1
|
Ghosh R, Herberg S. The role of YAP/TAZ mechanosignaling in trabecular meshwork and Schlemm's canal cell dysfunction. Vision Res 2024; 224:108477. [PMID: 39208753 PMCID: PMC11470804 DOI: 10.1016/j.visres.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
This focused review highlights the importance of yes-associated protein (YAP)/transcriptional coactivator with PDZ binding motif (TAZ) mechanosignaling in human trabecular meshwork and Schlemm's canal cells in response to glaucoma-associated extracellular matrix stiffening and cyclic mechanical stretch, as well as biochemical pathway modulators (with signaling crosstalk) including transforming growth factor beta 2, glucocorticoids, Wnt, lysophosphatidic acid, vascular endothelial growth factor, and oxidative stress. We provide a comprehensive overview of relevant literature from the last decade, highlight intriguing research avenues with translational potential, and close with an outlook on future directions.
Collapse
Affiliation(s)
- Rajanya Ghosh
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, Center for Vision Research, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
2
|
Zhao Y, Sun B, Fu X, Zuo Z, Qin H, Yao K. YAP in development and disease: Navigating the regulatory landscape from retina to brain. Biomed Pharmacother 2024; 175:116703. [PMID: 38713948 DOI: 10.1016/j.biopha.2024.116703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/09/2024] Open
Abstract
The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.
Collapse
Affiliation(s)
- Yaqin Zhao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Sun
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xuefei Fu
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhuan Zuo
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Huan Qin
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Kai Yao
- Institute of Visual Neuroscience and Stem Cell Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
3
|
Du Y. The Hippo signalling pathway and its impact on eye diseases. J Cell Mol Med 2024; 28:e18300. [PMID: 38613348 PMCID: PMC11015399 DOI: 10.1111/jcmm.18300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/26/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The Hippo signalling pathway, an evolutionarily conserved kinase cascade, has been shown to be crucial for cell fate determination, homeostasis and tissue regeneration. Recent experimental and clinical studies have demonstrated that the Hippo signalling pathway is involved in the pathophysiology of ocular diseases. This article provides the first systematic review of studies on the regulatory and functional roles of mammalian Hippo signalling systems in eye diseases. More comprehensive studies on this pathway are required for a better understanding of the pathophysiology of eye diseases and the development of effective therapies.
Collapse
Affiliation(s)
- Yuxiang Du
- Precision Medicine Laboratory for Chronic Non‐communicable Diseases of Shandong Province, Institute of Precision MedicineJining Medical UniversityJiningShandongPeople's Republic of China
| |
Collapse
|
4
|
Li H, Kuhn M, Kelly RA, Singh A, Palanivel KK, Salama I, De Ieso ML, Stamer WD, Ganapathy PS, Herberg S. Targeting YAP/TAZ mechanosignaling to ameliorate stiffness-induced Schlemm's canal cell pathobiology. Am J Physiol Cell Physiol 2024; 326:C513-C528. [PMID: 38105758 PMCID: PMC11192480 DOI: 10.1152/ajpcell.00438.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Pathological alterations in the biomechanical properties of the Schlemm's canal (SC) inner wall endothelium and its immediate vicinity are strongly associated with ocular hypertension in glaucoma due to decreased outflow facility. Specifically, the underlying trabecular meshwork is substantially stiffer in glaucomatous eyes compared with that from normal eyes. This raises the possibility of a critical involvement of mechanotransduction processes in driving SC cell dysfunction. Yes-associated protein (YAP) has emerged as a key contributor to glaucoma pathogenesis. However, the molecular underpinnings of SC cell mechanosignaling via YAP and transcriptional coactivator with PDZ-binding motif (TAZ) in response to glaucomatous extracellular matrix (ECM) stiffening are not well understood. Using a novel biopolymer hydrogel that facilitates dynamic and reversible stiffness tuning, we investigated how ECM stiffening modulates YAP/TAZ activity in primary human SC cells, and whether disruption of YAP/TAZ mechanosignaling attenuates SC cell pathobiology and increases ex vivo outflow facility. We demonstrated that ECM stiffening drives pathologic YAP/TAZ activation and cytoskeletal reorganization in SC cells, which was fully reversible by matrix softening in a distinct time-dependent manner. Furthermore, we showed that pharmacologic or genetic disruption of YAP/TAZ mechanosignaling abrogates stiffness-induced SC cell dysfunction involving altered cytoskeletal and ECM remodeling. Finally, we found that perfusion of the clinically used, small molecule YAP/TAZ inhibitor verteporfin (without light activation) increases ex vivo outflow facility in normal mouse eyes. Collectively, our data provide new evidence for a pathologic role of aberrant YAP/TAZ mechanosignaling in SC cell dysfunction and suggest that YAP/TAZ inhibition has therapeutic value for treating ocular hypertension in glaucoma.NEW & NOTEWORTHY Pathologically altered biomechanical properties of the Schlemm's canal (SC) inner wall microenvironment were recently validated as the cause for increased outflow resistance in ocular hypertensive glaucoma. However, the involvement of specific mechanotransduction pathways in these disease processes is largely unclear. Here, we demonstrate that Yes-associated protein (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) are central regulators of glaucoma-like SC cell dysfunction in response to extracellular matrix stiffening and that targeted disruption of YAP/TAZ mechanosignaling attenuates SC cell pathobiology and enhances outflow function.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
| | - Megan Kuhn
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Ruth A Kelly
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
| | - Kavipriya Kovai Palanivel
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Izzy Salama
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Preethi S Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States
| |
Collapse
|
5
|
Fung M, Armstrong JJ, Zhang R, Vinokurtseva A, Liu H, Hutnik C. Development and Verification of a Novel Three-Dimensional Aqueous Outflow Model for High-Throughput Drug Screening. Bioengineering (Basel) 2024; 11:142. [PMID: 38391628 PMCID: PMC10885921 DOI: 10.3390/bioengineering11020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Distal outflow bleb-forming procedures in ophthalmic surgery expose subconjunctival tissue to inflammatory cytokines present in the aqueous humor, resulting in impaired outflow and, consequently, increased intraocular pressure. Clinically, this manifests as an increased risk of surgical failure often necessitating revision. This study (1) introduces a novel high-throughput screening platform for testing potential anti-fibrotic compounds and (2) assesses the clinical viability of modulating the transforming growth factor beta-SMAD2/3 pathway as a key contributor to post-operative outflow reduction, using the signal transduction inhibitor verteporfin. Human Tenon's capsule fibroblasts (HTCFs) were cultured within a 3D collagen matrix in a microfluidic system modelling aqueous humor drainage. The perfusate was augmented with transforming growth factor beta 1 (TGFβ1), and afferent pressure to the tissue-mimetic was continuously monitored to detect treatment-related pressure elevations. Co-treatment with verteporfin was employed to evaluate its capacity to counteract TGFβ1 induced pressure changes. Immunofluorescent studies were conducted on the tissue-mimetic to corroborate the pressure data with cellular changes. Introduction of TGFβ1 induced treatment-related afferent pressure increase in the tissue-mimetic. HTCFs treated with TGFβ1 displayed visibly enlarged cytoskeletons and stress fiber formation, consistent with myofibroblast transformation. Importantly, verteporfin effectively mitigated these changes, reducing both afferent pressure increases and cytoskeletal alterations. In summary, this study models the pathological filtration bleb response to TGFβ1, while demonstrating verteporfin's effectiveness in ameliorating both functional and cellular changes caused by TGFβ1. These demonstrate modulation of the aforementioned pathway as a potential avenue for addressing post-operative changes and reductions in filtration bleb outflow capacity. Furthermore, the establishment of a high-throughput screening platform offers a valuable pre-animal testing tool for investigating potential compounds to facilitate surgical wound healing.
