1
|
Gou Y, Li A, Dong X, Hao A, Li J, Xiang H, Rahaman S, He TC, Fan J. Lactate transporter MCT4 regulates the hub genes for lipid metabolism and inflammation to attenuate intracellular lipid accumulation in non-alcoholic fatty liver disease. Genes Dis 2025; 12:101554. [PMID: 40330148 PMCID: PMC12052676 DOI: 10.1016/j.gendis.2025.101554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 05/08/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) patients have multiple metabolic disturbances, with markedly elevated levels of lactate. Lactate accumulations play pleiotropic roles in disease progression through metabolic rearrangements and epigenetic modifications. Monocarboxylate transporter 4 (MCT4) is highly expressed in hepatocytes and responsible for transporting intracellular lactate out of the cell. To explore whether elevated MCT4 levels played any role in NAFLD development, we overexpressed and silenced MCT4 in hepatocytes and performed a comprehensive in vitro and in vivo analysis. Our results revealed that MCT4 overexpression down-regulated the genes for lipid synthesis while up-regulating the genes involved in lipid catabolism. Conversely, silencing MCT4 expression or inhibiting MCT4 expression led to the accumulation of intracellular lipid and glucose metabolites, resulting in hepatic steatosis. In a mouse model of NAFLD, we found that exogenous MCT4 overexpression significantly reduced lipid metabolism and alleviated hepatocellular steatosis. Mechanistically, MCT4 alleviated hepatic steatosis by regulating a group of hub genes such as Arg2, Olr1, Cd74, Mmp8, Irf7, Spp1, and Apoe, which in turn impacted multiple pathways involved in lipid metabolism and inflammatory response, such as PPAR, HIF-1, TNF, IL-17, PI3K-AKT, Wnt, and JAK-STAT. Collectively, our results strongly suggest that MCT4 may play an important role in regulating lipid metabolism and inflammation and thus serve as a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Yannian Gou
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Western Institute of Digital-Intelligent Medicine, Chongqing 401329, China
| | - Aohua Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Xiangyu Dong
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Ailing Hao
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Jiajia Li
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Han Xiang
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Saidur Rahaman
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, School of Clinical Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
- Western Institute of Digital-Intelligent Medicine, Chongqing 401329, China
| |
Collapse
|
2
|
Irshad I, Alqahtani SA, Ikejima K, Yu ML, Romero-Gomez M, Eslam M. Energy metabolism: An emerging therapeutic frontier in liver fibrosis. Ann Hepatol 2025; 30:101896. [PMID: 40057035 DOI: 10.1016/j.aohep.2025.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/18/2025]
Abstract
Liver fibrosis is a progressive response to chronic liver diseases characterized by a wound-healing process that leads to the accumulation of fibrillary extracellular matrix (ECM) proteins in and around the liver tissue. If left untreated, liver fibrosis can advance to cirrhosis and ultimately result in liver failure. Although there have been significant advancements in understanding the molecular mechanisms involved in liver fibrosis, effective therapeutic strategies to reverse or halt the condition remain limited. Recent research has underscored the critical role of energy metabolism in the initiation and progression of liver fibrosis. In response to liver injury, hepatic cells undergo metabolic reprogramming to meet the energy demands of myofibroblasts. This reprogramming involves various metabolic changes, including mitochondrial dysfunction, alterations in cellular bioenergetics, shifts in glycolysis and oxidative phosphorylation, as well as changes in lipid metabolism. These modifications can disrupt cellular energy homeostasis and increase energy release, activating hepatic cells, primarily hepatic stellate cells (HSCs). Activated HSCs then stimulate fibrogenic pathways, leading to the accumulation of ECM proteins in the liver, which exacerbates the progression of fibrosis. This review aims to explore the emerging connection between energy metabolism and liver fibrosis, focusing on the metabolic alterations and molecular mechanisms that drive this condition. We also examine the therapeutic implications of modulating energy metabolism to reduce energy release and mitigate liver fibrosis. Altering energy metabolism to decrease energy release may represent a promising approach for treating liver fibrosis and chronic liver diseases.
Collapse
Affiliation(s)
- Iram Irshad
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Saleh A Alqahtani
- Liver, Digestive, & Lifestyle Health Research Section, and Organ Transplant Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Kenichi Ikejima
- Department of Gastroenterology, Juntendo University School of Medicine, Japan
| | - Ming-Lung Yu
- School of Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan; Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Manuel Romero-Gomez
- Digestive Diseases Department and Ciberehd, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (HUVR/CSIC/US), University of Seville, Seville, Spain
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
3
|
Johnson E, Albakri JS, Allemailem KS, Sultan A, Alwanian WM, Alrumaihi F, Almansour NM, Aldakheel FM, Khalil FMA, Abduallah AM, Smith O. Mitochondrial dysfunction and calcium homeostasis in heart failure: Exploring the interplay between oxidative stress and cardiac remodeling for future therapeutic innovations. Curr Probl Cardiol 2025; 50:102968. [PMID: 39653095 DOI: 10.1016/j.cpcardiol.2024.102968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Heart failure (HF) is a multifaceted clinical syndrome characterized by the heart's inability to pump sufficient blood to meet the body's metabolic demands. It arises from various etiologies, including myocardial injury, hypertension, and valvular heart disease. A critical aspect of HF pathophysiology involves mitochondrial dysfunction, particularly concerning calcium (Ca2+) homeostasis and oxidative stress. This review highlights the pivotal role of excess mitochondrial Ca2+ in exacerbating oxidative stress, contributing significantly to HF progression. Novel insights are provided regarding the mechanisms by which mitochondrial Ca2+ overload leads to increased production of reactive oxygen species (ROS) and impaired cellular function. Despite this understanding, key gaps in research remain, particularly in elucidating the complex interplay between mitochondrial dynamics and oxidative stress across different HF phenotypes. Furthermore, therapeutic strategies targeting mitochondrial dysfunction are still in their infancy, with limited applications in clinical practice. By summarizing recent findings and identifying these critical research gaps, this review aims to pave the way for innovative therapeutic approaches that improve the management of heart failure, ultimately enhancing patient outcomes through targeted interventions.
Collapse
Affiliation(s)
- Emily Johnson
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | | | - Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdulaziz Sultan
- Family Medicine Senior Registrar, Ministry of Health, Saudi Arabia
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin 31991, Saudi Arabia
| | - Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Fatma Mohamed Ameen Khalil
- King Khalid University, Applied College, Unit of health specialties, basic sciences and their applications, Mohayil Asir Abha, 61421, Saudi Arabia
| | - Alduwish Manal Abduallah
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Alkarj 11942, Saudi Arabia
| | - Oliver Smith
- Department of Cell Systems and Anatomy, Long School of Medicine, UT Health San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|
4
|
Yan M, Cui Y, Xiang Q. Metabolism of hepatic stellate cells in chronic liver diseases: emerging molecular and therapeutic interventions. Theranostics 2025; 15:1715-1740. [PMID: 39897543 PMCID: PMC11780521 DOI: 10.7150/thno.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/10/2024] [Indexed: 02/04/2025] Open
Abstract
Chronic liver diseases, primarily metabolic dysfunction-associated steatotic liver disease (MASLD), metabolic and metabolic dysfunction-associated alcoholic liver disease (MetALD), and viral hepatitis, can lead to liver fibrosis, cirrhosis, and cancer. Hepatic stellate cell (HSC) activation plays a central role in the development of myofibroblasts and fibrogenesis in chronic liver diseases. However, HSC activation is influenced by the complex microenvironments within the liver, which are largely shaped by the interactions between HSCs and various other cell types. Changes in HSC phenotypes and metabolic mechanisms involve glucose, lipid, and cholesterol metabolism, oxidative stress, activation of the unfolded protein response (UPR), autophagy, ferroptosis, senescence, and nuclear receptors. Clinical interventions targeting these pathways have shown promising results in addressing liver inflammation and fibrosis, as well as in modulating glucose and lipid metabolism and metabolic stress responses. Therefore, a comprehensive understanding of HSC phenotypes and metabolic mechanisms presents opportunities for novel therapeutic approaches aimed at halting or even reversing chronic liver diseases.
