovascular system prone to some diseases. Although aging cannot be prevented, slowing down the rate of aging is entirely possible to achieve. In some traditional medicine, medicinal herbs such as Ginseng, Radix Astragali, Ganoderma lucidum, Ginkgo biloba, and Gynostemma pentaphyllum are recognized by the "nourishing of life" and their role as anti-aging phytotherapeutics is increasingly gaining attention. By mainly employing PubMed here we identify and critically analysed 30 years of published studies focusing on the above herbs' active components against aging and aging-associated conditions. Although many plant-based compounds appear to exert an anti-aging effect, the most effective resulted in being flavonoids, terpenoids, saponins, and polysaccharides, which include astragaloside, ginkgolide, ginsenoside, and gypenoside specifically covered in this review. Their effects as antiaging factors, improvers of cognitive impairments, and reducers of cardiovascular risks are described, as well as the molecular mechanisms underlying the above-mentioned effects along with their potential safety. Telomere and telomerase, PPAR-α, GLUTs, FOXO1, caspase-3, bcl-2, along with SIRT1/AMPK, PI3K/Akt, NF-κB, and insulin/insulin-like growth factor-1 pathways appear to be their preferential targets. Moreover, their ability to work as antioxidants and to improve the resistance to DNA damage is also discussed. Although our literature review indicates that these traditional herbal medicines are safe, tolerable, and free of toxic effects, additional well-designed, large-scale randomized control trials need to be performed to evaluate short- and long-term effects and efficacy of these medicinal herbs.
Collapse
Affiliation(s)
- Hoa T Phu
- Department of Biochemistry, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Duong T B Thuan
- Department of Biochemistry, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Thi H D Nguyen
- Department of Physiology, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Anna M Posadino
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy
| | - Ali H Eid
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar
| | - Gianfranco Pintus
- Department of Biomedical Sciences, Faculty of Medicine, University of Sassari, Sassari, Italy.,Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.,Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Seenappa V, Joshi MB, Satyamoorthy K. Intricate Regulation of Phosphoenolpyruvate Carboxykinase (PEPCK) Isoforms in Normal Physiology and Disease. Curr Mol Med 2020; 19:247-272. [PMID: 30947672 DOI: 10.2174/1566524019666190404155801] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The phosphoenolpyruvate carboxykinase (PEPCK) isoforms are considered as rate-limiting enzymes for gluconeogenesis and glyceroneogenesis pathways. PEPCK exhibits several interesting features such as a) organelle-specific isoforms (cytosolic and a mitochondrial) in vertebrate clade, b) tissue-specific expression of isoforms and c) organism-specific requirement of ATP or GTP as a cofactor. In higher organisms, PEPCK isoforms are intricately regulated and activated through several physiological and pathological stimuli such as corticoids, hormones, nutrient starvation and hypoxia. Isoform-specific transcriptional/translational regulation and their interplay in maintaining glucose homeostasis remain to be fully understood. Mounting evidence indicates the significant involvement of PEPCK isoforms in physiological processes (development and longevity) and in the progression of a variety of diseases (metabolic disorders, cancer, Smith-Magenis syndrome). OBJECTIVE The present systematic review aimed to assimilate existing knowledge of transcriptional and translational regulation of PEPCK isoforms derived from cell, animal and clinical models. CONCLUSION Based on current knowledge and extensive bioinformatics analysis, in this review we have provided a comparative (epi)genetic understanding of PCK1 and PCK2 genes encompassing regulatory elements, disease-associated polymorphisms, copy number variations, regulatory miRNAs and CpG densities. We have also discussed various exogenous and endogenous modulators of PEPCK isoforms and their signaling mechanisms. A comprehensive review of existing knowledge of PEPCK regulation and function may enable identification of the underlying gaps to design new pharmacological strategies and interventions for the diseases associated with gluconeogenesis.