Collapse
Affiliation(s)
- Matthew Fung
- Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - James J Armstrong
- Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Ophthalmology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Richard Zhang
- Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Anastasiya Vinokurtseva
- Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Ophthalmology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Hong Liu
- Department of Ophthalmology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
| | - Cindy Hutnik
- Department of Ophthalmology, Schulich School of Medicine & Dentistry, Western University, London, ON N6A 3K7, Canada
- Department of Ophthalmology, Ivey Eye Institute, St. Joseph's Health Center, London, ON N6A 4V2, Canada
| |
Collapse
|
6
|
Li H, Kuhn M, Kelly RA, Singh A, Palanivel KK, Salama I, De Ieso ML, Stamer WD, Ganapathy PS, Herberg S. Targeting YAP mechanosignaling to ameliorate stiffness-induced Schlemm's canal cell pathobiology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556840. [PMID: 37781615 PMCID: PMC10541092 DOI: 10.1101/2023.09.08.556840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Pathologic alterations in the biomechanical properties of the Schlemm's canal (SC) inner wall endothelium and its immediate vicinity are strongly associated with ocular hypertension in glaucoma due to decreased outflow facility. Specifically, the underlying trabecular meshwork is substantially stiffer in glaucomatous eyes compared to that from normal eyes. This raises the possibility of a critical involvement of mechanotransduction processes in driving SC cell dysfunction. Yes-associated protein (YAP) has emerged as a key contributor to glaucoma pathogenesis. However, the molecular underpinnings of SC cell YAP mechanosignaling in response to glaucomatous extracellular matrix (ECM) stiffening are not well understood. Using a novel biopolymer hydrogel that facilitates dynamic and reversible stiffness tuning, we investigated how ECM stiffening modulates YAP activity in primary human SC cells, and whether disruption of YAP mechanosignaling attenuates SC cell pathobiology and increases ex vivo outflow facility. We demonstrated that ECM stiffening drives pathologic YAP activation and cytoskeletal reorganization in SC cells, which was fully reversible by matrix softening in a distinct time-dependent manner. Furthermore, we showed that pharmacologic or genetic disruption of YAP mechanosignaling abrogates stiffness-induced SC cell dysfunction involving altered cytoskeletal and ECM remodeling. Lastly, we found that perfusion of the clinically-used, small molecule YAP inhibitor verteporfin (without light activation) increases ex vivo outflow facility in normal mouse eyes. Collectively, our data provide new evidence for a pathologic role of aberrant YAP mechanosignaling in SC cell dysfunction and suggest that YAP inhibition has therapeutic value for treating ocular hypertension in glaucoma.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Megan Kuhn
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27708, USA
| | - Ruth A. Kelly
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27708, USA
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Kavipriya Kovai Palanivel
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Izzy Salama
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Michael L. De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27708, USA
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC 27708, USA
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
7
|
Yoo H, Singh A, Li H, Strat AN, Bagué T, Ganapathy PS, Herberg S. Simvastatin Attenuates Glucocorticoid-Induced Human Trabecular Meshwork Cell Dysfunction via YAP/TAZ Inactivation. Curr Eye Res 2023; 48:736-749. [PMID: 37083467 PMCID: PMC10524554 DOI: 10.1080/02713683.2023.2206067] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/22/2023] [Accepted: 04/18/2023] [Indexed: 04/22/2023]
Abstract
PURPOSE Impairment of the trabecular meshwork (TM) is the principal cause of increased outflow resistance in the glaucomatous eye. Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ) are emerging as potential mediators of TM cell/tissue dysfunction. Furthermore, YAP/TAZ activity was recently found to be controlled by the mevalonate pathway in non-ocular cells. Clinically used statins block the mevalonate cascade and were shown to improve TM cell pathobiology; yet, the link to YAP/TAZ signaling was not investigated. In this study, we hypothesized that simvastatin attenuates glucocorticoid-induced human TM (HTM) cell dysfunction via YAP/TAZ inactivation. METHODS Primary HTM cells were seeded atop or encapsulated within bioengineered extracellular matrix (ECM) hydrogels. Dexamethasone was used to induce a pathologic phenotype in HTM cells in the absence or presence of simvastatin. Changes in YAP/TAZ activity, actin cytoskeletal organization, phospho-myosin light chain levels, hydrogel contraction/stiffness, and fibronectin deposition were assessed. RESULTS Simvastatin potently blocked pathologic YAP/TAZ nuclear localization/activity, actin stress fiber formation, and myosin light chain phosphorylation in HTM cells. Importantly, simvastatin co-treatment significantly attenuated dexamethasone-induced ECM contraction/stiffening and fibronectin mRNA and protein levels. Sequential treatment was similarly effective but did not match clinically-used Rho kinase inhibition. CONCLUSIONS YAP/TAZ inactivation with simvastatin attenuates HTM cell pathobiology in a tissue-mimetic ECM microenvironment. Our data may help explain the association of statin use with a reduced risk of developing glaucoma via indirect YAP/TAZ inhibition as a proposed regulatory mechanism.
Collapse
Affiliation(s)
- Hannah Yoo
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Ana N. Strat
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Tyler Bagué
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
8
|
Sung MS, Kim SY, Eom GH, Park SW. High VEGF Concentrations Accelerate Human Trabecular Meshwork Fibrosis in a TAZ-Dependent Manner. Int J Mol Sci 2023; 24:ijms24119625. [PMID: 37298577 DOI: 10.3390/ijms24119625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
We aimed to investigate the effects of different concentrations of vascular endothelial growth factor (VEGF) on the extracellular matrix (ECM) and fibrotic proteins in human trabecular meshwork (TM) cells. We also explored how the Yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) signaling pathway modulates VEGF-induced fibrosis. We determined cross-linked actin network (CLAN) formation using TM cells. Changes in fibrotic and ECM protein expression were determined. High VEGF concentrations (10 and 30 ng/mL) increased TAZ and decreased p-TAZ/TAZ expression in TM cells. Western blotting and real-time PCR revealed no YAP expression changes. Fibrotic and ECM protein expression decreased at low VEGF concentrations (1 and 10 ρg/mL) and significantly increased at high VEGF concentrations (10 and 30 ng/mL). CLAN formation increased in TM cells treated with high VEGF concentrations. Moreover, TAZ inhibition by verteporfin (1 μM) rescued TM cells from high-VEGF-concentration-induced fibrosis. Low VEGF concentrations reduced fibrotic changes, whereas high VEGF concentrations accelerated fibrosis and CLAN formations in TM cells in a TAZ-dependent manner. These findings reflect the dose-dependent influences of VEGF on TM cells. Moreover, TAZ inhibition might be a therapeutic target for VEGF-induced TM dysfunction.
Collapse
Affiliation(s)
- Mi Sun Sung
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - So Young Kim
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| | - Gwang Hyeon Eom
- Department of Pharmacology, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Sang Woo Park
- Department of Ophthalmology, Chonnam National University Medical School and Hospital, Gwangju 61469, Republic of Korea
| |
Collapse
|
9
|
Kurysheva NI, Kim VY, Kim VE, Pliyeva HM. [The value of lamina cribrosa in the diagnosis and treatment of glaucoma. Remodeling of lamina cribrosa collagen and approaches to its therapeutic treatment]. Vestn Oftalmol 2023; 139:121-126. [PMID: 37638582 DOI: 10.17116/oftalma2023139041121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Among the first structures suffering damage with an increase in intraocular pressure (IOP) and in early stage of glaucoma are the lamina cribrosa (LC) and peripapillary sclera (ppScl). Changes in these structures occur at the molecular and cellular level. Extracellular matrix (ECM) is the basis of connective tissue, provides mechanical support for the cells, facilitates intercellular interactions and transport of chemicals, including in LC and ppScl. Mechanical stress causes remodeling and disorganization of the ECM, which leads to changes in the structure of the tissue itself, an increase in its rigidity and a decrease in elasticity. Taking into account the molecular and cellular mechanisms of damage to LC and ppScl, various researchers have developed strategies and tactics for therapeutic intervention on these structures, contributing to a decrease in ECM secretion and, as a consequence, suspension of their remodeling. These approaches may in the future form the basis for the treatment of glaucomatous optic neuropathy.
Collapse
Affiliation(s)
- N I Kurysheva
- Medical Biological University of Innovations and Continuing Education of the State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, Moscow, Russia
- Academy of Postgraduate Education of the Federal Scientific and Clinical Center of the Federal Medical Biological Agency, Moscow, Russia
| | - V Yu Kim
- Medical Biological University of Innovations and Continuing Education of the State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, Moscow, Russia
| | - V E Kim
- Medical Biological University of Innovations and Continuing Education of the State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, Moscow, Russia
| | - H M Pliyeva
- Medical Biological University of Innovations and Continuing Education of the State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
- Burnasyan Federal Medical Biophysical Center of the Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
10
|
Sun Y, Jin D, Zhang Z, Jin D, Xue J, Duan L, Zhang Y, Kang X, Lian F. The critical role of the Hippo signaling pathway in kidney diseases. Front Pharmacol 2022; 13:988175. [PMID: 36483738 PMCID: PMC9723352 DOI: 10.3389/fphar.2022.988175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/03/2022] [Indexed: 09/14/2023] Open
Abstract
The Hippo signaling pathway is involved in cell growth, proliferation, and apoptosis, and it plays a key role in regulating organ size, tissue regeneration, and tumor development. The Hippo signaling pathway also participates in the occurrence and development of various human diseases. Recently, many studies have shown that the Hippo pathway is closely related to renal diseases, including renal cancer, cystic kidney disease, diabetic nephropathy, and renal fibrosis, and it promotes the transformation of acute kidney disease to chronic kidney disease (CKD). The present paper summarizes and analyzes the research status of the Hippo signaling pathway in different kidney diseases, and it also summarizes the expression of Hippo signaling pathway components in pathological tissues of kidney diseases. In addition, the present paper discusses the positive therapeutic significance of traditional Chinese medicine (TCM) in regulating the Hippo signaling pathway for treating kidney diseases. This article introduces new targets and ideas for drug development, clinical diagnosis, and treatment of kidney diseases.