Collapse
Affiliation(s)
- Mengyao Yan
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
| | - Yimin Cui
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| | - Qian Xiang
- Institute of Clinical Pharmacology, Peking University First Hospital, Beijing, China
- Department of Pharmacy Administration and Clinical Pharmacy, School of Pharmaceutical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
5
|
Liu J, Zhou F, Tang Y, Li L, Li L. Progress in Lactate Metabolism and Its Regulation via Small Molecule Drugs. Molecules 2024; 29:5656. [PMID: 39683818 DOI: 10.3390/molecules29235656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Lactate, once viewed as a byproduct of glycolysis and a metabolic "waste", is now recognized as an energy-providing substrate and a signaling molecule that modulates cellular functions under pathological conditions. The discovery of histone lactylation in 2019 marked a paradigm shift, with subsequent studies revealing that lactate can undergo lactylation with both histone and non-histone proteins, implicating it in the pathogenesis of various diseases, including cancer, liver fibrosis, sepsis, ischemic stroke, and acute kidney injury. Aberrant lactate metabolism is associated with disease onset, and its levels can predict disease outcomes. Targeting lactate production, transport, and lactylation may offer therapeutic potential for multiple diseases, yet a systematic summary of the small molecules modulating lactate and its metabolism in various diseases is lacking. This review outlines the sources and clearance of lactate, as well as its roles in cancer, liver fibrosis, sepsis, ischemic stroke, myocardial infarction, and acute kidney injury, and summarizes the effects of small molecules on lactate regulation. It aims to provide a reference and direction for future research.
Collapse
Affiliation(s)
- Jin Liu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Feng Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yang Tang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Linghui Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ling Li
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
6
|
Pan M, Li H, Shi X. A New Target for Hepatic Fibrosis Prevention and Treatment: The Warburg Effect. FRONT BIOSCI-LANDMRK 2024; 29:321. [PMID: 39344326 DOI: 10.31083/j.fbl2909321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 10/01/2024]
Abstract
Hepatic fibrosis is a major public health problem that endangers human wellbeing. In recent years, a number of studies have revealed the important impact of metabolic reprogramming on the occurrence and development of hepatic fibrosis. Among them, the Warburg effect, as an intracellular glucose metabolism reprogramming, can promote the occurrence and development of hepatic fibrosis by promoting the activation of hepatic stellate cells (HSCs) and inducing the polarization of liver macrophages (KC). Understanding the Warburg effect and its important role in the progression of hepatic fibrosis will assist in developing new strategies for the prevention and treatment of hepatic fibrosis. This review focuses on the Warburg effect and the specific mechanism by which it affects the progression of hepatic fibrosis by regulating HSCs activation and KC polarization. In addition, we also summarize and discuss the related experimental drugs and their mechanisms that inhibit the Warburg effect by targeting key proteins of glycolysis in order to improve hepatic fibrosis in the hope of providing more effective strategies for the clinical treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Meng Pan
- College of Basic Medical Sciences, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Huanyu Li
- Second Clinical Medical College, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| | - Xiaoyan Shi
- College of Basic Medical Sciences, Shaanxi University of Chinese Medicine, 712046 Xianyang, Shaanxi, China
| |
Collapse
|
7
|
Beyoğlu D, Popov YV, Idle JR. The Metabolomic Footprint of Liver Fibrosis. Cells 2024; 13:1333. [PMID: 39195223 PMCID: PMC11353060 DOI: 10.3390/cells13161333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Both experimental and clinical liver fibrosis leave a metabolic footprint that can be uncovered and defined using metabolomic approaches. Metabolomics combines pattern recognition algorithms with analytical chemistry, in particular, 1H and 13C nuclear magnetic resonance spectroscopy (NMR), gas chromatography-mass spectrometry (GC-MS) and various liquid chromatography-mass spectrometry (LC-MS) platforms. The analysis of liver fibrosis by each of these methodologies is reviewed separately. Surprisingly, there was little general agreement between studies within each of these three groups and also between groups. The metabolomic footprint determined by NMR (two or more hits between studies) comprised elevated lactate, acetate, choline, 3-hydroxybutyrate, glucose, histidine, methionine, glutamine, phenylalanine, tyrosine and citrate. For GC-MS, succinate, fumarate, malate, ascorbate, glutamate, glycine, serine and, in agreement with NMR, glutamine, phenylalanine, tyrosine and citrate were delineated. For LC-MS, only β-muricholic acid, tryptophan, acylcarnitine, p-cresol, valine and, in agreement with NMR, phosphocholine were identified. The metabolomic footprint of liver fibrosis was upregulated as regards glutamine, phenylalanine, tyrosine, citrate and phosphocholine. Several investigators employed traditional Chinese medicine (TCM) treatments to reverse experimental liver fibrosis, and a commentary is given on the chemical constituents that may possess fibrolytic activity. It is proposed that molecular docking procedures using these TCM constituents may lead to novel therapies for liver fibrosis affecting at least one-in-twenty persons globally, for which there is currently no pharmaceutical cure. This in-depth review summarizes the relevant literature on metabolomics and its implications in addressing the clinical problem of liver fibrosis, cirrhosis and its sequelae.
Collapse
Affiliation(s)
- Diren Beyoğlu
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA;
| | - Yury V. Popov
- Division of Gastroenterology, Hepatology and Nutrition, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Jeffrey R. Idle
- Department of Pharmaceutical and Administrative Sciences, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA 01119, USA;
| |
Collapse
|
8
|
Lal H, Verma SK, Wang Y, Xie M, Young ME. Circadian Rhythms in Cardiovascular Metabolism. Circ Res 2024; 134:635-658. [PMID: 38484029 PMCID: PMC10947116 DOI: 10.1161/circresaha.123.323520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Energetic demand and nutrient supply fluctuate as a function of time-of-day, in alignment with sleep-wake and fasting-feeding cycles. These daily rhythms are mirrored by 24-hour oscillations in numerous cardiovascular functional parameters, including blood pressure, heart rate, and myocardial contractility. It is, therefore, not surprising that metabolic processes also fluctuate over the course of the day, to ensure temporal needs for ATP, building blocks, and metabolism-based signaling molecules are met. What has become increasingly clear is that in addition to classic signal-response coupling (termed reactionary mechanisms), cardiovascular-relevant cells use autonomous circadian clocks to temporally orchestrate metabolic pathways in preparation for predicted stimuli/stresses (termed anticipatory mechanisms). Here, we review current knowledge regarding circadian regulation of metabolism, how metabolic rhythms are synchronized with cardiovascular function, and whether circadian misalignment/disruption of metabolic processes contribute toward the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Hind Lal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
9
|
Yao Y, Chen D, Yue Z. The regulatory role and mechanism of exosomes in hepatic fibrosis. Front Pharmacol 2023; 14:1284742. [PMID: 38108065 PMCID: PMC10722150 DOI: 10.3389/fphar.2023.1284742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
Globally, the prevalence and fatality rates of liver disorders are on the rise. Among chronic liver conditions, hepatic fibrosis stands out as a central pathological process. Despite this, approved treatments for hepatic fibrosis are currently lacking. Exosomes, small extracellular vesicles secreted by various cell types, play a significant role in intercellular communication and have emerged as essential mediators in liver fibrosis. In this regard, this review compiles the mechanisms through which exosomes regulate hepatic fibrosis, encompassing diverse targets and signaling pathways. Furthermore, it delves into the regulatory impact of exosomes modulated by natural plant-derived, endogenous, and synthetic compounds as potential therapeutic strategies for addressing hepatic fibrosis.
