1
|
Wang J, Wang Y, Lu S, Lou H, Wang X, Wang W. AlgU mediates hyperosmotic tolerance in Pseudomonas protegens SN15-2 by regulating membrane stability, ROS scavenging, and osmolyte synthesis. Appl Environ Microbiol 2024; 90:e0059624. [PMID: 39023265 PMCID: PMC11337839 DOI: 10.1128/aem.00596-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Pseudomonas protegens can serve as an agricultural biocontrol agent. P. protegens often encounters hyperosmotic stress during industrial production and field application. The ability of P. protegens to withstand hyperosmotic stress is important for its application as a biocontrol agent. AlgU is a global regulator responsible for stress response and biocontrol ability. However, the specific regulatory role of AlgU in the hyperosmotic adaptation of P. protegens is poorly understood. In this study, we found that the AlgU mutation disrupted the hyperosmotic tolerance of P. protegens. Many genes and metabolites related to cell envelope formation were significantly downregulated in ΔalgU compared with that in the wild-type (WT) strain under hyperosmotic conditions, and we found that the algU mutation caused membrane integrity to be compromised and increased membrane permeability. Further experiments revealed that the cell envelope integrity protein TolA, which is regulated by AlgU, contributes to cell membrane stability and osmotic tolerance in P. protegens. In addition, several genes related to oxidative stress response were significantly downregulated in ΔalgU, and higher levels of intracellular reactive oxygen species were found in ΔalgU. Furthermore, we found that the synthesis of N-acetyl glutaminyl glutamine amide is directly regulated by AlgU and contributes to the hyperosmotic adaptation of P. protegens. This study revealed the mechanisms of AlgU's participation in osmotic tolerance in P. protegens, and it provides potential molecular targets for research on the hyperosmotic adaptation of P. protegens.IMPORTANCEIn this study, we found that the extracytoplasmic function sigma factor AlgU is essential for the survival of P. protegens under hyperosmotic conditions. We provided evidence supporting the roles of AlgU in influencing cell membrane stability, intracellular reactive oxygen species (ROS) accumulation, and dipeptide N-acetylglutaminylglutamine amide (NAGGN) synthesis in P. protegens under hyperosmotic conditions. Our findings revealed the mechanisms of AlgU's participation in hyperosmotic stress tolerance in P. protegens, and they provide potential molecular targets for research on the hyperosmotic adaptation of P. protegens, which is of value in improving the biocontrol ability of P. protegens.
Collapse
Affiliation(s)
- Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Shouquan Lu
- Shanghai Shuyin Intelligent Technology Co., Ltd., Shanghai, China
| | - Haibo Lou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - XiaoBing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Thiol Reductases in Deinococcus Bacteria and Roles in Stress Tolerance. Antioxidants (Basel) 2022; 11:antiox11030561. [PMID: 35326211 PMCID: PMC8945050 DOI: 10.3390/antiox11030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
Deinococcus species possess remarkable tolerance to extreme environmental conditions that generate oxidative damage to macromolecules. Among enzymes fulfilling key functions in metabolism regulation and stress responses, thiol reductases (TRs) harbour catalytic cysteines modulating the redox status of Cys and Met in partner proteins. We present here a detailed description of Deinococcus TRs regarding gene occurrence, sequence features, and physiological functions that remain poorly characterised in this genus. Two NADPH-dependent thiol-based systems are present in Deinococcus. One involves thioredoxins, disulfide reductases providing electrons to protein partners involved notably in peroxide scavenging or in preserving protein redox status. The other is based on bacillithiol, a low-molecular-weight redox molecule, and bacilliredoxin, which together protect Cys residues against overoxidation. Deinococcus species possess various types of thiol peroxidases whose electron supply depends either on NADPH via thioredoxins or on NADH via lipoylated proteins. Recent data gained on deletion mutants confirmed the importance of TRs in Deinococcus tolerance to oxidative treatments, but additional investigations are needed to delineate the redox network in which they operate, and their precise physiological roles. The large palette of Deinococcus TR representatives very likely constitutes an asset for the maintenance of redox homeostasis in harsh stress conditions.