Collapse
Affiliation(s)
- Yuting Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - De Jin
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ziwei Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Di Jin
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - JiaoJiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - LiYun Duan
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - YuQing Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - XiaoMin Kang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - FengMei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- College of Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| |
Collapse
|
11
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
12
|
Li H, Singh A, Perkumas KM, Stamer WD, Ganapathy PS, Herberg S. YAP/TAZ Mediate TGFβ2-Induced Schlemm's Canal Cell Dysfunction. Invest Ophthalmol Vis Sci 2022; 63:15. [PMID: 36350617 PMCID: PMC9652721 DOI: 10.1167/iovs.63.12.15] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose Elevated transforming growth factor beta2 (TGFβ2) levels in the aqueous humor have been linked to glaucomatous outflow tissue dysfunction. Potential mediators of dysfunction are the transcriptional coactivators, Yes-associated protein (YAP) and transcriptional coactivator with PDZ binding motif (TAZ). However, the molecular underpinnings of YAP/TAZ modulation in Schlemm's canal (SC) cells under glaucomatous conditions are not well understood. Here, we investigate how TGFβ2 regulates YAP/TAZ activity in human SC (HSC) cells using biomimetic extracellular matrix hydrogels, and examine whether pharmacological YAP/TAZ inhibition would attenuate TGFβ2-induced HSC cell dysfunction. Methods Primary HSC cells were seeded atop photo-cross-linked extracellular matrix hydrogels, made of collagen type I, elastin-like polypeptide and hyaluronic acid, or encapsulated within the hydrogels. HSC cells were induced with TGFβ2 in the absence or presence of concurrent actin destabilization or pharmacological YAP/TAZ inhibition. Changes in actin cytoskeletal organization, YAP/TAZ activity, extracellular matrix production, phospho-myosin light chain levels, and hydrogel contraction were assessed. Results TGFβ2 significantly increased YAP/TAZ nuclear localization in HSC cells, which was prevented by either filamentous-actin relaxation or depolymerization. Pharmacological YAP/TAZ inhibition using verteporfin without light stimulation decreased fibronectin expression and actomyosin cytoskeletal rearrangement in HSC cells induced by TGFβ2. Similarly, verteporfin significantly attenuated TGFβ2-induced HSC cell-encapsulated hydrogel contraction. Conclusions Our data provide evidence for a pathologic role of aberrant YAP/TAZ signaling in HSC cells under simulated glaucomatous conditions and suggest that pharmacological YAP/TAZ inhibition has promising potential to improve outflow tissue dysfunction.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Ayushi Singh
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
| | - Kristin M. Perkumas
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, North Carolina, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, United States
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States
- BioInspired Institute, Syracuse University, Syracuse, New York, United States
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York, United States
| |
Collapse
|
13
|
Strickland RG, Garner MA, Gross AK, Girkin CA. Remodeling of the Lamina Cribrosa: Mechanisms and Potential Therapeutic Approaches for Glaucoma. Int J Mol Sci 2022; 23:ijms23158068. [PMID: 35897642 PMCID: PMC9329908 DOI: 10.3390/ijms23158068] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/28/2022] Open
Abstract
Glaucomatous optic neuropathy is the leading cause of irreversible blindness in the world. The chronic disease is characterized by optic nerve degeneration and vision field loss. The reduction of intraocular pressure remains the only proven glaucoma treatment, but it does not prevent further neurodegeneration. There are three major classes of cells in the human optic nerve head (ONH): lamina cribrosa (LC) cells, glial cells, and scleral fibroblasts. These cells provide support for the LC which is essential to maintain healthy retinal ganglion cell (RGC) axons. All these cells demonstrate responses to glaucomatous conditions through extracellular matrix remodeling. Therefore, investigations into alternative therapies that alter the characteristic remodeling response of the ONH to enhance the survival of RGC axons are prevalent. Understanding major remodeling pathways in the ONH may be key to developing targeted therapies that reduce deleterious remodeling.
Collapse
Affiliation(s)
- Ryan G. Strickland
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Mary Anne Garner
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Alecia K. Gross
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (R.G.S.); (M.A.G.); (A.K.G.)
| | - Christopher A. Girkin
- Department of Ophthalmology and Vision Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: ; Tel.: +1-205-325-8620
| |
Collapse
|
14
|
Zhang L, Tang S, Ma Y, Liu J, Monnier P, Li H, Zhang R, Yu G, Zhang M, Li Y, Feng J, Qin X. RGMa Participates in the Blood-Brain Barrier Dysfunction Through BMP/BMPR/YAP Signaling in Multiple Sclerosis. Front Immunol 2022; 13:861486. [PMID: 35664003 PMCID: PMC9159795 DOI: 10.3389/fimmu.2022.861486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
The infiltration of inflammatory cells into the central nervous system (CNS) through the dysfunctional blood–brain barrier (BBB) was critical in the early stages of MS. However, the mechanisms underlying BBB dysfunction remain unknown. Repulsive guidance molecule-a (RGMa) is involved in the pathogenesis of multiple sclerosis (MS), but its role needs to be further explored. This study aimed to evaluate whether RMGa regulates BBB permeability in endothelial cells and MS, and if so, what mechanism may be involved. We created an experimental autoimmune encephalomyelitis (EAE) model in C57BL/6 mice and a human brain microvascular endothelial cell (HBMEC) culture. The permeability of the BBB is measured in response to various interventions. Our results showed that RGMa is expressed in the endothelial cells in HBMECs and EAE mice. RGMa and its signaling counterpart, bone morphogenetic protein 2 (BMP2)/bone morphogenetic protein receptor type II (BMPRII), were gradually increased as the disease progressed. Moreover, as EAE progressed and the BBB was disrupted, the downstream effector, yes-associated protein (YAP), as well as the tight junctional proteins zonula occludens 1 (ZO-1) and claudin-5, decreased significantly. The permeability assay revealed that lentivirus-induced RGMa overexpression in HBMECs caused a significant breakdown of the BBB, whereas RGMa knockdown significantly strengthens the integrity of the BBB. Furthermore, specifically activating BMPR II or inhibiting YAP based on RGMa knockdown results in a significant decrease of ZO-1 and claudin-5 in vitro. On the contrary, inhibition of BMPR II or activation of YAP after upregulating RGMa prevents the downregulation of ZO-1 and claudin-5 in HBMECs. In addition, serum-soluble RGMa (sRGMa) levels were significantly higher in MS patients, particularly in MS patients with Gd+ lesions, indicating that the BBB has been disrupted. In conclusion, this study shows that RGMa causes BBB dysfunction in endothelial cells via BMP2/BMPR II/YAP, resulting in BBB integrity disruption in MS and that it could be a novel therapeutic target for BBB permeability in MS.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shi Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yue Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junhang Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Philippe Monnier
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Ophthalmology and Vision Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Hang Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Rongrong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Gang Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Mengjie Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongmei Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Fabris L, Milani C, Fiorotto R, Mariotti V, Kaffe E, Seller B, Sonzogni A, Strazzabosco M, Cadamuro M. Dysregulation of the Scribble/YAP/β-catenin axis sustains the fibroinflammatory response in a PKHD1 -/- mouse model of congenital hepatic fibrosis. FASEB J 2022; 36:e22364. [PMID: 35593740 PMCID: PMC9150862 DOI: 10.1096/fj.202101924r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/25/2022] [Accepted: 05/10/2022] [Indexed: 11/11/2022]
Abstract
Congenital hepatic fibrosis (CHF), a genetic cholangiopathy characterized by fibropolycystic changes in the biliary tree, is caused by mutations in the PKHD1 gene, leading to defective fibrocystin (FPC), changes in planar cell polarity (PCP) and increased β-catenin-dependent chemokine secretion. In this study, we aimed at understanding the role of Scribble (a protein involved in PCP), Yes-associated protein (YAP), and β-catenin in the regulation of the fibroinflammatory phenotype of FPC-defective cholangiocytes. Immunohistochemistry showed that compared with wild type (WT) mice, in FPC-defective (Pkhd1del4/del4 ) mice nuclear expression of YAP/TAZ in cystic cholangiocytes, significantly increased and correlated with connective tissue growth factor (CTGF) expression and pericystic fibrosis, while Scribble expression on biliary cyst cells was markedly decreased. Cholangiocytes isolated from WT mice showed intense Scribble immunoreactivity at the membrane, but minimal nuclear expression of YAP, which conversely increased, together with CTGF, after small interfering RNA (siRNA) silencing of Scribble. In FPC-defective cholangiocytes, inhibition of YAP nuclear import reduced β-catenin nuclear expression, and CTGF, integrin β6, CXCL1, and CXCL10 mRNA levels, whereas inhibition of β-catenin signaling did not affect nuclear translocation of YAP. Notably, siRNA silencing of Scribble and YAP in WT cholangiocytes mimics the fibroinflammatory changes of FPC-defective cholangiocytes. Conditional deletion of β-catenin in Pkhd1del4/del4 mice reduced cyst growth, inflammation and fibrosis, without affecting YAP nuclear expression. In conclusion, the defective anchor of Scribble to the membrane facilitates the nuclear translocation of YAP and β-catenin with gain of a fibroinflammatory phenotype. The Scribble/YAP/β-catenin axis is a critical factor in the sequence of events linking the genetic defect to fibrocystic trait of cholangiocytes in CHF.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Molecular Medicine (DMM), University of Padova, Padova, Italy