Collapse
Affiliation(s)
- Youli Yao
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Da Chen
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Zengchang Yue
- Department of Neurology, Mindong Hospital Affiliated to Fujian Medical University, Ningde, China
| |
Collapse
|
10
|
Dou J, Cui H, Cui Z, Xuan M, Gao C, Li Z, Lian L, Nan J, Wu Y. Pterostilbene exerts cytotoxicity on activated hepatic stellate cells by inhibiting excessive proliferation through the crosstalk of Sirt1 and STAT3 pathways. Food Chem Toxicol 2023; 181:114042. [PMID: 37722617 DOI: 10.1016/j.fct.2023.114042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Pterostilbene (PTE), a natural analogue of resveratrol, abundantly exists in blueberries and grapes and has several beneficial potentials against oxidative stress, inflammation, and cancer. In current study, we investigated the effects of PTE on hepatic fibrosis in vitro and in vivo. Activation of hepatic stellate cells (HSCs) is an initiating event in the initiation of hepatic fibrosis. MTT assay revealed that PTE (3.125-12.5 μM) displayed cytotoxicity on activated HSCs, no cytotoxicity on AML-12 and quiescent HSCs. PTE significantly inhibited the expressions of α-SMA, collagen Ⅰ and TIMP-1/MMP13 ratio; suppressed inflammatory cascade activation to reduce inflammatory cytokines release, such as Caspase-1, IL-1β and IL-6. PTE activated Sirt1 and decreased STAT3 phosphorylation, functioning as SRT1720 and Niclosamide. Sirt1 deficiency significantly elevated p-STAT3 expression, while STAT3 deficiency resulted in Sirt1 increasing and inhibited fibrosis and inflammatory cytokines expressions. In mice with hepatic fibrosis induced by thioacetamide (TAA), PTE significantly decreased ALT and AST activities, reduced fibrosis markers, STAT3 phosphorylation and activated Sirt1 expression. PTE showed cytotoxicity on activated HSCs to ameliorate hepatic fibrosis via regulating fibrogenesis, energy metabolism and inflammation and targeting the crosstalk of Sirt1 and STAT3. In conclusion, PTE could be potentially beneficial as a natural plant metabolite in preventing and treating hepatic fibrosis.
Collapse
Affiliation(s)
- Jiayi Dou
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Haozhen Cui
- Department of Chinese Traditional Medicine, Medical College, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Zhenyu Cui
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Meiyan Xuan
- School of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Chong Gao
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Zhaoxu Li
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Lihua Lian
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China
| | - Jixing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China.
| | - Yanling Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain (Yanbian University), Ministry of Education, Key Laboratory for Traditional Chinese Korean Medicine Research (Yanbian University), State Ethnic Affairs, College of Pharmacy, Yanbian University, Yanji, Jilin Province, 133002, China.
| |
Collapse
|
11
|
Huang X, Gao L, Deng R, Peng Y, Wu S, Lu J, Liu X. Huangqi-Danshen decoction reshapes renal glucose metabolism profiles that delays chronic kidney disease progression. Biomed Pharmacother 2023; 164:114989. [PMID: 37315436 DOI: 10.1016/j.biopha.2023.114989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/16/2023] Open
Abstract
Huangqi-Danshen decoction (HDD), a Chinese herbal preparation, is effective in clinical treatment of chronic kidney disease (CKD). However, the underlying mechanism remains to be clarified. In this study, we aimed to investigate the role of HDD in the regulation of renal glucose metabolism in a CKD mouse model. The 0.2% adenine-induced CKD mouse model was administered HDD extract at a dose of 6.8 g/kg/day for 4 weeks. Detection of renal glucose metabolites was performed by ultra-performance liquid chromatography-tandem mass spectrometry. The expression of renal fibrosis and glucose metabolism-related proteins was tested by Western blotting, immunohistochemistry, and immunofluorescence. The results showed that HDD treatment could significantly reduce serum creatinine (0.36 ± 0.10 mg/dL vs. 0.51 ± 0.07 mg/dL, P < 0.05) and blood urea nitrogen (40.02 ± 3.73 mg/dL vs. 62.91 ± 10 mg/dL, P < 0.001) levels, and improve renal pathological injury and fibrosis. Aberrant glucose metabolism was found in the kidneys of CKD mice, manifested by enhanced glycolysis and pentose phosphate pathway, and tricarboxylic acid cycle inhibition, which could be partially restored by HDD treatment. Furthermore, HDD regulated the expression of hexokinase 2, phosphofructokinase, pyruvate kinase M2, pyruvate dehydrogenase E1, oxoglutarate dehydrogenase, and glucose-6-phosphate dehydrogenase in CKD mice. In conclusion, HDD protected against adenine-induced CKD, reshaped glucose metabolism profiles, and restored the expression of key enzymes of glucose metabolism in the kidneys of CKD mice. This study sheds light on targeting glucose metabolism for the treatment of CKD and screening small molecule compounds from herbal medicine to slow CKD progression.
Collapse
Affiliation(s)
- Xi Huang
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Liwen Gao
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Ruyu Deng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Yu Peng
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Shanshan Wu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China; The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Jiandong Lu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China
| | - Xinhui Liu
- Department of Nephrology, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong 518033, China.
| |
Collapse
|
12
|
Wu X, Gu X, Xue M, Ge C, Liang X. Proteomic analysis of hepatic fibrosis induced by a high starch diet in largemouth bass (Micropterus salmoides). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 43:101007. [PMID: 35714397 DOI: 10.1016/j.cbd.2022.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/26/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Largemouth bass is sensitive to the dietary starch level and excess starch can induce metabolic liver diseases (MLD). Hepatic fibrosis is a typical pathological phenotype of MLD in largemouth bass, but the molecular basis underlying is largely unclear. This study fed fish with a low or high starch diet for 4 weeks. Liver tissues with or without fibrotic symptoms were recognized through histopathological and molecular markers analysis of hepatic fibrosis, following TMT Quantitative proteomics and conducted Parallel Reaction Monitoring (PRM) analyses. 2455 differentially expressed proteins with 1618 up-regulated and 837 down-regulated were identified in this study. In GO terms, up-regulated proteins were correlated with cytoskeleton organization, supramolecular fiber, cytoskeleton protein binding, and actin-binding, while down-regulated proteins were involved in mainly metabolism-related processes, and molecular binding activity. Down-regulated proteins were enriched in 63 KEGG pathways and concentrated in metabolism-related pathways, especially glucose, lipid, and amino acid metabolism. 70 KEGG pathways of up-regulated proteins mainly included immunity and inflammation-related pathways. The expression trends of 11 differentially expressed proteins were consistent with proteome results by PRM analysis. In conclusion, the development of hepatic fibrosis induced by high starch may be related to multi-signaling pathways, metabolism processes, and targets, which provides important data for further study on revealing the molecular mechanism of hepatic fibrosis.
Collapse
Affiliation(s)
- Xiaoliang Wu
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xu Gu
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Xue
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunyu Ge
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofang Liang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
13
|
Zhou Y, Long D, Zhao Y, Li S, Liang Y, Wan L, Zhang J, Xue F, Feng L. Oxidative stress-mediated mitochondrial fission promotes hepatic stellate cell activation via stimulating oxidative phosphorylation. Cell Death Dis 2022; 13:689. [PMID: 35933403 PMCID: PMC9357036 DOI: 10.1038/s41419-022-05088-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
Previous studies have demonstrated dysregulated mitochondrial dynamics in fibrotic livers and hepatocytes. Little is currently known about how mitochondrial dynamics are involved, nor is it clear how mitochondrial dynamics participate in hepatic stellate cell (HSC) activation. In the present study, we investigated the role of mitochondrial dynamics in HSC activation and the underlying mechanisms. We verified that mitochondrial fission was enhanced in human and mouse fibrotic livers and active HSCs. Moreover, increased mitochondrial fission driven by fis1 overexpression could promote HSC activation. Inhibiting mitochondrial fission using mitochondrial fission inhibitor-1 (Mdivi-1) could inhibit activation and induce apoptosis of active HSCs, indicating that increased mitochondrial fission is essential for HSC activation. Mdivi-1 treatment also induced apoptosis in active HSCs in vivo and thus ameliorated CCl4-induced liver fibrosis. We also found that oxidative phosphorylation (OxPhos) was increased in active HSCs, and OxPhos inhibitors inhibited activation and induced apoptosis in active HSCs. Moreover, increasing mitochondrial fission upregulated OxPhos, while inhibiting mitochondrial fission downregulated OxPhos, suggesting that mitochondrial fission stimulates OxPhos during HSC activation. Next, we found that inhibition of oxidative stress using mitoquinone mesylate (mitoQ) and Tempol inhibited mitochondrial fission and OxPhos and induced apoptosis in active HSCs, suggesting that oxidative stress contributes to excessive mitochondrial fission during HSC activation. In conclusion, our study revealed that oxidative stress contributes to enhanced mitochondrial fission, which triggers OxPhos during HSC activation. Importantly, inhibiting mitochondrial fission has huge prospects for alleviating liver fibrosis by eliminating active HSCs.