Collapse
|
3
|
Fiorentino G, Contursi P, Gallo G, Bartolucci S, Limauro D. A peroxiredoxin of Thermus thermophilus HB27: Biochemical characterization of a new player in the antioxidant defence. Int J Biol Macromol 2020; 153:608-615. [PMID: 32165200 DOI: 10.1016/j.ijbiomac.2020.03.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 01/11/2023]
Abstract
To fight oxidative damage due to reactive oxygen species (ROS), cells are equipped of different enzymes, among which Peroxiredoxins (Prxs) (EC 1.11.1.15) play a key role. Prxs are thiol-based enzymes containing one (1-Cys Prx) or two (2-Cys Prx) catalytic cysteine residues. In 2-Cys Prxs the cysteine residues form a disulfide bridge following reduction of peroxide which is in turn reduced by Thioredoxin reductase (Tr) /Thioredoxin (Trx) disulfide reducing system to regenerate the enzyme. In this paper we investigated on Prxs of Thermus thermophilus whose genome contains an ORF TT_C0933 encoding a putative Prx, belonging to the subfamily of Bacterioferritin comigratory protein (Bcp): the synthetic gene was produced and expressed in E. coli and the recombinant protein, TtBcp, was biochemically characterized. TtBcp was active on both organic and inorganic peroxides and showed stability at high temperatures. To get insight into disulfide reducing system involved in the recycling of the enzyme we showed that TtBcp catalically eliminates hydrogen peroxide using an unusual partner, the Protein Disulfide Oxidoreductase (TtPDO) that could replace regeneration of the enzyme. Altogether these results highlight not only a new anti-oxidative pathway but also a promising molecule for possible future biotechnological applications.
Collapse
Affiliation(s)
- Gabriella Fiorentino
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso universitario di Monte S. Angelo, Via Cinthia, Naples, Italy
| | - Patrizia Contursi
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso universitario di Monte S. Angelo, Via Cinthia, Naples, Italy
| | - Giovanni Gallo
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso universitario di Monte S. Angelo, Via Cinthia, Naples, Italy
| | - Simonetta Bartolucci
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso universitario di Monte S. Angelo, Via Cinthia, Naples, Italy
| | - Danila Limauro
- Dipartimento di Biologia, Università di Napoli Federico II, Complesso universitario di Monte S. Angelo, Via Cinthia, Naples, Italy.
| |
Collapse
|
4
|
Hu S, Ferraro M, Thomas AP, Chung JM, Yoon NG, Seol JH, Kim S, Kim HU, An MY, Ok H, Jung HS, Ryu JH, Colombo G, Kang BH. Dual Binding to Orthosteric and Allosteric Sites Enhances the Anticancer Activity of a TRAP1-Targeting Drug. J Med Chem 2020; 63:2930-2940. [DOI: 10.1021/acs.jmedchem.9b01420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sung Hu
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Mariarosaria Ferraro
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), Consiglio Nazionale delle Ricerche (CNR), Milan 20131, Italy
| | - Ajesh P. Thomas
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Min Chung
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Nam Gu Yoon
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Ji-Hoon Seol
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sangpil Kim
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Han-ul Kim
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mi Young An
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Haewon Ok
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Hyun Suk Jung
- Division of Chemistry and Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Giorgio Colombo
- University of Pavia, Department of Chemistry, Pavia 27100, Italy
| | - Byoung Heon Kang
- Department of Biological Sciences, Ulsan National Institutes of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
5
|
Zhang J, Wang S, Zeng Z, Qin Y, Li P. The complete genome sequence of Bifidobacterium animalis subsp. lactis 01 and its integral components of antioxidant defense system. 3 Biotech 2019; 9:352. [PMID: 31501753 DOI: 10.1007/s13205-019-1890-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
The strain Bifidobacterium animalis 01, isolated from centenarians, showed promising antioxidant potential in our previous studies. In this study, the genome information on strain 01 and the important antioxidant components are presented. The complete genome comprises a single circular chromosome (1,931,632 bp; 60.49% G + C content) with 1569 coding DNA sequences, 52 tRNA, and 9 rRNA operons. Based on phylogenomic analyses, strain 01 was designated as B. animalis subsp. lactis 01. The genomic analysis reveals that at least eight protein-coding genes are antioxidant-related genes. The conditions for simulating the oxidative stress have been determined. The results of quantitative reverse transcription PCR further demonstrated that the genes encoding the thioredoxin system (ahpC, ahpF, bcp, trxB, trxA, nrdH, and msrAB) and non-enzyme factors of the divalent cation transporter gene (mntH) were upregulated under the H2O2 challenge, indicating that the eight genes were effective components of the antioxidant system. The results of this study could benefit for understanding the antioxidant mechanism of B. animalis 01 and future utilization of it as a potential antioxidant agent.