- International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milan, Italy
- Liver Center, Department of Internal Medicine, Yale University, New Haven (CT), US
| | - Chiara Milani
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Romina Fiorotto
- Liver Center, Department of Internal Medicine, Yale University, New Haven (CT), US
| | - Valeria Mariotti
- Department of Molecular Medicine (DMM), University of Padova, Padova, Italy
- Liver Center, Department of Internal Medicine, Yale University, New Haven (CT), US
| | - Eleanna Kaffe
- Liver Center, Department of Internal Medicine, Yale University, New Haven (CT), US
| | - Barbara Seller
- School of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Aurelio Sonzogni
- Department of Pathology, ASST Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Mario Strazzabosco
- Liver Center, Department of Internal Medicine, Yale University, New Haven (CT), US
- Corresponding authors: Mario Strazzabosco, MD, PhD, Department of Internal Medicine, Yale University School of Medicine, Cedar Street 333 Room LMP1080, New Haven, CT 06517, USA. Phone: +1‐203‐785‐5110, , Massimiliano Cadamuro, PhD, Department of Molecular Medicine, University of Padova, Gabelli Street 63, Padova, 35121, Italy. Phone: +39-049-827-6113,
| | - Massimiliano Cadamuro
- Department of Molecular Medicine (DMM), University of Padova, Padova, Italy
- International Center for Digestive Health (ICDH), University of Milan-Bicocca, Milan, Italy
- Corresponding authors: Mario Strazzabosco, MD, PhD, Department of Internal Medicine, Yale University School of Medicine, Cedar Street 333 Room LMP1080, New Haven, CT 06517, USA. Phone: +1‐203‐785‐5110, , Massimiliano Cadamuro, PhD, Department of Molecular Medicine, University of Padova, Gabelli Street 63, Padova, 35121, Italy. Phone: +39-049-827-6113,
| |
Collapse
|
16
|
Li H, Raghunathan V, Stamer WD, Ganapathy PS, Herberg S. Extracellular Matrix Stiffness and TGFβ2 Regulate YAP/TAZ Activity in Human Trabecular Meshwork Cells. Front Cell Dev Biol 2022; 10:844342. [PMID: 35300422 PMCID: PMC8923257 DOI: 10.3389/fcell.2022.844342] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/10/2022] [Indexed: 12/15/2022] Open
Abstract
Primary open-angle glaucoma progression is associated with increased human trabecular meshwork (HTM) stiffness and elevated transforming growth factor beta 2 (TGFβ2) levels in the aqueous humor. Increased transcriptional activity of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), central players in mechanotransduction, are implicated in glaucomatous HTM cell dysfunction. Yet, the detailed mechanisms underlying YAP/TAZ modulation in HTM cells in response to alterations in extracellular matrix (ECM) stiffness and TGFβ2 levels are not well understood. Using biomimetic ECM hydrogels with tunable stiffness, here we show that increased ECM stiffness elevates YAP/TAZ nuclear localization potentially through modulating focal adhesions and cytoskeletal rearrangement. Furthermore, TGFβ2 increased nuclear YAP/TAZ in both normal and glaucomatous HTM cells, which was prevented by inhibiting extracellular-signal-regulated kinase and Rho-associated kinase signaling pathways. Filamentous (F)-actin depolymerization reversed TGFβ2-induced YAP/TAZ nuclear localization. YAP/TAZ depletion using siRNA or verteporfin decreased focal adhesions, ECM remodeling and cell contractile properties. Similarly, YAP/TAZ inactivation with verteporfin partially blocked TGFβ2-induced hydrogel contraction and stiffening. Collectively, our data provide evidence for a pathologic role of aberrant YAP/TAZ signaling in glaucomatous HTM cell dysfunction, and may help inform strategies for the development of novel multifactorial approaches to prevent progressive ocular hypertension in glaucoma.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- BioInspired Institute, Syracuse University, Syracuse, NY, United States
| | - VijayKrishna Raghunathan
- Department of Basic Sciences, The Ocular Surface Institute, University of Houston, Houston, TX, United States
| | - W. Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, United States
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Preethi S. Ganapathy
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
- BioInspired Institute, Syracuse University, Syracuse, NY, United States
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Samuel Herberg
- Department of Ophthalmology and Visual Sciences, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- BioInspired Institute, Syracuse University, Syracuse, NY, United States
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
17
|
Nakano N, Fukuda K, Tashiro E, Ishikawa H, Nagano W, Kawamoto R, Mori A, Watanabe M, Yamazaki R, Nakane T, Naito M, Okamoto I, Itoh S. Hybrid molecule between platanic acid and LCL-161 as a yes-associated protein (YAP) degrader. J Biochem 2022; 171:631-640. [PMID: 35211741 DOI: 10.1093/jb/mvac021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/19/2022] [Indexed: 11/13/2022] Open
Abstract
Dysregulated Yes-associated protein (YAP) is involved in several malignant cancers. However, discovering a druggable YAP inhibitor(s) is difficult because YAP itself does not have any enzymatic activity. In such cases, targeted protein degradation strategies based on hybrid molecules that bind to the target protein and an E3 ubiquitin ligase are useful for suppressing proteins that exhibit aberrant activation and/or excessive expression. Upon screening YAP-interacting small compounds, we identified HK13, a platanic acid, as a novel compound that interacts with YAP. Next, we synthesized hybrid compounds of platanic acid and LCL-161, which reportedly shows a high affinity to for cIAP, one of E3 ubiquitin ligases. Among these compounds, HK24 possessed the ability to inhibit the growth of YAP overexpressing NCI-H290 cells. This inhibitory activity may be mediated by YAP degradation, although HK24 exhibited weak YAP degradation. Furthermore, we confirmed involvement of proteasome pathway in HK24-dependent YAP degradation by culturing NCI-H290 cells in the presence of a proteasome inhibitor. Therefore, it is possible that platanic acid is a potential candidate for molecular medicine targeting YAP.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Mikihiko Naito
- Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan; Social Cooperation Program of Targeted Protein Degradation, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
18
|
Murphy R, Irnaten M, Hopkins A, O'Callaghan J, Stamer WD, Clark AF, Wallace D, O'Brien CJ. Matrix Mechanotransduction via Yes-Associated Protein in Human Lamina Cribrosa Cells in Glaucoma. Invest Ophthalmol Vis Sci 2022; 63:16. [PMID: 35015027 PMCID: PMC8762700 DOI: 10.1167/iovs.63.1.16] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Extracellular matrix stiffening is characteristic of both aging and glaucoma, and acts as a promoter and perpetuator of pathological fibrotic remodeling. Here, we investigate the role of a mechanosensitive transcriptional coactivator, Yes-associated protein (YAP), a downstream effector of multiple signaling pathways, in lamina cribrosa (LC) cell activation to a profibrotic, glaucomatous state. Methods LC cells isolated from glaucomatous human donor eyes (GLC; n = 3) were compared to LC cells from age-matched nonglaucomatous controls (NLC; n = 3) to determine differential YAP expression, protein levels, and proliferation rates. NLC cells were then cultured on soft (4 kPa), and stiff (100 kPa), collagen-1 coated polyacrylamide hydrogel substrates. Quantitative real-time RT-PCR, immunoblotting, and immunofluorescence microscopy were used to measure the expression, activity, and subcellular location of YAP and its downstream targets, respectively. Proliferation rates were examined in NLC and GLC cells by methyl thiazolyl tetrazolium salt assays, across a range of incrementally increased substrate stiffness. Endpoints were examined in the presence or absence of a YAP inhibitor, verteporfin (2 µM). Results GLC cells show significantly (P < 0.05) increased YAP gene expression and total-YAP protein compared to NLC cells, with significantly increased proliferation. YAP regulation is mechanosensitive, because NLC cells cultured on pathomimetic, stiff substrates (100 kPa) show significantly upregulated YAP gene and protein expression, increased YAP phosphorylation at tyrosine 357, reduced YAP phosphorylation at serine 127, increased nuclear pooling, and increased transcriptional target, connective tissue growth factor. Accordingly, myofibroblastic markers, α-smooth muscle actin (α-SMA) and collagen type I, alpha 1 (Col1A1) are increased. Proliferation rates are elevated on 50 kPa substrates and tissue culture plastic. Verteporfin treatment significantly inhibits YAP-mediated cellular activation and proliferation despite a stiffened microenvironment. Conclusions These data demonstrate how YAP plays a pivotal role in LC cells adopting a profibrotic and proliferative phenotype in response to the stiffened LC present in aging and glaucoma. YAP provides an attractive and novel therapeutic target, and its inhibition via verteporfin warrants further clinical investigation.