Collapse
Affiliation(s)
- Yanni Zhou
- grid.13291.380000 0001 0807 1581Key Lab of Transplant Engineering and Immunology of the Ministry of Health, Laboratory of Transplant Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Dan Long
- grid.13291.380000 0001 0807 1581Key Lab of Transplant Engineering and Immunology of the Ministry of Health, Laboratory of Transplant Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Ying Zhao
- grid.13291.380000 0001 0807 1581Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Shengfu Li
- grid.13291.380000 0001 0807 1581Key Lab of Transplant Engineering and Immunology of the Ministry of Health, Laboratory of Transplant Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Yan Liang
- grid.13291.380000 0001 0807 1581Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Lin Wan
- grid.13291.380000 0001 0807 1581Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Jingyao Zhang
- grid.13291.380000 0001 0807 1581Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Fulai Xue
- grid.13291.380000 0001 0807 1581Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Li Feng
- grid.13291.380000 0001 0807 1581Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| |
Collapse
|
14
|
Hou LS, Zhang YW, Li H, Wang W, Huan ML, Zhou SY, Zhang BL. The regulatory role and mechanism of autophagy in energy metabolism-related hepatic fibrosis. Pharmacol Ther 2022; 234:108117. [PMID: 35077761 DOI: 10.1016/j.pharmthera.2022.108117] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023]
Abstract
Hepatic fibrosis is a key pathological process of chronic liver diseases, caused by alcohol, toxic and aberrant energy metabolism. It progresses to cirrhosis or even hepatic carcinoma without effective treatment. Studies have shown that autophagy has important regulatory effects on hepatic stellate cells (HSCs) energy metabolism, and then affect the activation state of HSCs. Autophagy maintains hepatic energy homeostasis, and the dysregulation of autophagy can lead to the activation of HSCs and the occurrence and development of hepatic fibrosis. It is necessary to explore the mechanism of autophagy in energy metabolism-related hepatic fibrosis. Herein, the current study summarizes the regulating mechanisms of autophagy through different targets and signal pathways in energy metabolism-related hepatic fibrosis, and discusses the regulatory effect of autophagy by natural plant-derived, endogenous and synthetic compounds for the treatment of hepatic fibrosis. A better comprehension of autophagy in hepatic stellate cells energy metabolism-related hepatic fibrosis may provide effective intervention of hepatic fibrosis, explore the potential clinical strategies and promote the drug treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- Li-Shuang Hou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yao-Wen Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Hua Li
- Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China; Department of Natural Medicine, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Wei Wang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Meng-Lei Huan
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
15
|
Bae M, Kim MB, Lee JY. Fucoxanthin Attenuates the Reprogramming of Energy Metabolism during the Activation of Hepatic Stellate Cells. Nutrients 2022; 14:nu14091902. [PMID: 35565869 PMCID: PMC9103095 DOI: 10.3390/nu14091902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/26/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Hepatic stellate cells (HSC) play a major role in developing liver fibrosis. Upon activation during liver injury, activated HSC (aHSC) increase cell proliferation, fibrogenesis, contractility, chemotaxis, and cytokine release. We previously showed that aHSC have increased mitochondrial respiration but decreased glycolysis compared to quiescent HSC (qHSC). We also demonstrated that fucoxanthin (FCX), a xanthophyll carotenoid, has an anti-fibrogenic effect in HSC. The objective of this study was to investigate whether FCX attenuates metabolic reprogramming occurring during HSC activation. Mouse primary HSC were activated in the presence or absence of FCX for seven days. aHSC displayed significantly decreased glycolysis and increased mitochondrial respiration compared to qHSC, which was ameliorated by FCX present during activation. In addition, FCX partially attenuated the changes in the expression of genes involved in glycolysis and mitochondrial respiration, including hexokinase 1 (Hk1), Hk2, peroxisome proliferator-activated receptor γ coactivator 1β, and pyruvate dehydrogenase kinase 3. Our data suggest that FCX may prevent HSC activation by modulating the expression of genes crucial for metabolic reprogramming in HSC.
Collapse
Affiliation(s)
- Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA; (M.B.); (M.-B.K.)
- Department of Food and Nutrition, Interdisciplinary Program in Senior Human Ecology, BK21 FOUR, College of Natural Sciences, Changwon National University, Changwon 51140, Korea
| | - Mi-Bo Kim
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA; (M.B.); (M.-B.K.)
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA; (M.B.); (M.-B.K.)
- Correspondence: ; Tel.: +1-(860)-486-1827
| |
Collapse
|
16
|
Erratum: Augmented Liver Uptake of the Membrane Voltage Sensor Tetraphenylphosphonium Distinguishes Early Fibrosis in a Mouse Model. Front Physiol 2022; 12:830151. [PMID: 35002786 PMCID: PMC8728887 DOI: 10.3389/fphys.2021.830151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
[This corrects the article DOI: 10.3389/fphys.2021.676722.].
Collapse
|
17
|
Ge S, Yang W, Chen H, Yuan Q, Liu S, Zhao Y, Zhang J. MyD88 in Macrophages Enhances Liver Fibrosis by Activation of NLRP3 Inflammasome in HSCs. Int J Mol Sci 2021; 22:ijms222212413. [PMID: 34830293 PMCID: PMC8622429 DOI: 10.3390/ijms222212413] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/04/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic liver disease mediated by the activation of hepatic stellate cells (HSCs) leads to liver fibrosis. The signal adaptor MyD88 of Toll-like receptor (TLR) signaling is involved during the progression of liver fibrosis. However, the specific role of MyD88 in myeloid cells in liver fibrosis has not been thoroughly investigated. In this study, we used a carbon tetrachloride (CCl4)-induced mouse fibrosis model in which MyD88 was selectively depleted in myeloid cells. MyD88 deficiency in myeloid cells attenuated liver fibrosis in mice and decreased inflammatory cell infiltration. Furthermore, deficiency of MyD88 in macrophages inhibits the secretion of CXC motif chemokine 2 (CXCL2), which restrains the activation of HSCs characterized by NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation. Moreover, targeting CXCL2 by CXCR2 inhibitors attenuated the activation of HSCs and reduced liver fibrosis. Thus, MyD88 may represent a potential candidate target for the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Shuang Ge
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China; (S.G.); (W.Y.)
| | - Wei Yang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China; (S.G.); (W.Y.)
| | - Haiqiang Chen
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (H.C.); (Q.Y.); (S.L.)
| | - Qi Yuan
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (H.C.); (Q.Y.); (S.L.)
| | - Shi Liu
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (H.C.); (Q.Y.); (S.L.)
| | - Yongxiang Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China; (S.G.); (W.Y.)
- Correspondence: (Y.Z.); (J.Z.)
| | - Jinhua Zhang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China; (S.G.); (W.Y.)
- College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing 100044, China; (H.C.); (Q.Y.); (S.L.)