Collapse
Affiliation(s)
- Jinlan Zhang
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, HaiDian District, Beijing, 10083 China
| | - Shibo Wang
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, HaiDian District, Beijing, 10083 China
| | - Zhu Zeng
- 2College of Biotechnology, Southwest University, No. 2 Tiansheng, Beibei District, Chongqing, 400715 China
| | - Yuxuan Qin
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, HaiDian District, Beijing, 10083 China
| | - Pinglan Li
- 1Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Tsinghua East Road, HaiDian District, Beijing, 10083 China
| |
Collapse
|
6
|
Globular-shaped variable lymphocyte receptors B antibody multimerized by a hydrophobic clustering in hagfish. Sci Rep 2018; 8:10801. [PMID: 30018426 PMCID: PMC6050320 DOI: 10.1038/s41598-018-29197-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Abstract
In hagfish and lampreys, two representative jawless vertebrates, the humoral immunity is directly mediated by variable lymphocyte receptors B (VLRBs). Both monomeric VLRBs are structurally and functionally similar, but their C-terminal tails differ: lamprey VLRB has a Cys-rich tail that forms disulfide-linked pentamers of dimers, contributing to its multivalency, whereas hagfish VLRB has a superhydrophobic tail of unknown structure. Here, we reveal that VLRBs obtained from hagfish plasma have a globular-shaped multimerized form (approximately 0.6 to 1.7 MDa) that is generated by hydrophobic clustering instead of covalent linkage. Electron microscopy (EM) and single-particle analysis showed that the multimerized VLRBs form globular-shaped clusters with an average diameter of 28.7 ± 2.2 nm. The presence of VLRBs in the complex was confirmed by immune-EM analysis using an anti-VLRB antibody. Furthermore, the hydrophobic hagfish C-terminus (HC) was capable of triggering multimerization and directing the cellular surface localization via a glycophosphatidylinositol linkage. Our results strongly suggest that the hagfish VLRB forms a previously unknown globular-shaped antibody. This novel identification of a structurally unusual VLRB complex may suggest that the adaptive immune system of hagfish differs from that of lamprey.
Collapse
|
7
|
Jeong IS, Lee S, Bonkhofer F, Tolley J, Fukudome A, Nagashima Y, May K, Rips S, Lee SY, Gallois P, Russell WK, Jung HS, von Schaewen A, Koiwa H. Purification and characterization of Arabidopsis thaliana oligosaccharyltransferase complexes from the native host: a protein super-expression system for structural studies. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:131-145. [PMID: 29385647 DOI: 10.1111/tpj.13847] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/31/2017] [Accepted: 01/15/2018] [Indexed: 05/18/2023]
Abstract
The oligosaccharyltransferase (OT) complex catalyzes N-glycosylation of nascent secretory polypeptides in the lumen of the endoplasmic reticulum. Despite their importance, little is known about the structure and function of plant OT complexes, mainly due to lack of efficient recombinant protein production systems suitable for studies on large plant protein complexes. Here, we purified Arabidopsis OT complexes using the tandem affinity-tagged OT subunit STAUROSPORINE AND TEMPERATURE SENSITIVE3a (STT3a) expressed by an Arabidopsis protein super-expression platform. Mass-spectrometry analysis of the purified complexes identified three essential OT subunits, OLIGOSACCHARYLTRANSFERASE1 (OST1), HAPLESS6 (HAP6), DEFECTIVE GLYCOSYLATION1 (DGL1), and a number of ribosomal subunits. Transmission-electron microscopy showed that STT3a becomes incorporated into OT-ribosome super-complexes formed in vivo, demonstrating that this expression/purification platform is suitable for analysis of large protein complexes. Pairwise in planta interaction analyses of individual OT subunits demonstrated that all subunits identified in animal OT complexes are conserved in Arabidopsis and physically interact with STT3a. Genetic analysis of newly established OT subunit mutants for OST1 and DEFENDER AGAINST APOTOTIC DEATH (DAD) family genes revealed that OST1 and DAD1/2 subunits are essential for the plant life cycle. However, mutations in these individual isoforms produced much milder growth/underglycosylation phenotypes than previously reported for mutations in DGL1, OST3/6 and STT3a.