Collapse
Affiliation(s)
- Rory Murphy
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Mustapha Irnaten
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Alan Hopkins
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jeffrey O'Callaghan
- Ocular Genetics Unit, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | | | - Abbot F Clark
- Department of Cell Biology & Immunology and the North Texas Eye Research Institute, U. North Texas Health Science Centre, Ft. Worth, Texas, United States
| | - Deborah Wallace
- Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| | - Colm J O'Brien
- Department of Ophthalmology, Mater Misericordiae University Hospital, Dublin, Ireland.,Clinical Research Centre, School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
19
|
Understanding Drivers of Ocular Fibrosis: Current and Future Therapeutic Perspectives. Int J Mol Sci 2021; 22:ijms222111748. [PMID: 34769176 PMCID: PMC8584003 DOI: 10.3390/ijms222111748] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 01/10/2023] Open
Abstract
Ocular fibrosis leads to severe visual impairment and blindness worldwide, being a major area of unmet need in ophthalmology and medicine. To date, the only available treatments are antimetabolite drugs that have significant potentially blinding side effects, such as tissue damage and infection. There is thus an urgent need to identify novel targets to prevent/treat scarring and postsurgical fibrosis in the eye. In this review, the latest progress in biological mechanisms underlying ocular fibrosis are discussed. We also summarize the current knowledge on preclinical studies based on viral and non-viral gene therapy, as well as chemical inhibitors, for targeting TGFβ or downstream effectors in fibrotic disorders of the eye. Moreover, the role of angiogenetic and biomechanical factors in ocular fibrosis is discussed, focusing on related preclinical treatment approaches. Moreover, we describe available evidence on clinical studies investigating the use of therapies targeting TGFβ-dependent pathways, angiogenetic factors, and biomechanical factors, alone or in combination with other strategies, in ocular tissue fibrosis. Finally, the recent progress in cell-based therapies for treating fibrotic eye disorders is discussed. The increasing knowledge of these disorders in the eye and the promising results from testing of novel targeted therapies could offer viable perspectives for translation into clinical use.
Collapse
|
20
|
Yang X, Xu Y, Jiang C, Ma Z, Jin L. Verteporfin suppresses osteosarcoma progression by targeting the Hippo signaling pathway. Oncol Lett 2021; 22:724. [PMID: 34429764 PMCID: PMC8371961 DOI: 10.3892/ol.2021.12985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
Abstract
Verteporfin (VP) is a specific inhibitor of yes-associated protein 1 (YAP1) that suppresses tumor progression by inhibiting YAP1 expression. The present study aimed to determine the inhibitory effect of VP on osteosarcoma and the underlying mechanism of its anticancer effects. Cell viability, cell cycle and apoptosis and cell migration and invasion were analyzed using the MTT assay, flow cytometry, wound healing assay and Transwell assay, respectively. Expressions of YAP1 and TEA domain transcription factor 1 (TEAD1) were measured using reverse transcription-quantitative PCR and western blotting, while their interaction was identified by the co-immunoprecipitation assay. In vivo mouse xenograft experiments were performed to evaluate the effect of VP on osteosarcoma growth. The results demonstrated that YAP1 and TEAD1 were highly expressed in osteosarcoma cells and tissues, whereas VP significantly downregulated the expression levels of YAP1 and TEAD1 in the osteosarcoma cell line Saos-2 compared with those in untreated control cells. In addition, compared with those in the control group, VP suppressed the viability, migration and invasion, induced cell cycle arrest in the G1 phase and promoted apoptosis in Saos-2 cells. In addition, VP inhibited mouse xenograft tumor growth in vivo compared with that observed in the control group. Notably, VP downregulated the levels of CYR61 expression in Saos-2 cells, whereas CYR61 overexpression mitigated the inhibitory effects of VP on osteosarcoma cells, as indicated by the increased viability and reduced apoptotic rates in Saos-2 cells overexpressing CYR61 compared with those in the control group. In summary, VP suppressed osteosarcoma by downregulating the expression of YAP1 and TEAD1. Additionally, CYR61 may mediate the effects of VP on osteosarcoma progression.
Collapse
Affiliation(s)
- Xianliang Yang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China.,Department of Orthopedics, The First People's Hospital of Wenling Hospital, Wenling, Zhejiang 317500, P.R. China
| | - Youjia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Chao Jiang
- Department of Orthopedics, The First People's Hospital of Wenling Hospital, Wenling, Zhejiang 317500, P.R. China
| | - Ziping Ma
- Department of Orthopedics, The First People's Hospital of Wenling Hospital, Wenling, Zhejiang 317500, P.R. China
| | - Linguang Jin
- Department of Orthopedics, The First People's Hospital of Wenling Hospital, Wenling, Zhejiang 317500, P.R. China
| |
Collapse
|
21
|
Yemanyi F, Raghunathan V. Lysophosphatidic Acid and IL-6 Trans-signaling Interact via YAP/TAZ and STAT3 Signaling Pathways in Human Trabecular Meshwork Cells. Invest Ophthalmol Vis Sci 2021; 61:29. [PMID: 33216119 PMCID: PMC7683860 DOI: 10.1167/iovs.61.13.29] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Purpose Lysophosphatidic acid (LPA) and soluble interleukin-6 receptor (sIL6R) are elevated in primary open angle glaucoma (POAG). LPA and IL6 modulate in response to biomechanical stimuli and converge on similar fibrotic phenotypes. Thus, we determined whether LPA and IL6 trans-signaling (IL6/sIL6R) interact via Yes-associated protein (YAP)/Transcriptional coactivator with a PDZ-binding motif (TAZ) or Signal transducer and activator of transcription 3 (STAT3) pathways in human trabecular meshwork (hTM) cells. Methods Confluent primary hTM cells were serum starved for 24 hours, and treated with vehicle, LPA (20 µM), IL6 (100 ng/mL)/sIL6R (200 ng/mL), or both (LPA + IL6/sIL6R) for 24 hours, with or without a YAP inhibitor (verteporfin; 2 µM) or STAT3 inhibitor (2 µM). Expression of key receptors and ligands, signaling mediators, actomyosin machinery, cell contractility, and extracellular matrix (ECM) targets of both signaling pathways was determined by immunocytochemistry, RT-qPCR, and Western blotting. Results LPA and IL6 trans-signaling coupling overexpressed/activated receptors and ligands, glycoprotein-130, IL6, and autotaxin; signaling mediators, YAP, TAZ, Pan-TEAD, and phosphorylated STAT3 (pSTAT3); actomyosin and contractile machinery components, myosin light chain 2 (MLC2), phosphorylated MLC2, rho-associated protein kinase 1, filamentous actin, and α-smooth muscle actin; and fibrotic ECM proteins, collagen I and IV, fibronectin, laminin, cysteine-rich angiogenic inducer 61, and connective tissue growth factor in hTM cells; mostly beyond LPA or IL6 trans-signaling alone. Verteporfin inhibited YAP, TAZ, and pSTAT3, with concomitant abrogation of aforementioned fibrotic targets; the STAT3 inhibitor was only partially effective. Conclusions These data suggest synergistic crosstalk between LPA and IL6 trans-signaling, mediated by YAP, TAZ, and pSTAT3. By completely inhibiting these mediators, verteporfin may be more efficacious in ameliorating LPA and/or IL6 trans-signaling–induced ocular hypertensive phenotypes in hTM cells.