- Correspondence: (Y.Z.); (J.Z.)
| |
Collapse
|
18
|
Pandita H, Mezey E, Ganapathy-Kanniappan S. Augmented Liver Uptake of the Membrane Voltage Sensor Tetraphenylphosphonium Distinguishes Early Fibrosis in a Mouse Model. Front Physiol 2021; 12:676722. [PMID: 34759830 PMCID: PMC8573124 DOI: 10.3389/fphys.2021.676722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/21/2021] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial (mito-) oxidative phosphorylation (OxPhos) is a critical determinant of cellular membrane potential/voltage. Dysregulation of OxPhos is a biochemical signature of advanced liver fibrosis. However, less is known about the net voltage of the liver in fibrosis. In this study, using the radiolabeled [3H] voltage sensor, tetraphenylphosphonium (TPP), which depends on membrane potential for cellular uptake/accumulation, we determined the net voltage of the liver in a mouse model of carbon tetrachloride (CCl4)-induced hepatic fibrosis. We demonstrated that the liver uptake of 3H-TPP significantly increased at 4 weeks of CCl4-administration (6.07 ± 0.69% ID/g, p < 0.05) compared with 6 weeks (4.85 ± 1.47% ID/g) and the control (3.50 ± 0.22% ID/g). Analysis of the fibrosis, collagen synthesis, and deposition showed that the increased 3H-TPP uptake at 4 weeks corresponds to early fibrosis (F1), according to the METAVIR scoring system. Biodistribution data revealed that the 3H-TPP accumulation is significant in the fibrogenic liver but not in other tissues. Mechanistically, the augmentation of the liver uptake of 3H-TPP in early fibrosis concurred with the upregulation of mito-electron transport chain enzymes, a concomitant increase in mito-oxygen consumption, and the activation of the AMPK-signaling pathway. Collectively, our results indicate that mito-metabolic response to hepatic insult may underlie the net increase in the voltage of the liver in early fibrosis.
Collapse
Affiliation(s)
- Himanshi Pandita
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Esteban Mezey
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shanmugasundaram Ganapathy-Kanniappan
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
19
|
Yu H, Zhu J, Chang L, Liang C, Li X, Wang W. 3-Bromopyruvate decreased kidney fibrosis and fibroblast activation by suppressing aerobic glycolysis in unilateral ureteral obstruction mice model. Life Sci 2021; 272:119206. [PMID: 33577854 DOI: 10.1016/j.lfs.2021.119206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 01/26/2023]
Abstract
AIMS Enhanced aerobic glycolysis is a motivation of fibroblast-myofibroblast transdifferentiation (FMT), leading to kidney fibrosis. 3-Bromopyruvate (3-BrPA) is a glycolysis inhibitor and has fibrosis-protected effect in liver. This study aims to explore the effects of 3-BrPA on aerobic glycolysis and kidney fibrosis in a unilateral ureteral obstruction (UUO) mice model and transforming growth factor-β1(TGF-β1)-stimulated normal rat kidney fibroblast (NRK49F) cell model in vitro. MAIN METHODS In vivo UUO mouse model and in vitro TGF-β1 stimulated cell model were built. Immunohistochemical staining, Western blots, Real-time PCR and fluorescence microscopy were employed to detect extra cellular matrix (ECM) synthesis, fibroblast activation, aerobic glycolysis switch and related signaling pathways. KEY FINDINGS HE and Masson's Trichrome staining showed that 3-BrPA substantially suppressed kidney injury and interstitial collagen production. 3-BrPA also attenuated ECM accumulation in a dose-dependent manner, as shown by immunohistochemistry staining, RT-PCR and western blot. Furthermore, 3-BrPA inhibited FMT, as indicated by α-SMA and PCNA immunofluorescence double staining. Additionally, the results of MTT assay indicated 3-BrPA prevented TGF-β1 induced fibroblasts proliferation in a time- and dose-dependent manner. Mechanistically, molecular docking results showed that 3-BrPA effectively decreased the aerobic glycolysis related enzymes Hexokinase-2 (HK-2), Lactate dehydrogenase A (LDHA) and Pyruvate kinase isozymes M2 (PKM-2), as well as inhibited IL-1 receptor-associated kinase 4 (IRAK4)/MYC protein levels. SIGNIFICANCE Our study highlighted that 3-BrPA is a potential reno-protective agent in kidney fibrosis through the inhibition of fibroblasts aerobic glycolysis might via IRAK4/MYC signal pathways.
Collapse
Affiliation(s)
- Honglin Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei City 230022, Anhui Province, China
| | - Jingbo Zhu
- The First Clinic College, Anhui Medical University, Hefei City 230032, Anhui Province, China
| | - Lingyu Chang
- The First Clinic College, Anhui Medical University, Hefei City 230032, Anhui Province, China
| | - Chaozhao Liang
- Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei City 230022, Anhui Province, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei City 230032, Anhui Province, China.
| | - Xiaohu Li
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei City 230022, Anhui Province, China.
| | - Wei Wang
- Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei City 230022, Anhui Province, China; Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei City 230032, Anhui Province, China.
| |
Collapse
|
20
|
Chiarelli N, Zoppi N, Ritelli M, Venturini M, Capitanio D, Gelfi C, Colombi M. Biological insights in the pathogenesis of hypermobile Ehlers-Danlos syndrome from proteome profiling of patients' dermal myofibroblasts. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166051. [PMID: 33383104 DOI: 10.1016/j.bbadis.2020.166051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Hypermobile Ehlers-Danlos syndrome (hEDS), mainly characterized by generalized joint hypermobility and its complications, minor skin changes, and apparently segregating with an autosomal dominant pattern, is still without a known molecular basis. Hence, its diagnosis is only clinical based on a strict set of criteria defined in the revised EDS nosology. Moreover, the hEDS phenotypic spectrum is wide-ranging and comprises multiple associated signs and symptoms shared with other heritable or acquired connective tissue disorders and chronic inflammatory diseases. In this complex scenario, we previously demonstrated that hEDS patients' skin fibroblasts show phenotypic features of myofibroblasts, widespread extracellular matrix (ECM) disarray, perturbation of ECM-cell contacts, and dysregulated expression of genes involved in connective tissue architecture and related to inflammatory and pain responses. Herein, the cellular proteome of 6 hEDS dermal myofibroblasts was compared to that of 12 control fibroblasts to deepen the knowledge on mechanisms involved in the disease pathogenesis. Qualitative and quantitative differences were assessed based on top-down and bottom-up approaches and some differentially expressed proteins were proofed by biochemical analyses. Proteomics disclosed the differential expression of proteins principally implicated in cytoskeleton organization, energy metabolism and redox balance, proteostasis, and intracellular trafficking. Our findings offer a comprehensive view of dysregulated protein networks and related pathways likely associated with the hEDS pathophysiology. The present results can be regarded as a starting point for future in-depth investigations aimed to decipher the functional impact of potential bioactive molecules for the development of targeted management and therapies.
Collapse
Affiliation(s)
- Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Marina Venturini
- Division of Dermatology, Department of Clinical and Experimental Sciences, Spedali Civili University Hospital Brescia, Italy
| | - Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milano, Italy; IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
21
|
Gibb AA, Lazaropoulos MP, Elrod JW. Myofibroblasts and Fibrosis: Mitochondrial and Metabolic Control of Cellular Differentiation. Circ Res 2020; 127:427-447. [PMID: 32673537 DOI: 10.1161/circresaha.120.316958] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac fibrosis is mediated by the activation of resident cardiac fibroblasts, which differentiate into myofibroblasts in response to injury or stress. Although myofibroblast formation is a physiological response to acute injury, such as myocardial infarction, myofibroblast persistence, as occurs in heart failure, contributes to maladaptive remodeling and progressive functional decline. Although traditional pathways of activation, such as TGFβ (transforming growth factor β) and AngII (angiotensin II), have been well characterized, less understood are the alterations in mitochondrial function and cellular metabolism that are necessary to initiate and sustain myofibroblast formation and function. In this review, we highlight recent reports detailing the mitochondrial and metabolic mechanisms that contribute to myofibroblast differentiation, persistence, and function with the hope of identifying novel therapeutic targets to treat, and potentially reverse, tissue organ fibrosis.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Michael P Lazaropoulos
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - John W Elrod
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
22
|
Bae M, Lee Y, Pham TX, Hu S, Park YK, Lee JY. Astaxanthin inhibits the reduction of glycolysis during the activation of hepatic stellate cells. Life Sci 2020; 256:117926. [PMID: 32535081 DOI: 10.1016/j.lfs.2020.117926] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
AIMS Hepatic stellate cells (HSCs) play an essential role in the development of liver fibrosis by producing extracellular matrix proteins, growth factors, and pro-inflammatory and pro-fibrogenic cytokines once activated. We previously demonstrated that astaxanthin (ASTX), a xanthophyll carotenoid, attenuates HSC activation. The objective of this study was to investigate whether there is a difference in glycolysis between quiescent and activated HSCs and the effect of ASTX on glycolysis during HSC activation. MATERIALS AND METHODS Mouse primary HSCs were activated for 7 days in the presence or absence of 25 μM of ASTX. Quiescent HSCs (qHSCs), 1 day after isolation, and activated HSCs (aHSCs) treated with/without ASTX were plated in a Seahorse XF24 cell culture microplate for Glycolysis Stress tests. KEY FINDINGS aHSCs had significantly lower glycolysis, but higher glycolytic capacity, maximum capacity of glycolysis, and non-glycolytic acidification than qHSCs. Importantly, ASTX markedly increased glycolysis during HSC activation with a concomitant increase in lactate formation and secretion. Compared with qHSCs, aHSCs had significantly lower expression of glucose transporter 1, the major glucose transporter in HSCs, and its transcription factor hypoxia-inducible factor 1α, which was markedly increased by ASTX in aHSCs. SIGNIFICANCE Our data suggest that ASTX may prevent the activation of HSCs by altering glycolysis and the expression of genes involved in the pathways.
