1
|
Neiswender H, Baker FC, Veeranan-Karmegam R, Allen P, Gonsalvez GB. dTtc1, a conserved tetratricopeptide repeat protein, is required for maturation of Drosophila egg chambers via its role in stabilizing electron transport chain components. Front Cell Dev Biol 2023; 11:1148773. [PMID: 37333987 PMCID: PMC10272552 DOI: 10.3389/fcell.2023.1148773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
We recently identified the Drosophila ortholog of TTC1 (dTtc1) as an interacting partner of Egalitarian, an RNA adaptor of the Dynein motor. In order to better understand the function of this relatively uncharacterized protein, we depleted dTtc1 in the Drosophila female germline. Depletion of dTtc1 resulted in defective oogenesis and no mature eggs were produced. A closer examination revealed that mRNA cargoes normally transported by Dynein were relatively unaffected. However, mitochondria in dTtc1 depleted egg chambers displayed an extremely swollen phenotype. Ultrastructural analysis revealed a lack of cristae. These phenotypes were not observed upon disruption of Dynein. Thus, this function of dTtc1 is likely to be Dynein independent. Consistent with a role for dTtc1 in mitochondrial biology, a published proteomics screen revealed that dTtc1 interacts with numerous components of electron transport chain (ETC) complexes. Our results indicate that the expression level of several of these ETC components was significantly reduced upon depletion of dTtc1. Importantly, this phenotype was completely rescued upon expression of wild-type GFP-dTtc1 in the depleted background. Lastly, we demonstrate that the mitochondrial phenotype caused by a lack of dTtc1 is not restricted to the germline but is also observed in somatic tissues. Our model suggests that dTtc1, likely in combination with cytoplasmic chaperones, is required for stabilizing ETC components.
Collapse
|
2
|
Meng Y, Yang L, Wei X, Luo H, Hu Y, Tao X, He J, Zheng X, Xu Q, Luo K, Yu G, Luo Q. CCT5 interacts with cyclin D1 promoting lung adenocarcinoma cell migration and invasion. Biochem Biophys Res Commun 2021; 567:222-229. [PMID: 34217974 DOI: 10.1016/j.bbrc.2021.04.105] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 10/21/2022]
Abstract
Cyclin D1 (CCND1) has been identified as a metastatic promoter in various tumors including lung adenocarcinoma (LUAD), a subtype of non small cell lung cancer (NSCLC). The previous observation revealed that CCND1 was upregulated in NSCLC and predicted poor prognosis of LUAD patients. In this study, we examined a chaperonin containing TCP1 subunit 5 (CCT5) protein interacts with CCND1 in LUAD. Immunofluorescence demonstrated the co-localization of CCT5 and CCND1 protein in LUAD cells. CCT5 expression was detected with both immunohistochemistry (IHC) and bioinformatics analyses. Similar with the expression pattern of CCND1, CCT5 displayed a high level in LUAD tissues compared to non cancerous lung specimens. Patients with high CCT5 expression showed a significant shorter overall survival relative to those with low expression level. Furthermore, upregulated CCT5 exhibited significant positive correlation with TNM stage of LUAD patients in both IHC analyses and bioinformatics. Knocking down CCT5 remarkably inhibited LUAD cell migration and invasion in vitro by inactivating PI3K/AKT and its downstream EMT signals, which could abrogated the accelerated migration and invasion caused by CCND1 overexpression. In summary, our study discovered a highly expressed protein CCT5 in LUAD which interacted with CCND1 and promoted migration and invasion of LUAD cells by positively moderating PI3K/AKT-induced EMT pathway.
Collapse
Affiliation(s)
- Yiliang Meng
- Department of Oncology, Baise People's Hospital, Guangxi, Baise, 33000, Guangxi, China
| | - Liu Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510095, PR China
| | - Xiao Wei
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510095, PR China
| | | | - Yingying Hu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510095, PR China
| | - Xingyu Tao
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510095, PR China
| | - Jingjing He
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 510095, PR China
| | - Xuesong Zheng
- Department of Oncology, Baise People's Hospital, Guangxi, Baise, 33000, Guangxi, China
| | - Qunying Xu
- Department of Oncology, Baise People's Hospital, Guangxi, Baise, 33000, Guangxi, China
| | - Kunxiang Luo
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, BaiSe, 533000, China
| | - Guifang Yu
- Department of Oncology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Qisheng Luo
- Department of Neurosurgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi, BaiSe, 533000, China.
| |
Collapse
|
3
|
Redwine WB, DeSantis ME, Hollyer I, Htet ZM, Tran PT, Swanson SK, Florens L, Washburn MP, Reck-Peterson SL. The human cytoplasmic dynein interactome reveals novel activators of motility. eLife 2017; 6. [PMID: 28718761 PMCID: PMC5533585 DOI: 10.7554/elife.28257] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 07/14/2017] [Indexed: 12/25/2022] Open
Abstract
In human cells, cytoplasmic dynein-1 is essential for long-distance transport of many cargos, including organelles, RNAs, proteins, and viruses, towards microtubule minus ends. To understand how a single motor achieves cargo specificity, we identified the human dynein interactome by attaching a promiscuous biotin ligase (‘BioID’) to seven components of the dynein machinery, including a subunit of the essential cofactor dynactin. This method reported spatial information about the large cytosolic dynein/dynactin complex in living cells. To achieve maximal motile activity and to bind its cargos, human dynein/dynactin requires ‘activators’, of which only five have been described. We developed methods to identify new activators in our BioID data, and discovered that ninein and ninein-like are a new family of dynein activators. Analysis of the protein interactomes for six activators, including ninein and ninein-like, suggests that each dynein activator has multiple cargos. DOI:http://dx.doi.org/10.7554/eLife.28257.001
Collapse
Affiliation(s)
- William B Redwine
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States.,Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Morgan E DeSantis
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States
| | - Ian Hollyer
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States
| | - Zaw Min Htet
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States.,Biophysics Graduate Program, Harvard Medical School, Boston, United States
| | - Phuoc Tien Tran
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States
| | | | | | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas, United States.,Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas, United States
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California, San Diego, United States.,Division of Biological Sciences, Cell and Developmental Biology Section, University of California, San Diego, United States
| |
Collapse
|
4
|
Cell-free analysis of polyQ-dependent protein aggregation and its inhibition by chaperone proteins. J Biotechnol 2016; 239:1-8. [PMID: 27702574 DOI: 10.1016/j.jbiotec.2016.09.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/23/2016] [Accepted: 09/30/2016] [Indexed: 11/21/2022]
Abstract
Protein misfolding and aggregation is one of the major causes of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. So far protein aggregation related to these diseases has been studied using animals, cultured cells or purified proteins. In this study, we show that a newly synthesized polyglutamine protein implicated in Huntington's disease forms large aggregates in HeLa cells, and successfully recapitulate the process of this aggregation using a translation-based system derived from HeLa cell extracts. When the cell-free translation system was pre-incubated with recombinant human cytosolic chaperonin CCT, or the Hsc70 chaperone system (Hsc70s: Hsc70, Hsp40, and Hsp110), aggregate formation was inhibited in a dose-dependent manner. In contrast, when these chaperone proteins were added in a post-translational manner, aggregation was not prevented. These data led us to suggest that chaperonin CCT and Hsc70s interact with nascent polyglutamine proteins co-translationally or immediately after their synthesis in a fashion that prevents intra- and intermolecular interactions of aggregation-prone polyglutamine proteins. We conclude that the in vitro approach described here can be usefully employed to analyze the mechanisms that provoke polyglutamine-driven protein aggregation and to screen for molecules to prevent it.
Collapse
|