Collapse
Affiliation(s)
- Felix Yemanyi
- College of Optometry, University of Houston, Houston, Texas, United States
| | | |
Collapse
|
22
|
Narciclasine is a novel YAP inhibitor that disturbs interaction between YAP and TEAD4. BBA ADVANCES 2021; 1:100008. [PMID: 37082014 PMCID: PMC10074845 DOI: 10.1016/j.bbadva.2021.100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022] Open
Abstract
Yes-associated protein (YAP) is involved in development, cell growth, cell size, and homeostasis and plays a key role in the progression of various cancers. Among them, constitutive activation of YAP can often be observed in malignant mesothelioma, which arises in the pleura, peritoneum, and pericardium because of inactivation of the Hippo pathway. To date, however, only less-effective treatments such as chemotherapy, radiation therapy, and surgery are available for patients with malignant mesothelioma. In this study, we identified narciclasine as a novel YAP inhibitor that prevents YAP from interacting with TEAD4 because it competes with TEAD4 for binding to YAP. Furthermore, narciclasine could perturb the cell growth and colony formation of malignant mesothelioma NCI-H290 cells in addition to inhibiting their growth in nude mice. Therefore, narciclasine might be a potential seed for a novel antitumor drug against malignant mesothelioma and other cancers in which hyperactivation and/or overexpression of YAP are observed.
Collapse
|
23
|
Inhibition of Yes-Associated Protein by Verteporfin Ameliorates Unilateral Ureteral Obstruction-Induced Renal Tubulointerstitial Inflammation and Fibrosis. Int J Mol Sci 2020; 21:ijms21218184. [PMID: 33142952 PMCID: PMC7662854 DOI: 10.3390/ijms21218184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022] Open
Abstract
Yes-associated protein (YAP) activation after acute ischemic kidney injury might be related to interstitial fibrosis and impaired renal tubular regeneration. Verteporfin (VP) is a photosensitizer used in photodynamic therapy to treat age-related macular degeneration. In cancer cells, VP inhibits TEA domain family member (TEAD)-YAP interactions without light stimulation. The protective role of VP in unilateral ureteral obstruction (UUO)-induced renal fibrosis and related mechanisms remains unclear. In this study, we investigate the protective effects of VP on UUO-induced renal tubulointerstitial inflammation and fibrosis and its regulation of the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway. We find that VP decreased the UUO-induced increase in tubular injury, inflammation, and extracellular matrix deposition in mice. VP also decreased myofibroblast activation and proliferation in UUO kidneys and NRK-49F cells by modulating Smad2 and Smad3 phosphorylation. Therefore, YAP inhibition might have beneficial effects on UUO-induced tubulointerstitial inflammation and fibrosis by regulating the TGF-β1/Smad signaling pathway.
Collapse
|
24
|
Rottlerin acts as a therapeutic in primary open-angle glaucoma by targeting the trabecular meshwork via activation of Rap1 signaling. Pharmacol Res 2020; 159:104780. [PMID: 32360586 DOI: 10.1016/j.phrs.2020.104780] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Primary open-angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide, and elevated intraocular pressure (IOP) is a major risk factor. While IOP is mainly controlled by adjusting the outflow resistance in the trabecular meshwork (TM), drugs that act directly on the TM are rare. In this study, we discovered a novel compound and pathway that acts on the TM and decreases IOP by genomic, proteomic, and bioinformatic analyses of POAG-derived TMs and experimental validation. Overlapping differentially expressed genes of the TM between patients with POAG and normal controls from two independent gene expression profiles in public databases were analyzed and matched by using the Connectivity Map (CMap). Rottlerin was identified as a potential compound. Subsequent experiments confirmed that rottlerin reversed POAG phenotypes in vitro and that it decreased IOP and actin/extracellular matrix accumulation in vivo with no detectable ocular side effects. SwissTargetPrediction in combination with pathway analysis predicted that the effects of rottlerin may be mediated by activation of the Rap1 pathway. Finally, we confirmed that rottlerin upregulated Rap1 and the downstream PI3K/AKT pathway independent of the MAPK/ERK pathway in a dexamethasone-induced POAG cell model.
Collapse
|
25
|
Kaylan KB, Berg IC, Biehl MJ, Brougham-Cook A, Jain I, Jamil SM, Sargeant LH, Cornell NJ, Raetzman LT, Underhill GH. Spatial patterning of liver progenitor cell differentiation mediated by cellular contractility and Notch signaling. eLife 2018; 7:e38536. [PMID: 30589410 PMCID: PMC6342520 DOI: 10.7554/elife.38536] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/24/2018] [Indexed: 12/15/2022] Open
Abstract
The progenitor cells of the developing liver can differentiate toward both hepatocyte and biliary cell fates. In addition to the established roles of TGFβ and Notch signaling in this fate specification process, there is increasing evidence that liver progenitors are sensitive to mechanical cues. Here, we utilized microarrayed patterns to provide a controlled biochemical and biomechanical microenvironment for mouse liver progenitor cell differentiation. In these defined circular geometries, we observed biliary differentiation at the periphery and hepatocytic differentiation in the center. Parallel measurements obtained by traction force microscopy showed substantial stresses at the periphery, coincident with maximal biliary differentiation. We investigated the impact of downstream signaling, showing that peripheral biliary differentiation is dependent not only on Notch and TGFβ but also E-cadherin, myosin-mediated cell contractility, and ERK. We have therefore identified distinct combinations of microenvironmental cues which guide fate specification of mouse liver progenitors toward both hepatocyte and biliary fates.
Collapse
Affiliation(s)
- Kerim B Kaylan
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Ian C Berg
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Matthew J Biehl
- Department of Molecular and Integrative PhysiologyUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Aidan Brougham-Cook
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | - Ishita Jain
- Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | | | | | | | - Lori T Raetzman
- Department of Molecular and Integrative PhysiologyUniversity of Illinois at Urbana-ChampaignUrbanaUnited States
| | | |
Collapse
|
26
|
Pellegrini P, Serviss JT, Lundbäck T, Bancaro N, Mazurkiewicz M, Kolosenko I, Yu D, Haraldsson M, D'Arcy P, Linder S, De Milito A. A drug screening assay on cancer cells chronically adapted to acidosis. Cancer Cell Int 2018; 18:147. [PMID: 30263014 PMCID: PMC6156858 DOI: 10.1186/s12935-018-0645-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/18/2018] [Indexed: 11/10/2022] Open
Abstract
Background Drug screening for the identification of compounds with anticancer activity is commonly performed using cell lines cultured under normal oxygen pressure and physiological pH. However, solid tumors are characterized by a microenvironment with limited access to nutrients, reduced oxygen supply and acidosis. Tumor hypoxia and acidosis have been identified as important drivers of malignant progression and contribute to multicellular resistance to different forms of therapy. Tumor acidosis represents an important mechanism mediating drug resistance thus the identification of drugs active on acid-adapted cells may improve the efficacy of cancer therapy. Methods Here, we characterized human colon carcinoma cells (HCT116) chronically adapted to grow at pH 6.8 and used them to screen the Prestwick drug library for cytotoxic compounds. Analysis of gene expression profiles in parental and low pH-adapted cells showed several differences relating to cell cycle, metabolism and autophagy. Results The screen led to the identification of several compounds which were further selected for their preferential cytotoxicity towards acid-adapted cells. Amongst 11 confirmed hits, we primarily focused our investigation on the benzoporphyrin derivative Verteporfin (VP). VP significantly reduced viability in low pH-adapted HCT116 cells as compared to parental HCT116 cells and normal immortalized epithelial cells. The cytotoxic activity of VP was enhanced by light activation and acidic pH culture conditions, likely via increased acid-dependent drug uptake. VP displayed the unique property to cause light-dependent cross-linking of proteins and resulted in accumulation of polyubiquitinated proteins without inducing inhibition of the proteasome. Conclusions Our study provides an example and a tool to identify anticancer drugs targeting acid-adapted cancer cells. Electronic supplementary material The online version of this article (10.1186/s12935-018-0645-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Paola Pellegrini
- 1Cancer Center Karolinska, R8:00, Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Jason T Serviss
- 1Cancer Center Karolinska, R8:00, Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Thomas Lundbäck
- 2Chemical Biology Consortium Sweden, Science for Life Laboratory, Stockholm, Sweden.,4Present Address: Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Nicolo Bancaro
- 1Cancer Center Karolinska, R8:00, Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Magdalena Mazurkiewicz
- 1Cancer Center Karolinska, R8:00, Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Iryna Kolosenko
- 1Cancer Center Karolinska, R8:00, Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Di Yu
- 1Cancer Center Karolinska, R8:00, Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Martin Haraldsson
- 2Chemical Biology Consortium Sweden, Science for Life Laboratory, Stockholm, Sweden
| | - Padraig D'Arcy
- 3Department of Medical and Health Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Stig Linder