Collapse
Affiliation(s)
- Minkyung Bae
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA; Department of Food and Nutrition, Changwon National University, Changwon, Gyeongsangnam-do, South Korea
| | - Yoojin Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Tho X Pham
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Siqi Hu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Young-Ki Park
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA
| | - Ji-Young Lee
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
23
|
Khomich O, Ivanov AV, Bartosch B. Metabolic Hallmarks of Hepatic Stellate Cells in Liver Fibrosis. Cells 2019; 9:24. [PMID: 31861818 PMCID: PMC7016711 DOI: 10.3390/cells9010024] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
Liver fibrosis is a regenerative process that occurs after injury. It is characterized by the deposition of connective tissue by specialized fibroblasts and concomitant proliferative responses. Chronic damage that stimulates fibrogenic processes in the long-term may result in the deposition of excess matrix tissue and impairment of liver functions. End-stage fibrosis is referred to as cirrhosis and predisposes strongly to the loss of liver functions (decompensation) and hepatocellular carcinoma. Liver fibrosis is a pathology common to a number of different chronic liver diseases, including alcoholic liver disease, non-alcoholic fatty liver disease, and viral hepatitis. The predominant cell type responsible for fibrogenesis is hepatic stellate cells (HSCs). In response to inflammatory stimuli or hepatocyte death, HSCs undergo trans-differentiation to myofibroblast-like cells. Recent evidence shows that metabolic alterations in HSCs are important for the trans-differentiation process and thus offer new possibilities for therapeutic interventions. The aim of this review is to summarize current knowledge of the metabolic changes that occur during HSC activation with a particular focus on the retinol and lipid metabolism, the central carbon metabolism, and associated redox or stress-related signaling pathways.
Collapse
Affiliation(s)
- Olga Khomich
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM, U1052, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL1), CNRS UMR_5286, Centre Léon Bérard, CEDEX 03, 69424 Lyon, France;
| |
Collapse
|
24
|
El-Maadawy WH, Hammam OA, Seif el-Din SH, El-Lakkany NM. α-Lipoic acid modulates liver fibrosis: A cross talk between TGF-β1, autophagy, and apoptosis. Hum Exp Toxicol 2019; 39:440-450. [DOI: 10.1177/0960327119891212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Autophagy and apoptosis are important players in the progression of hepatic fibrosis via activation of hepatic stellate cells (HSCs). Despite the recently depicted antifibrotic effects of alpha-lipoic acid (ALA), however, its modulatory effects on HSCs autophagy remain unverified. Our study aimed to elucidate the underlying antifibrotic mechanisms through which ALA mediates HSC autophagy and apoptosis. Liver fibrosis was induced via thioacetamide (TAA) intoxication in rats; TAA-intoxicated rats were treated with either silymarin or ALA. Effect of ALA on biochemical parameters and immunohistopathological examinations was measured and compared to silymarin. ALA restored normal hepatic architecture (S1 vs. S4), liver functions, hepatic glutathione, and transforming growth factor-β1 levels. ALA ameliorated hepatic levels of malondialdehyde, platelet-derived growth factor, tissue inhibitor metalloproteinases-1, hydroxyproline, and expression of alpha-smooth muscle actin. Moreover, ALA significantly reduced messenger RNA expression of LC3-II genes and triggered caspase-3 expression. Interestingly, ALA exhibited superior activities over silymarin regarding suppression of proliferation, activation and autophagy of HSCs, collagen deposition, and induction of HSCs apoptosis. In conclusion, treatment of TAA-intoxicated rats with ALA inhibited autophagy and induced apoptotic clearance of activated HSCs. Accordingly, this study provides mechanistic insights into the possible applicability of ALA in the treatment of hepatic fibrosis.
Collapse
Affiliation(s)
- WH El-Maadawy
- Department of Pharmacology, Theodor Bilharz Research Institute, Giza, Egypt
| | - OA Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Giza, Egypt
| | - SH Seif el-Din
- Department of Pharmacology, Theodor Bilharz Research Institute, Giza, Egypt
| | - NM El-Lakkany
- Department of Pharmacology, Theodor Bilharz Research Institute, Giza, Egypt
| |
Collapse
|
25
|
Wei Q, Su J, Dong G, Zhang M, Huo Y, Dong Z. Glycolysis inhibitors suppress renal interstitial fibrosis via divergent effects on fibroblasts and tubular cells. Am J Physiol Renal Physiol 2019; 316:F1162-F1172. [PMID: 30969803 DOI: 10.1152/ajprenal.00422.2018] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Renal interstitial fibrosis is a common pathological feature of chronic kidney disease that may involve changes of metabolism in kidney cells. In the present study, we first showed that blockade of glycolysis with either dichloroacetate (DCA) or shikonin to target different glycolytic enzymes reduced renal fibrosis in a mouse model of unilateral ureteral obstruction (UUO). Both inhibitors evidently suppressed the induction of fibronectin and collagen type I in obstructed kidneys, with DCA also showing inhibitory effects on collagen type IV and α-smooth muscle actin (α-SMA). Histological examination also confirmed less collagen deposition in DCA-treated kidneys. Both DCA and shikonin significantly inhibited renal tubular apoptosis but not interstitial apoptosis in UUO. Macrophage infiltration after UUO injury was also suppressed. Shikonin, but not DCA, caused obvious animal weight loss during UUO. To determine whether shikonin and DCA worked on tubular cells and/or fibroblasts, we tested their effects on cultured renal proximal tubular BUMPT cells and renal NRK-49F fibroblasts during hypoxia or transforming growth factor-β1 treatment. Although both inhibitors reduced fibronectin and α-SMA production in NRK-49F cells during hypoxia or transforming growth factor-β1 treatment, they did not suppress fibronectin and α-SMA expression in BUMPT cells. Altogether, these results demonstrate the inhibitory effect of glycolysis inhibitors on renal interstitial fibrosis. In this regard, DCA is more potent for fibrosis inhibition and less toxic to animals than shikonin.