Collapse
Affiliation(s)
- In Sil Jeong
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
- Department of Biomedical Engineering College of Creative Convergence Engineering, Catholic Kwandong University, Gangneung, Gangwon-do, 25601, South Korea
| | - Sangmin Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 24341, South Korea
| | - Florian Bonkhofer
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| | - Jordan Tolley
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Akihito Fukudome
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Yukihiro Nagashima
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Kimberly May
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Stephan Rips
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| | - Sang Y Lee
- Division of Applied Life Science and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, South Korea
| | - Patrick Gallois
- Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester, M13 9PT, UK
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas-Medical Branch, Oxford Rd, Galveston, TX, 77555, USA
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 24341, South Korea
| | - Antje von Schaewen
- Molekulare Physiologie der Pflanzen, Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, D-48149, Münster, Germany
| | - Hisashi Koiwa
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
8
|
Lee S, Jeong H, Lee JH, Chung JM, Kim R, Yun HJ, Won J, Jung HS. Characterisation of conformational and functional features of alkyl hydroperoxide reductase E-like protein. Biochem Biophys Res Commun 2017; 489:217-222. [PMID: 28551405 DOI: 10.1016/j.bbrc.2017.05.135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 11/25/2022]
Abstract
Alkyl hydroperoxide reductase E (AhpE) is a member of the peroxidase family of enzymes that catalyse the reduction of peroxides, however its structural and functional roles are still unclear in details. In this study, we used the Thermococcus kodakarensis AhpE-like protein as a model to investigate structure-function relationships including the molecular properties of DNA binding activity. Multiple sequence alignment, structural comparison and biochemical analyses revealed that TkAhpE includes conserved peroxidase residues in the active site, and exhibits peroxidase activity with structure-dependent holdase chaperone function. Following electrophoretic mobility shift assays and electron microscopy analysis demonstrated distinctive binding features of TkAhpE to the DNA showing that their dimeric conformer can bind to the double-stranded DNA, but not to the single-stranded DNA, indicating its striking molecular features to double-stranded DNA-specific interactions. Based on our results, we provided that TkAhpE is a multifunctional peroxidase displaying structure-dependent molecular chaperone and DNA binding activities.
Collapse
Affiliation(s)
- Sangmin Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| | - Hyeongseop Jeong
- Center for Electron Microscopy Research, Korea Basic Science Institute 161, Yeongudanji-ro, Ochang-eup, Chengwon-gu, Chengju-si, Chungchengbuk-do, 28119, Republic of Korea
| | - Ju Huck Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea
| | - Jeong Min Chung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Rumi Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Hyung Joong Yun
- Advanced Nano Surface Research Group, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon, 34133, Republic of Korea
| | - Jonghan Won
- Advanced Nano Surface Research Group, Korea Basic Science Institute, 169-148 Gwahak-ro, Daejeon, 34133, Republic of Korea
| | - Hyun Suk Jung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do, 24341, Republic of Korea.
| |
Collapse
|
9
|
Abstract
Peroxiredoxins (Prxs) are a large and conserved family of peroxidases that are considered to be the primary cellular guardians against oxidative stress in all living organisms. Prxs share a thioredoxin fold and contain a highly-reactive peroxidatic cysteine in a specialised active-site environment that is able to reduce their peroxide substrates. The minimal functional unit for Prxs are either monomers or dimers, but many dimers assemble into decameric rings. Ring structures can further form a variety of high molecular weight complexes. Many eukaryotic Prxs contain a conserved GGLG and C-terminal YF motif that confer sensitivity to elevated levels of peroxide, leading to hyperoxidation and inactivation. Inactive forms of Prxs can be re-reduced by the enzyme sulfiredoxin, in an ATP-dependent reaction. Cycles of hyperoxidation and reactivation are considered to play an integral role in a variety of H2O2-mediated cell signalling pathways in both stress and non-stress conditions. Prxs are also considered to exhibit chaperone-like properties when cells are under oxidative or thermal stress. The roles of various types of covalent modifications, e.g. acetylation and phosphorylation are also discussed. The ability of Prxs to assemble into ordered arrays such as nanotubes is currently being exploited in nanotechnology.
Collapse
Affiliation(s)
- Zhenbo Cao
- Institute of Molecular, Cell and Systems Biology, Davidson Building, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - John Gordon Lindsay
- Institute of Molecular, Cell and Systems Biology, Davidson Building, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|