- 3Department of Medical and Health Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Angelo De Milito
- 1Cancer Center Karolinska, R8:00, Department of Oncology-Pathology, Karolinska Institute, 171 76 Stockholm, Sweden
| |
Collapse
|
27
|
Zhu JY, Lin S, Ye J. YAP and TAZ, the conductors that orchestrate eye development, homeostasis, and disease. J Cell Physiol 2018; 234:246-258. [PMID: 30094836 DOI: 10.1002/jcp.26870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 12/25/2022]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are transcriptional coactivators established as a nexus in numerous signaling pathways, notably in Hippo signaling. Previous research revealed multifarious function of YAP and TAZ in oncology and cardiovasology. Recently, the focus has been laid on their pivotal role in eye morphogenesis and homeostasis. In this review, we synthesize advances of YAP and TAZ function during eye development in different model organisms, introduce their function in different ocular tissues and eye diseases, and highlight the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Jing-Yi Zhu
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Sen Lin
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology and Institute of Surgery Research, Daping Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
28
|
Futakuchi A, Inoue T, Wei FY, Inoue-Mochita M, Fujimoto T, Tomizawa K, Tanihara H. YAP/TAZ Are Essential for TGF-β2–Mediated Conjunctival Fibrosis. ACTA ACUST UNITED AC 2018; 59:3069-3078. [DOI: 10.1167/iovs.18-24258] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Akiko Futakuchi
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Toshihiro Inoue
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Miyuki Inoue-Mochita
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomokazu Fujimoto
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hidenobu Tanihara
- Department of Ophthalmology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
29
|
Marchal E, Figliola C, Thompson A. Prodigiosenes conjugated to tamoxifen and estradiol. Org Biomol Chem 2018. [PMID: 28628182 DOI: 10.1039/c7ob00943g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the synthesis of the first click-appended prodigiosene conjugates. Four prodigiosene conjugates of estradiol functionalised at the 7α-position were prepared, as were three prodigiosene conjugates of tamoxifen. The coupling between a prodigiosene and an 11-hydroxy estradiol derivative via an ether linkage was investigated, as was the 11- and 7-functionalisation of the estradiol core. The robustness of estradiol protecting groups was severely challenged by reactions typically used to equip such frameworks for 11- and 7-functionalisation. Specifically, and important to synthesis involving estradiol, TBS, TMS and THP are not useful protecting groups for the functionalisation of this core. When the chemical features of the therapeutic agent limit the choice of protecting group (in this case, prodigiosenes bearing aryl, NH, alkenyl and ester groups), click chemistry becomes an attractive synthetic strategy. The anti-cancer activity of the seven click prodigiosene conjugates was evaluated.
Collapse
Affiliation(s)
- Estelle Marchal
- Department of Chemistry, Dalhousie University, PO BOX 15000, Halifax, NS B3H 4R2, Canada.
| | | | | |
Collapse
|
30
|
Abstract
Transforming growth factor-β (TGF-β) may play a role in the pathogenesis of primary open-angle glaucoma (POAG). Elevated levels of TGF-β are found in the aqueous humor and in reactive optic nerve astrocytes in patients with glaucoma. In POAG, aqueous humor outflow resistance at the trabecular meshwork (TM) leads to increased intraocular pressure and retinal ganglion cell death. It is hypothesized that TGF-β increases outflow resistance by altering extracellular matrix homeostasis and cell contractility in the TM through interactions with other proteins and signaling molecules. TGF-β may also be involved in damage to the optic nerve head. Current available therapies for POAG focus exclusively on lowering intraocular pressure without addressing extracellular matrix homeostasis processes in the TM. The purpose of this review is to discuss possible therapeutic strategies targeting TGF-β in the treatment of POAG. Herein, we describe the current understanding of the role of TGF-β in POAG pathophysiology, and examine ways TGF-β may be targeted at the levels of production, activation, downstream signaling, and homeostatic regulation.
Collapse
|
31
|
Sen Sharma S, Majumdar SS. Transcriptional co-activator YAP regulates cAMP signaling in Sertoli cells. Mol Cell Endocrinol 2017; 450:64-73. [PMID: 28428044 DOI: 10.1016/j.mce.2017.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/14/2017] [Accepted: 04/15/2017] [Indexed: 11/28/2022]
Abstract
FSH mediated cyclic AMP (cAMP) signaling is crucial for function of testicular Sertoli cells (Sc) during puberty. Yes-kinase Associated Protein (YAP), a transcriptional co-activator, regulates cell proliferation and differentiation. However, its role in testicular function is not known. In present study, we have identified YAP as an important regulator of cAMP signaling in Sc, in-vitro. Verteporfin, a YAP-inhibitor, down regulated the expression of cAMP responsive genes necessary for spermatogenesis in Sc. Action of forskolin, which acts via cAMP, was also antagonized by verteporfin, limiting expression of these genes. Assessment of cAMP-responsive-element-binding-protein (CREB) phosphorylation revealed that verteporfin augmented the phosphorylation of CREB at Ser133 residue. This effect of verteporfin on CREB phosphorylation was attenuated by H-89, the PKA inhibitor. This clearly suggested involvement of PKA in verteporfin mediated CREB phosphorylation. We provided evidence for the first time that YAP modulates cAMP signaling in Sc which may be critical for testicular function.
Collapse
Affiliation(s)
- Souvik Sen Sharma
- Cellular Endocrinology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India.
| | - Subeer S Majumdar
- Cellular Endocrinology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India; National Institute of Animal Biotechnology, Hyderabad, India.
| |
Collapse
|
32
|
Cheng J, Liang J, Qi J. Role of nuclear factor (erythroid-derived 2)-like 2 in the age-resistant properties of the glaucoma trabecular meshwork. Exp Ther Med 2017; 14:791-796. [PMID: 28673001 DOI: 10.3892/etm.2017.4543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/26/2017] [Indexed: 12/21/2022] Open
Abstract
Glaucoma is a major cause of irreversible blindness. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) regulates the expression of numerous antioxidants within cells and is therefore a focus of current ophthalmic research. To determine the roles of Nrf2 in mediating the glaucoma trabecular meshwork (GTM), the present study evaluated the levels of Nrf2 expression in GTM and human trabecular meshwork (HTM) cells by reverse-transcription-quantitative polymerase chain reaction and western blot analysis. It was principally observed that Nrf2 expression was downregulated in GTM cells. In addition, to determine the influence of Nrf2 on the apoptosis and proliferation of GTM and HTM cells, transfection assays and western blotting were performed to evaluate the expression of apoptosis-related proteins. The results of the current study indicated that Nrf2 may promote viability and reduce apoptosis in GTM and HTM cells. Collectively, these data suggest that Nrf2 may be a novel therapeutic target to treat glaucoma.
Collapse
Affiliation(s)
- Jintao Cheng
- Department of Ophthalmology, Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Jiamei Liang
- Department of Ophthalmology, Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Jinze Qi
- Department of Ophthalmology, Yishui Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
33
|
Simile MM, Latte G, Demartis MI, Brozzetti S, Calvisi DF, Porcu A, Feo CF, Seddaiu MA, Daino L, Berasain C, Tomasi ML, Avila MA, Feo F, Pascale RM. Post-translational deregulation of YAP1 is genetically controlled in rat liver cancer and determines the fate and stem-like behavior of the human disease. Oncotarget 2016; 7:49194-49216. [PMID: 27359056 PMCID: PMC5226501 DOI: 10.18632/oncotarget.10246] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/05/2016] [Indexed: 01/29/2023] Open
Abstract
Previous studies showed that YAP1 is over-expressed in hepatocellular carcinoma (HCC). Here we observed higher expression of Yap1/Ctgf axis in dysplastic nodules and HCC chemically-induced in F344 rats, genetically susceptible to hepatocarcinogenesis, than in lesions induced in resistant BN rats. In BN rats, highest increase in Yap1-tyr357, p73 phosphorylation and Caspase 3 cleavage occurred. In human HCCs with poorer prognosis (< 3 years survival after partial liver resection, HCCP), levels of YAP1, CTGF, 14-3-3, and TEAD proteins, and YAP1-14-3-3 and YAP1-TEAD complexes were higher than in HCCs with better outcome (> 3 years survival; HCCB). In the latter, higher levels of phosphorylated YAP1-ser127, YAP1-tyr357 and p73, YAP1 ubiquitination, and Caspase 3 cleavage occurred. Expression of stemness markers NANOG, OCT-3/4, and CD133 were highest in HCCP and correlated with YAP1 and YAP1-TEAD levels. In HepG2, Huh7, and Hep3B cells, forced YAP1 over-expression led to stem cell markers expression and increased cell viability, whereas inhibition of YAP1 expression by specific siRNA, or transfection of mutant YAP1 which does not bind to TEAD, induced opposite alterations. These changes were associated, in Huh7 cells transfected with YAP1 or YAP1 siRNA, with stimulation or inhibition of cell migration and invasivity, respectively. Furthermore, transcriptome analysis showed that YAP1 transfection in Huh7 cells induces over-expression of genes involved in tumor stemness. In conclusion, Yap1 post-translational modifications favoring its ubiquitination and apoptosis characterize HCC with better prognosis, whereas conditions favoring the formation of YAP1-TEAD complexes are associated with aggressiveness and acquisition of stemness features by HCC cells.