Collapse
Affiliation(s)
- Venu Seenappa
- School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, India
| | - Manjunath B Joshi
- School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, India
| | - Kapaettu Satyamoorthy
- School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, India
| |
Collapse
|
6
|
Hu Q, Chen H, Zuo Y, He Q, He X, Simpson S, Huang W, Yang H, Zhang H, Lin R. Role of PCK1 gene on oil tea-induced glucose homeostasis and type 2 diabetes: an animal experiment and a case-control study. Nutr Metab (Lond) 2019; 16:12. [PMID: 30805021 PMCID: PMC6373102 DOI: 10.1186/s12986-019-0337-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Background Oil tea is a type of traditional tea beverage used for treating various ailments in minority population in Guangxi, China. Our previous study showed oil tea improved glucose and lipid levels in type 2 diabetic mice. Yet, the underling molecular mechanisms are still not understood. This study aimed at assessing the effect of oil tea on glucose homeostasis and elucidating the molecular mechanisms underlying the oil tea-induced antidiabetic effects. Methods Twenty seven db/db mice were gavaged with saline, metformin and oil tea for 8 weeks with measurement of biochemical profiles. A real-time2 (RT2) profiler polymerase chain reaction (PCR) array comprising 84 genes involved in glucose metabolism was measured and validated by quantitative PCR (qPCR). The association between the candidate genes and type 2 diabetes were further analyzed in a case-control study in the Chinese minority population. Results Oil tea treatment facilitated glucose homeostasis by decreasing fasting blood glucose and total cholesterol, and improving glucose tolerance. Suppressing phosphoenolpyruvate carboxykinase 1 (PCK1) expression was observed in the oil tea treatment group and the expression was significantly correlated with fasting blood glucose levels. Target prediction and functional annotation by WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) revealed that PCK1 mainly involved in the glycolysis/gluconeogenesis pathway among the top Kyoto Encyclopedia of Genes and Genomes (KEGG) database pathways. Both rs707555 and rs2071023 in PCK1 were significantly associated with type 2 diabetes in the minority population of Guangxi. Conclusion Our findings indicated oil tea improved glucose homeostasis via down-regulation of PCK1 and PCK1 may be a genetic marker for the treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Qiantu Hu
- 1Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021 Guangxi China
| | - Huafeng Chen
- 2Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Yanli Zuo
- 3General Practice School, Guangxi Medical University, Nanning, China
| | - Qin He
- 2Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Xuan He
- 2Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Steve Simpson
- 4Melbourne School of Population & Global Health, University of Melbourne, Carlton, Australia.,5Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Wei Huang
- 2Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Hui Yang
- 2Guangxi Center for Disease Prevention and Control, Nanning, China
| | - Haiying Zhang
- 1Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021 Guangxi China.,6Public Health School, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021 Guangxi China
| | - Rui Lin
- 1Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021 Guangxi China.,2Guangxi Center for Disease Prevention and Control, Nanning, China.,6Public Health School, Guangxi Medical University, 22 Shuangyong Road, Nanning, 530021 Guangxi China
| |
Collapse
|
7
|
Wu S, Li N, Yang C, Yan L, Liang X, Ren M, Yang L. Synthesis of cationic branched tea polysaccharide derivatives for targeted delivery of siRNA to hepatocytes. Int J Biol Macromol 2018; 118:808-815. [PMID: 29857104 DOI: 10.1016/j.ijbiomac.2018.05.221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/20/2018] [Accepted: 05/28/2018] [Indexed: 01/01/2023]
Abstract
The cationic branched tea polysaccharide (CTPSA) derivative bearing N-acylurea and 3-(dimethylamino)-1-propylamine residues was synthesized and characterized using FTIR and 1H NMR spectroscopy. A nonspecific siRNA (NsiRNA) was used as a model molecule of functional siRNA that could downregulate over-expressed glycometabolism enzymes in the liver. The result from the agarose gel electrophoresis confirmed that the CTPSA and NsiRNA could form stable complexes when their weight ratio was larger than 18. The zeta potentials and sizes of the complexes were in the range of +8-+15 mv and 120-150 nm, respectively. The CTPSA/NsiRNA complex was observed as nanoparticles with a spherical shape of approximately 100 nm using scanning electron microscopy. The CTPSA derivative and the CTPSA/NsiRNA complexes exhibited lower cytotoxicity in HL-7702 cells when compared with the branched PEI (bPEI) and bPEI/NsiRNA complexes assessed by the Cell Counting Kit-8 assay. The results of flow cytometric analysis and laser confocal microscopy indicated that the CTPSA derivative could effectively target the transfer of the NsiRNA to HL-7702 cells. This work provides a potential approach to promote the CTPSA derivative as a nonviral vector for targeted delivery of functional siRNA to hepatocytes.
Collapse
Affiliation(s)
- Shuyun Wu
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-Sen University, Guangzhou 510275, China
| | - Na Li
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Chuan Yang
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Li Yan
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Xuan Liang
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-Sen University, Guangzhou 510275, China
| | - Meng Ren
- Department of Endocrinology, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| | - Liqun Yang
- Department of Polymer and Material Science, School of Chemistry, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Provincial Key Laboratory for High Performance Polymer-based Composites, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|