Collapse
Affiliation(s)
- Qingqing Wei
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Jennifer Su
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Yuqing Huo
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University , Augusta, Georgia.,Charlie Norwood Veterans Affairs Medical Center , Augusta, Georgia
| |
Collapse
|
26
|
Ko YH, Niedźwiecka K, Casal M, Pedersen PL, Ułaszewski S. 3-Bromopyruvate as a potent anticancer therapy in honor and memory of the late Professor André Goffeau. Yeast 2018; 36:211-221. [PMID: 30462852 DOI: 10.1002/yea.3367] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 01/10/2023] Open
Abstract
3-Bromopyruvate (3BP) is a small, highly reactive molecule formed by bromination of pyruvate. In the year 2000, the antitumor properties of 3BP were discovered. Studies using animal models proved its high efficacy for anticancer therapy with no apparent side effects. This was also found to be the case in a limited number of cancer patients treated with 3BP. Due to the "Warburg effect," most tumor cells exhibit metabolic changes, for example, increased glucose consumption and lactic acid production resulting from mitochondrial-bound overexpressed hexokinase 2. Such alterations promote cell migration, immortality via inhibition of apoptosis, and less dependence on the availability of oxygen. Significantly, these attributes also make cancer cells more sensitive to agents, such as 3BP that inhibits energy production pathways without harming normal cells. This selectivity of 3BP is mainly due to overexpressed monocarboxylate transporters in cancer cells. Furthermore, 3BP is not a substrate for any pumps belonging to the ATP-binding cassette superfamily, which confers resistance to a variety of drugs. Also, 3BP has the capacity to induce multiple forms of cell death, by, for example, ATP depletion resulting from inactivation of both glycolytic and mitochondrial energy production pathways. In addition to its anticancer property, 3BP also exhibits antimicrobial activity. Various species of microorganisms are characterized by different susceptibility to 3BP inhibition. Among tested strains, the most sensitive was found to be the pathogenic yeast-like fungus Cryptococcus neoformans. Significantly, studies carried out in our laboratories have shown that 3BP exhibits a remarkable capacity to eradicate cancer cells, fungi, and algae.
Collapse
Affiliation(s)
- Young H Ko
- KoDiscovery, LLC, University of Maryland BioPark, Baltimore, Maryland, USA
| | | | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga, Portugal
| | - Peter L Pedersen
- Department of Biological Chemistry and Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
27
|
Gajendiran P, Vega LI, Itoh K, Sesaki H, Vakili MR, Lavasanifar A, Hong K, Mezey E, Ganapathy-Kanniappan S. Elevated mitochondrial activity distinguishes fibrogenic hepatic stellate cells and sensitizes for selective inhibition by mitotropic doxorubicin. J Cell Mol Med 2018; 22:2210-2219. [PMID: 29397578 PMCID: PMC5867155 DOI: 10.1111/jcmm.13501] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/18/2017] [Indexed: 12/17/2022] Open
Abstract
Activation of hepatic stellate cells (HSCs) is an integral component of the wound‐healing process in liver injury/inflammation. However, uncontrolled activation of HSCs leads to constant secretion of collagen‐rich extracellular matrix (ECM) proteins, resulting in liver fibrosis. The enhanced ECM synthesis/secretion demands an uninterrupted supply of intracellular energy; however, there is a paucity of data on the bioenergetics, particularly the mitochondrial (mito) metabolism of fibrogenic HSCs. Here, using human and rat HSCs in vitro, we show that the mito‐respiration, mito‐membrane potential (Δψm) and cellular ‘bioenergetic signature’ distinguish fibrogenic HSCs from normal, less‐active HSCs. Ex vivo, HSCs from mouse and rat models of liver fibrosis further confirmed the altered ‘bioenergetic signature’ of fibrogenic HSCs. Importantly, the distinctive elevation in mito‐Δψm sensitized fibrogenic HSCs for selective inhibition by mitotropic doxorubicin while normal, less‐active HSCs and healthy human primary hepatocytes remained minimally affected if not, unaffected. Thus, the increased mito‐Δψm may provide an opportunity to selectively target fibrogenic HSCs in liver fibrosis.
Collapse
Affiliation(s)
- Priya Gajendiran
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leonel Iglesias Vega
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kie Itoh
- Department of Cell Biology, School of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hiromi Sesaki
- Department of Cell Biology, School of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mohammad Reza Vakili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | - Kelvin Hong
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Esteban Mezey
- Division of Gastroenterology and Hepatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shanmugasundaram Ganapathy-Kanniappan
- Division of Interventional Radiology, Russell H. Morgan Department of Radiology & Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
28
|
Sasaki R, Devhare PB, Steele R, Ray R, Ray RB. Hepatitis C virus-induced CCL5 secretion from macrophages activates hepatic stellate cells. Hepatology 2017; 66:746-757. [PMID: 28318046 PMCID: PMC5570659 DOI: 10.1002/hep.29170] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/14/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV)-mediated chronic liver disease is a serious health problem around the world and often causes fibrosis/cirrhosis and hepatocellular carcinoma. The mechanism of liver disease progression during HCV infection is still unclear, although inflammation is believed to be an important player in disease pathogenesis. We previously reported that macrophages including Kupffer cells exposed to HCV induce proinflammatory cytokines. These secreted cytokines may activate hepatic stellate cells (HSCs) toward fibrosis. In this study, we examined crosstalk between macrophages and HSCs following HCV infection. Primary human HSCs and immortalized HSCs (LX2 cells) were incubated with conditioned medium derived from HCV-exposed human macrophages. Expression of inflammasome and fibrosis-related genes in these cells was examined, with increased expression of inflammatory (NLR family pyrin domain containing 3, interleukins 1β and 6, and cysteine-cysteine chemokine ligand 5 [CCL5]) and profibrogenic (transforming growth factor β1, collagen type 4 alpha 1, matrix metalloproteinase 2, and alpha-smooth muscle actin) markers. Further investigation suggested that CCL5, secreted from HCV-exposed macrophages, activates inflammasome and fibrosis markers in HSCs and that neutralizing antibody to CCL5 inhibited activation. CONCLUSION Together, our results demonstrate that human macrophages exposed to HCV induce CCL5 secretion, which plays a significant role in hepatic inflammation and fibrosis. (Hepatology 2017;66:746-757).
Collapse
Affiliation(s)
- Reina Sasaki
- Department of Pathology, Saint Louis University, Missouri, USA
| | | | - Robert Steele
- Department of Pathology, Saint Louis University, Missouri, USA
| | - Ranjit Ray
- Department of Internal Medicine, Saint Louis University, Missouri, USA,Liver Center, Saint Louis University, Missouri, USA
| | - Ratna B. Ray
- Department of Pathology, Saint Louis University, Missouri, USA,Department of Internal Medicine, Saint Louis University, Missouri, USA,Liver Center, Saint Louis University, Missouri, USA,ADDRESS CORRESPONDENCE AND REPRINT REQUESTS TO: Ratna B. Ray, Department of Pathology, Saint Louis University, 1100 South Grand Boulevard, St. Louis, MO 63104. Phone: 314-977- 7822;
| |
Collapse
|
29
|
Metabolomic mechanisms of gypenoside against liver fibrosis in rats: An integrative analysis of proteomics and metabolomics data. PLoS One 2017; 12:e0173598. [PMID: 28291813 PMCID: PMC5349658 DOI: 10.1371/journal.pone.0173598] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 02/23/2017] [Indexed: 01/04/2023] Open
Abstract
Aims To investigate mechanisms and altered pathways of gypenoside against carbon tetrachloride (CCl4)-induced liver fibrosis based on integrative analysis of proteomics and metabolomics data. Methods CCl4-induced liver fibrosis rats were administrated gypenoside. The anti-fibrosis effects were evaluated by histomorphology and liver hydroxyproline (Hyp) content. Protein profiling and metabolite profiling of rats liver tissues were examined by isobaric tags for relative and absolute quantitation (iTRAQ) approach and gas chromatography-mass spectrometer (GC-MS) technology. Altered pathways and pivotal proteins and metabolites were searched by integrative analysis of proteomics and metabolomics data. The levels of some key proteins in altered pathways were determined by western blot. Results Histopathological changes and Hyp content in gypenoside group had significant improvements (P<0.05). Compared to liver fibrosis model group, we found 301 up-regulated and 296 down-regulated proteins, and 9 up-regulated and 8 down-regulated metabolites in gypenoside group. According to integrative analysis, some important pathways were found, including glycolysis or gluconeogenesis, fructose and mannose metabolism, glycine, serine and threonine metabolism, lysine degradation, arginine and proline metabolism, glutathione metabolism, and sulfur metabolism. Furthermore, the levels of ALDH1B1, ALDH2 and ALDH7A1 were found increased and restored to normal levels after gypenoside treated (P<0.05). Conclusions Gypenoside inhibited CCl4-induced liver fibrosis, which may be involved in the alteration of glycolysis metabolism and the protection against the damage of aldehydes and lipid peroxidation by up-regulating ALDH.