Collapse
Affiliation(s)
- Maria M. Simile
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Gavinella Latte
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Maria I. Demartis
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Stefania Brozzetti
- Department of Surgery “Pietro Valdoni”, University of Rome ‘Sapienza’', Rome, Italy
| | - Diego F. Calvisi
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Alberto Porcu
- Department of Clinical and Experimental Medicine, Division of Surgery, University of Sassari, Sassari, Italy
| | - Claudio F. Feo
- Department of Clinical and Experimental Medicine, Division of Surgery, University of Sassari, Sassari, Italy
| | - Maria A. Seddaiu
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Lucia Daino
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Carmen Berasain
- Division of Hepatology, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- IDISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Maria L. Tomasi
- Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- USC Research Center for Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Matias A. Avila
- Division of Hepatology, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- IDISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Francesco Feo
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| | - Rosa M. Pascale
- Department of Clinical and Experimental Medicine, Division of Experimental Pathology and Oncology, University of Sassari, Sassari, Italy
| |
Collapse
|
34
|
Caliari SR, Vega SL, Kwon M, Soulas EM, Burdick JA. Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials 2016; 103:314-323. [PMID: 27429252 DOI: 10.1016/j.biomaterials.2016.06.061] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 01/12/2023]
Abstract
Improved fundamental understanding of how cells interpret microenvironmental signals is integral to designing better biomaterial therapies. YAP/TAZ are key mediators of mechanosensitive signaling; however, it is not clear how they are regulated by the complex interplay of microenvironmental factors (e.g., stiffness and degradability) and culture dimensionality. Using covalently crosslinked norbornene-functionalized hyaluronic acid (HA) hydrogels with controlled stiffness (via crosslink density) and degradability (via susceptibility of crosslinks to proteolysis), we found that human mesenchymal stem cells (MSCs) displayed increased spreading and YAP/TAZ nuclear localization when cultured atop stiffer hydrogels; however, the opposite trend was observed when MSCs were encapsulated within degradable hydrogels. When stiffness-matched hydrogels of reduced degradability were used, YAP/TAZ nuclear translocation was greater in cells that were able to spread, which was confirmed through pharmacological inhibition of YAP/TAZ and actin polymerization. Together, these data illustrate that YAP/TAZ signaling is responsive to hydrogel stiffness and degradability, but the outcome is dependent on the dimensionality of cell-biomaterial interactions.
Collapse
Affiliation(s)
- Steven R Caliari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sebastián L Vega
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle Kwon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth M Soulas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
35
|
Bousquet MS, Ma JJ, Ratnayake R, Havre PA, Yao J, Dang NH, Paul VJ, Carney TJ, Dang LH, Luesch H. Multidimensional Screening Platform for Simultaneously Targeting Oncogenic KRAS and Hypoxia-Inducible Factors Pathways in Colorectal Cancer. ACS Chem Biol 2016; 11:1322-31. [PMID: 26938486 DOI: 10.1021/acschembio.5b00860] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Colorectal cancer (CRC) is a genetic disease, due to progressive accumulation of mutations in oncogenes and tumor suppressor genes. Large scale genomic sequencing projects revealed >100 mutations in any individual CRC. Many of these mutations are likely passenger mutations, and fewer are driver mutations. Of these, activating mutations in RAS proteins are essential for cancer initiation, progression, and/or resistance to therapy. There has been significant interest in developing drugs targeting mutated cancer gene products or downstream signaling pathways. Due to the number of mutations involved and inherent redundancy in intracellular signaling, drugs targeting one mutation or pathway have been either ineffective or led to rapid resistance. We have devised a strategy whereby multiple cancer pathways may be simultaneously targeted for drug discovery. For proof-of-concept, we targeted the oncogenic KRAS and HIF pathways, since oncogenic KRAS has been shown to be required for cancer initiation and progression, and HIF-1α and HIF-2α are induced by the majority of mutated oncogenes and tumor suppressor genes in CRC. We have generated isogenic cell lines defective in either oncogenic KRAS or both HIF-1α and HIF-2α and subjected them to multiplex genomic, siRNA, and high-throughput small molecule screening. We have identified potential drug targets and compounds for preclinical and clinical development. Screening of our marine natural product library led to the rediscovery of the microtubule agent dolastatin 10 and the class I histone deacetylase (HDAC) inhibitor largazole to inhibit oncogenic KRAS and HIF pathways. Largazole was further validated as an antiangiogenic agent in a HIF-dependent manner in human cells and in vivo in zebrafish using a genetic model with activated HIF. Our general strategy, coupling functional genomics with drug susceptibility or chemical-genetic interaction screens, enables the identification of potential drug targets and candidates with requisite selectivity. Molecules prioritized in this manner can easily be validated in suitable zebrafish models due to the genetic tractability of the system. Our multidimensional platform with cellular and organismal components can be extended to larger scale multiplex screens that include other mutations and pathways.
Collapse
Affiliation(s)
- Michelle S. Bousquet
- Institute
of Molecular and Cell Biology (IMCB), A*STAR, Proteos, Singapore 138673, Singapore
| | - Jia Jia Ma
- Institute
of Molecular and Cell Biology (IMCB), A*STAR, Proteos, Singapore 138673, Singapore
| | | | | | | | | | - Valerie J. Paul
- Smithsonian Marine Station, 701 Seaway Drive, Fort Pierce, Florida 34949, United States
| | - Thomas J. Carney
- Institute
of Molecular and Cell Biology (IMCB), A*STAR, Proteos, Singapore 138673, Singapore
- Lee Kong
Chian School of Medicine, Nanyang Technological University, 59 Nanyang
Drive, 636921, Singapore
| | | | - Hendrik Luesch
- Institute
of Molecular and Cell Biology (IMCB), A*STAR, Proteos, Singapore 138673, Singapore
| |
Collapse
|
36
|
Gonzalez JM, Ko MK, Pouw A, Tan JCH. Tissue-based multiphoton analysis of actomyosin and structural responses in human trabecular meshwork. Sci Rep 2016; 6:21315. [PMID: 26883567 PMCID: PMC4756353 DOI: 10.1038/srep21315] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/21/2016] [Indexed: 01/15/2023] Open
Abstract
The contractile trabecular meshwork (TM) modulates aqueous humor outflow resistance and intraocular pressure. The primary goal was to visualize and quantify human TM contractile state by analyzing actin polymerization (F-actin) by 2-photon excitation fluorescence imaging (TPEF) in situ. A secondary goal was to ascertain if structural extracellular matrix (ECM) configuration changed with contractility. Viable ex vivo human TM was incubated with latrunculin-A (Lat-A) or vehicle prior to Alexa-568-phalloidin labeling and TPEF. Quantitative image analysis was applied to 2-dimensional (2D) optical sections and 3D image reconstructions. After Lat-A exposure, (a) the F-actin network reorganized as aggregates; (b) F-actin-associated fluorescence intensity was reduced by 48.6% (mean; p = 0.007; n = 8); (c) F-actin 3D distribution was reduced by 68.9% (p = 0.040); (d) ECM pore cross-sectional area and volume were larger by 36% (p = 0.032) and 65% (p = 0.059) respectively and pores appeared more interconnected; (e) expression of type I collagen and elastin, key TM structural ECM proteins, were unaltered (p = 0.54); and (f) tissue viability was unchanged (p = 0.39) relative to vehicle controls. Thus Lat-A-induced reduction of actomyosin contractility was associated with TM porous expansion without evidence of reduced structural ECM protein expression or cellular viability. These important subcellular-level dynamics could be visualized and quantified within human tissue by TPEF.
Collapse
Affiliation(s)
- Jose M Gonzalez
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Minhee K Ko
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Andrew Pouw
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - James C H Tan
- Doheny Eye Institute and Department of Ophthalmology, David Geffen School of Medicine at UCLA, Los Angeles, CA
| |
Collapse
|