Collapse
|
30
|
González-Fernández B, Sánchez DI, Crespo I, San-Miguel B, Álvarez M, Tuñón MJ, González-Gallego J. Inhibition of the SphK1/S1P signaling pathway by melatonin in mice with liver fibrosis and human hepatic stellate cells. Biofactors 2017; 43:272-282. [PMID: 27801960 DOI: 10.1002/biof.1342] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 09/07/2016] [Accepted: 10/03/2016] [Indexed: 01/02/2023]
Abstract
The sphingosine kinase 1/sphingosine 1-phosphate (SphK1/S1P) system is involved in different pathological processes, including fibrogenesis. Melatonin abrogates activation of hepatic stellate cells (HSCs) and attenuates different profibrogenic pathways in animal models of fibrosis, but it is unknown if protection associates with its inhibitory effect on the SphK1/S1P axis. Mice in treatment groups received carbon tetrachloride (CCl4 ) 5 μL g-1 body wt i.p. twice a week for 4 or 6 weeks. Melatonin was given at 5 or 10 mg kg-1 day-1 i.p, beginning 2 weeks after the start of CCl4 administration. At both 4 and 6 weeks following CCl4 treatment, liver mRNA levels, protein concentration and immunohistochemical labelling for SphK1 increased significantly. S1P production, and expression of S1P receptor (S1PR)1, S1PR3 and acid sphingomyelinase (ASMase) were significantly elevated. However, there was a decreased expression of S1PR2 and S1P lyase (S1PL). Melatonin attenuated liver fibrosis, as shown by a significant inhibition of the expression of α-smooth muscle actin (α-SMA), transforming growth factor (TGF)-β and collagen (Col) Ι. Furthermore, melatonin inhibited S1P production, lowered expression of SphK1, S1PR1, SP1R3, and ASMase, and increased expression of S1PL. Melatonin induced a reversal of activated human HSCs cell line LX2, as evidenced by a reduction in α-SMA, TGF-β, and Col I expression. Melatonin-treated cells also exhibited an inhibition of the SphK1/S1P axis. Antifibrogenic effect of SphK1 inhibition was confirmed by treatment of LX2 cells with PF543. Abrogation of the lipid signaling pathway by the indole reveals novel molecular pathways that may account for the protective effect of melatonin in liver fibrogenesis. © 2016 BioFactors, 43(2):272-282, 2017.
Collapse
Affiliation(s)
| | - Diana I Sánchez
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
| | - Irene Crespo
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | | | | | - María J Tuñón
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), León, Spain
| |
Collapse
|
31
|
Huang Y, Deng X, Liang J. Modulation of hepatic stellate cells and reversibility of hepatic fibrosis. Exp Cell Res 2017; 352:420-426. [PMID: 28238836 DOI: 10.1016/j.yexcr.2017.02.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 12/21/2022]
Abstract
Hepatic fibrosis (HF) is the pathological component of a variety of chronic liver diseases. Hepatic stellate cells (HSC) are the main collagen-producing cells in the liver and their activation promotes HF. If HSC activation and proliferation can be inhibited, HF occurrence and development can theoretically be reduced and even reversed. Over the past ten years, a number of studies have addressed this process, and here we present a review of HSC modulation and HF reversal.
Collapse
Affiliation(s)
- Yu Huang
- Faculty of Graduate Studies of Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region, PR China.
| | - Xin Deng
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, 10 East China Road, Nanning 530011, Guangxi Zhuang Autonomous Region, PR China.
| | - Jian Liang
- Guangxi University of Chinese Medicine, Nanning 530001, Guangxi Zhuang Autonomous Region, PR China.
| |
Collapse
|
32
|
Zhao J, Peng L, Cui R, Guo X, Yan M. Dimethyl α-ketoglutarate reduces CCl 4-induced liver fibrosis through inhibition of autophagy in hepatic stellate cells. Biochem Biophys Res Commun 2016; 481:90-96. [PMID: 27823933 DOI: 10.1016/j.bbrc.2016.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 11/03/2016] [Indexed: 02/07/2023]
Abstract
Sustained activation of hepatic stellate cells (HSCs) leads to liver fibrosis. Autophagy fuels the activation of HSCs by generation of ATP. Our previous research demonstrated an inhibitory effect of dimethyl α-ketoglutarate (DMKG) on HSCs activation in vitro. In the current study, we demonstrated that DMKG reduced CCl4-induced liver fibrosis in Wistar rats. Then, with the use of the HSC-T6 cell lines and double immunofluorescent staining of liver sections, we showed that the anti-fibrotic effect occurred through the inhibition of the autophagy of HSCs. Both experiments showed that DMKG could inhibit autophagy and activation of HSCs, and that the activation of HSCs was down-regulated with autophagy. In addition, we showed that DMKG could lead to lipid droplet accumulation and decrease cellular ATP content in HSCs. Furthermore, the mechanism of how DMKG inhibited autophagy of HSCs was explored in vitro with the use of c646 (a competitive inhibitor of acetyl-coenzyme A which binds to the acetyltransferase EP300) and lipoic acid (an alternative acetyl-coenzyme A -replenishing agent to DMKG), and showed that both acetyl-coenzyme A and EP300 were involved. Collectively, our study investigated the possible role of DMKG in preventing liver fibrosis and HSCs activation. We showed that DMKG may be a potential therapeutic agent for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Jianjian Zhao
- Department of Geriatric Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Lei Peng
- Department of Geriatric Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Ruibing Cui
- Department of Geriatric Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Xiaolan Guo
- Department of Geriatric Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Ming Yan
- Department of Geriatric Gastroenterology, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|
33
|
MeCP2 silencing of LncRNA H19 controls hepatic stellate cell proliferation by targeting IGF1R. Toxicology 2016; 359-360:39-46. [PMID: 27350269 DOI: 10.1016/j.tox.2016.06.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 02/07/2023]
Abstract
Methyl-CpG-binding protein 2 (MeCP2) plays a key role in liver fibrosis. However, the potential mechanism of MeCP2 in liver fibrosis remains unclear. Early reports suggest that LncRNA H19 is important epigenetic regulator with critical roles in cell proliferation, but its role in hepatic fibrosis remains elusive. Sprague-Dawley rats liver fibrosis was generated by 12-weeks treatment with CCl4 intraperitoneal injection. HSC-T6 cells were used in vitro study. The expression levels of MeCP2, H19, IGF1R, α-SMA, and Col1A1 were estimated by Western blotting, qRT-PCR and Immunohistochemistry. HSC-T6 cells were transfected with MeCP2-siRNA, pEGF-C1-MeCP2, pEX-3-H19, and H19-siRNA. Finally, cell proliferation ability was assessed by the MTT assay. Here, we found that H19 was significantly down-regulated in HSCs and fibrosis tissues, and an opposite pattern is observed for MeCP2 and IGF1R. Silencing of MeCP2 blocked HSCs proliferation. Knockdown of MeCP2 elevated H19 expression in activated HSCs, and over-expression of MeCP2 inhibited H19 expression in activated HSCs. Moreover, we investigated the effect of H19 on IGF1R expression. Overexpression of H19 in HSCs repressed the expression of IGF1R, and an opposite pattern is observed for H19 silenced. In addition, we reported that overexpression of H19 inhibited the TGF-β1-induced proliferation of HSCs. Furthermore, MeCP2 negative regulation of H19 by targeting the protein IGF1R. Taken together, these results demonstrated that MeCP2 silencing of H19 can alter the IGF1R overexpression, thus contributing to HSCs proliferation. These data could suggest the development of combination therapies that target the MeCP2.
Collapse
|